

LIBRARY
UNIVERSITY OF CALIFORNIA
DAVIS

State of California THE RESOURCES AGENCY .

epartment of Water Resources

BULLETIN No. 130-65

HYDROLOGIC DATA: 1965

Volume IV: SAN JOAQUIN VALLEY

DECEMBER 1966

MAY 8 1967

HUGO FISHER

Administrator
The Resources Agency

EDMUND G. BROWN
Governor
State of California

WILLIAM E. WARNE

Director

Department of Water Resources

UNIVERSIT CALIFORNIA
DAVIS

ERRATA Bulletin 130-65 Hydrologic Data: 1965 Volume IV San Joaquin Valley

- 1. Page 75 Daily Mean Discharge Burns Creek below Burns Reservoir Correct station number from B56400 to B56100
- 6 wells showing nitrate concentrations in T5S, R9E MDB & M Plate 12 NITRATE CONCENTRATIONS IN THE SAN JOAQUIN VALLEY should be plotted in T4S, R9E

State of California THE RESOURCES AGENCY

Department of Water Resources

BULLETIN No. 130-65

HYDROLOGIC DATA: 1965

Volume IV: SAN JOAQUIN VALLEY

DECEMBER 1966

HUGO FISHER
Administrator
The Resources Agency

EDMUND G. BROWN
Governor
State of California

WILLIAM E. WARNE

Director

Department of Water Resources

ORGANIZATION OF BULLETIN NO. 130 SERIES

Volume I - NORTH COASTAL AREA

Volume II - NORTHEASTERN CALIFORNIA

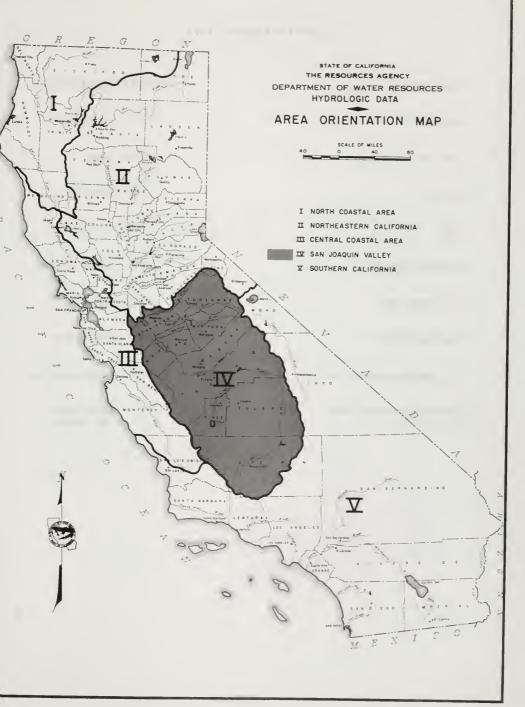
Volume III - CENTRAL COASTAL AREA

Volume IV - SAN JOAQUIN VALLEY

Volume V - SOUTHERN CALIFORNIA

Each volume consists of the following:

TEXT and


Appendix A - CLIMATE

Appendix B - SURFACE WATER FLOW

Appendix C - GROUND WATER MEASUREMENTS

Appendix D - SURFACE WATER QUALITY

Appendix E - GROUND WATER QUALITY

METRIC CONVERSION TABLE

ENGLISH UNIT	EQUIVALE	NT METRIC UNIT
Inch (in)	2.54	Centimeters
Foot (ft)	0.3048	Meter
Mile (mi)	1.609	Kilometers
Acre	0.405	Hectare
Square mile (sq. mi.)	2.590	Square kilometer
U. S. gallon (gal)	3.785	Liters
Acre foot (acre-ft)	1,233.5	Cubic meters
U. S. gallon per minute (gpm)	0.0631	Liters per second
Cubic feet per second (cfs)	1.7	Cubic meters per minute

FOREWORD

Bulletin No. 130-65, entitled "Hydrologic Data: 1965, Volume IV: San Joaquin Valley", presents data pertaining to climate, surface water flow, diversions, ground water levels, surface water quality, and ground water quality in the San Joaquin Valley for reporting periods during 1965.

The Bulletin No. 130 series is published annually in five volumes. Each volume presents hydrologic data for one of five reporting areas of the State. These areas are delineated on page iii. The organization of the bulletin is outlined on page ii.

The basic data programs of the Department of Water Resources have been designed to supplement the activities of other agencies to satisfy specific needs of the State. Bulletin No. 130-65 presents useful, comprehensive, accurate, and timely hydrologic data which are prerequisites for effective planning, design, construction, and operation of water facilities.

William E. Warne, Director Department of Water Resources The Resources Agency

State of California November 18, 1966

State of California The Resources Agency Department of Water Resources

EDMUND G. BROWN, Governor HUGO FISHER, Administrator, The Resources Agency WILLIAM E. WARNE, Director, Department of Water Resources ALFRED R. GOLZE', Chief Engineer

This report prepared under the direction of JOHN R. TEERINK, Assistant Chief Engineer, Area Management

by the

SAN JOAOUIN DISTRICT

SAN JOAQUIN DISTRICT
Carl L. Stetson
Activities covered by this report were under the supervision of
Cledith L. Chastain
The portions of this report pertaining to surface water flow, ground water levels, and climatology were prepared by
John Gostanian Ground Water Assistant Civil Engine
Harry R. Brenner Surface Water Water Resources Technician
William A. Mancebo Climatology Water Resources Technician
Robert W. Grimshaw Modesto Field Office Water Resources Engineering Associa
Assisted by
Vartkes N. Messerlian Keithal B. Dick Water Resources Technician Donald R. Henley Water Resources Technician Thomas E. Stowell Water Resources Technician Donald W. Colburn Water Resources Technician Donald W. Colburn Water Resources Technician Water Resources Water Resources Technician Water Resources Water R
James M. Windsor Water Resources Engineering Associa
Jan C. Bush
Assisted by
Barney H. Perkins

Reviewed and Coordinated by Statewide Planning Office, Data Coordination Branch

TABLE OF CONTENTS

	Page
ORGANIZATION OF BULLETIN NO. 130 SERIES	ii
METRIC CONVERSION TABLE	iv
FOREWORD	v
ORGANIZATION, DEPARTMENT OF WATER RESOURCES	vi
A CKNOWLEDGEMENTS	хi
CHAPTER I. INTRODUCTION	1
Climate	1
Surface Water Flow	1
Ground Water Measurements	2
Surface Water Quality	2
Ground Water Quality	2
Summary of Basic Data Activities	3
FIGURE	
Figure Numbe <u>r</u>	
l Area Orientation Map	iii
•	
TABLE	
Table Number	
1 Summary of Basic Data Activities · · · · · · · · · · · · · · · · · · ·	4
APPENDIXES	
APPENDIX A. CLIMATE	5
Introduction	7
Measurement Techniques	7
Definitions of Terms and Abbreviations	7
Methods and Procedures	8
Accuracy and Limitations	8
Significant Figures	8
Drainage Basin Designation	8
Alpha Order Number and Subnumber	9
Coding and Numbering System	9
Explanation of Headings and Symbols Used in the Columns of Table A-1	9
Tables in Appendix A	
Table	
A-1 Index to Climatological Stations for 1964-65	11
A-2 Seasonal and Mean Precipitation at Selected Stations in the San Joaquin Valley	17
A-3 Accumulative Monthly Precipitation at Key Stations in the San Joaquin Valley	18
A-4 Precipitation Data	19
A-5 Temperature Data	29
A-6 Evaporation Data	38
APPENDIX B. SURFACE WATER FLOW	41
Introduction	43

TABLE OF CONTENTS (Continued)

	Definition of Terms and Abbreviations	
	Methods and Procedures	
	Accuracy	
	Significant Figures	
	Coding	
Expla	nation of Tables	
	Runoff Comparisons	
	Lakes and Reservoirs	
	Gaging Station Additions and Discontinuations	
	Daily Mean Discharge	
	Streamflow Measurements at Miscellaneous Locations	
	Diversions	
	Imported and Exported Water	
	Daily Mean Gage Heights	
Alpha	petical Index to Tables	
Drain	age Basin Index to Daily Mean Discharge Tables	
Table	s in Appendix B	
Table Numbe	<u>.</u>	
B-1	Annual Unimpaired Runoff	
B-2	Monthly Unimpaired Runoff	
B-3	Summary of Principal Reservoir Storage in the San Joaquin Valley	
B-4	Gaging Station Additions and Discontinuations	
B-5	Daily Mean Discharge	
B-6	Streamflow Measurements at Miscellaneous Locations	
B-7	Diversions	
B~8	Diversions and Acreage IrrigatedEastside Canals and Irrigation Districts	
B-9	Deliveries from Central Valley Project Canals	
B-1	Imports and Exports	
B-1	Daily Mean Gage Height	
B-1	Daily Content	
B-1	Revisions to Previously Published Reports	
APPE	DIX C. GROUND WATER MEASUREMENTS	
Intr	duction	
Meas	rement Techniques	
	Definitions	
	Methods and Procedures	
	Accuracy	
Codi	g and Numbering System	
	Explanation of Headings and Symbols in Appendix C	
Figu	es in Appendix C	
Figu Numb	e <u>r</u>	
C-1	Fluctuation of Average Water Level in Selected Areas	
C-2	Fluctuation of Water Levels in Selected Wells	

TABLE OF CONTENTS (Continued)

Page

Tables in Appendix C	
Table Numbe <u>r</u>	
C-1 Change in Average Ground Water Level in Districts or Areas in the San Joaquin Valley : .	. 184
C-2 Change in Average Ground Water Level from 1921 to 1951 and 1951 to 1965 in 18 Ground Water Areas in the San Joaquin Valley	. 187
C-3 Ground Water Levels at Wells	. 188
APPENDIX D. SURFACE WATER QUALITY	. 235
Introduction	. 237
Measurement Techniques	. 237
Definitions	. 237
Methods and Procedures	. 237
Accuracy	. 238
Coding	. 238
Data	. 238
Figures in Appendix D	
Figure Number	
D-1 Weekly Mean Specific Conductance at Selected Stations, San Joaquin Valley	. 240
D-2 Weekly Mean Temperature at Selected Stations, San Joaquin Valley	. 243
Tables in Appendix D	
Table Number	
D-1 Index to Quality Sampling Stations	. 239
D-2 Analyses of Surface Water	. 244
D-3 Analyses of Trace Elements in Surface Water	. 275
APPENDIX E. GROUND WATER QUALITY	. 277
Introduction	. 279
Measurement Techniques	. 279
Definitions	. 279
Methods and Procedures	
Accuracy	. 280
Coding	. 280
Data	. 280
Tables in Appendix E	
Table Number	
E-1 Wells Indicating Significant Deviation in Quality from Surrounding Area	. 281
E-2 Analysis of Ground Water	. 285
E-3 Analysis of Trace Elements in Ground Water	- 326
E-4 Analyses of Miscellaneous Constituents	. 327

TABLE OF CONTENTS (Continued)

PLATES

(Bound at end of volume)

Number	
1	Location of Climatological Stations
2	Isohyetal Map, Mean Seasonal Precipitation, July 1915 to June 1965
3	Isopercentual Map, Seasonal Precipitation in Percent of 1915-1965 Normal
4	Location of Surface Water Measurement and Quality Sampling Stations
5	Ground Water Level Changes in Districts or Areas, Unconfined and Semiconfined Aquif Spring 1964 to Spring 1965
6	Ground Water Level Changes in Districts or Areas, Confined and Semiconfined Aquifer Spring 1964 to Spring 1965
7	Location of Selected Observation Wells and Cooperative Program Areas
8	Map of 18 Historic Ground Water Areas in San Joaquin Valley and Profiles Along Sect Showing Ground Water Levels in 1921, 1951, 1964, 1965
9	Lines of Equal Elevation of Water in Wells, San Joaquin Valley, Spring 1965
10	Location of Selected Observation Wells, Ground Water Quality
11	Boron Concentrations in the San Joaquin Valley, 1960 through 1965
12	Nitrate Concentrations in the San Joaquin Valley, 1961 through 1965

ACKNOWLEDGMENTS

In the collection of data for this bulletin, the Department has been aided by various public and private agencies and by many private citizens. This cooperation is gratefully acknowledged, and it is especially fitting to commend the following agencies:

- U. S. Weather Bureau
- U. S. Bureau of Reclamation
- U. S. Army Corps of Engineers
- U. S. Geological Survey

City and County of San Francisco

Kern County Water Agency

Kern County Land Company

Modesto Irrigation District

Turlock Irrigation District

Oakdale Irrigation District

Merced Irrigation District

Fresno Irrigation District

Kings River Water Association

Central California Irrigation District

Tule River Association
Fresno County Health Department

Kern County Health Department

Tulare County Health Department

ABSTRACT

Tables show data on climate, surface-water flow, ground-water levels, and surface-and ground-water quality during the 1964-65 water year. Figures show locations of surface-water sampling stations and electrical conductance at selected stations. Plates show locations of climatological stations, surface-water measurement stations selected wells, and ground-water areas; distribution of precipitation; ground-water level changes; ground-water levels; ground-water quality; and nitrate concentrations

CHAPTER I. INTRODUCTION

The Department of Water Resources is concerned with development and use of water supplies and with methods that are employed to observe and measure hydrologic conditions. Hydrologic data are used for the planned development of new water supplies, hydropower, drainage, flood control, navigation, and other associated engineering projects. The Department's hydrologic data programs have been designed to supplement and augment the data activities of other agencies to fulfill the specific needs of the Department and the State.

This report contains a record of hydrologic data collected and assembled by the San Joaquin District of the Department of Water Resources. It brings together in a permanent and usable form the following types of hydrologic basic data collected during the time intervals shown below:

October 1, 1964-September 30, 1965

Surface Water Flow Diversions Surface Water Quality Ground Water Quality

July 1, 1964-September 30, 1965

 ${\tt Climate}$

July 1, 1964-June 30, 1965 Ground Water Levels

Climate

The objective of the climate program is to provide sufficient historical records of climatological data to plan water development projects to meet the social, economic, and physical needs of the people of California. This objective is achieved by gathering on a continuing basis all published climatological data that are considered pertinent to the design and operation of water resources projects, including data on precipitation, temperature, evaporation, and wind. These published data are supplemented with data gathered by the Department where necessary for the Department's needs.

The optimum operation of reservoirs requires data of precipitation, evaporation, and wind movement. Reservoir spillway design requires data on duration, frequency, and intensity of rainfall over the entire drainage area. Precipitation data from a few stations are needed for early forecasting of possible flooding and water supply conditions.

Climatological data gathered by the Department along with that from cooperating agencies and individual observers are published in Appendix A.

Surface Water Flow

The objective of the surface water measurement program is to provide historical record of the flows of surface water throughout the State. This program augments that of the U. S. Geological Survey and other agencies to provide a statewide base network of primary and secondary stream gaging stations that will satisfy the full needs of the Department and State in connection with water-associated engineering activities. Knowledge of the occurrence of surface water quantitatively with time and location is basic to development of the water resources of the State. Continuous historic records of natural streamflow and diversions are essential to selecting and operating water development projects, determining the maximum amount of water that can be anticipated on a firm basis at a storage site, and the sizing of a reservoir to obtain certain firm yields at that site. Long-time records of streamflow are also essential to formulate and operate flood control projects. These records can provide the basis for developing agreements on water rights without expensive litigation.

The surface water activities of the San Joaquin District of the Department of Water Resources involve the operation and maintenance of stream gaging stations, collection and compilation of surface water

flow discharge and stage records, measurement of the quantities of water diverted by major diverters from the San Joaquin, Merced, Tuolumne, and Stanislaus Rivers, and Dry Creek near Modesto.

Records of streamflow and diversion gathered by the Department and similar data collected from other agencies are published in Appendix B of this report.

Ground Water Measurements

The objectives of the ground water program are to provide sufficient records of ground water level data for the planning and development of the ground water resources of the State; to determine the amount of water in storage and the change in storage over time; and to determine the direction and magnitude of the movement of ground water. All studies of ground water problems and plans for solution of these problems have two factors in common: they must be founded upon records of water level measurements and upon quality analyses of water samples obtained over a period of years.

On the east side of the San Joaquin Valley from the Chowchilla River to the southern end of the Valley, records of ground water levels extending as far back as 1921 have been obtained through combined efforts of the State, U. S. Bureau of Reclamation, and many local agencies. In 1930 the Department of Water Resources began the collection of ground water level data in connection with special investigations of water resources of specific areas and has gradually developed a continuous program for collection and evaluation of basic water level data. Through cooperative activities of the federal and local agencies, coordinated and augmented by the Department, the program of annual, semiannual, and monthly measurements of ground water levels has gradually expanded.

Appendix C includes the following: ground water level measurements made on approximately 900 wells which were selected as being representative of the respective areas; hydrographs of selected wells and areas; maps showing lines of equal elevation of water in wells for both the unconfined and pressure surface; and summary tables.

Surface Water Quality

Objectives of the surface water quality data program are: (1) to determine the quality of the surface waters of the State through a network of sampling stations representative of all significant surface streams and lakes; (2) to detect changes in the quality of surface waters and to alert the appropriate control agencies when adverse changes are noted; and (3) to determine long- and short-term trends in surface water quality. Because neither water of excellent quality in short supply nor water of unusable quality in excessive supply is suitable for the development of extensive water resources projects, it is essential that knowledge of the quality and quantity of the water be obtained before serious consideration is given to the details of design.

Realizing the necessity for water quality information, the Department initiated the Surface Water Quality Data Program in April 1951. Information obtained from this program has proven invaluable in the development of the California Water Plan. Data for this program in the San Joaquin District are obtained through operation of 31 sampling stations. The operation of these stations entails the routine collection and analysis of samples for determination of mineral and sanitary quality and the maintenance of continuous conductivity recorders at nine selected stations. These data are published monthly and distributed to interested agencies and individuals.

Records of surface water quality obtained by this program are contained in Appendix D.

Ground Water Quality

Water development to meet the needs of California's phenomenal growth is one of the major problems facing the State. Although ground water has been, and is, one of the major sources of supply, the present widespread dependence upon ground water requires constant vigilance, coupled with remedial action where necessary to assure that the quality of ground water remains suitable for all intended uses. In view of this need for vigilance, a statewide program of observation and study of ground water quality was initiated by the Department of Water Resources in 1953.

The objectives of the Ground Water Quality Data Program are: (1) to determine the quality of the ground waters of the State by sampling of water from a grid of representative wells; (2) to detect changes in the quality of the ground water and to alert the appropriate agencies when the changes are significant; and (3) to determine trends in ground water quality.

The ground water quality activities of the San Joaquin Valley for the reporting period October 1, 1964, through September 30, 1965, were:

- 1. A concentrated study of ground water quality conditions in Stanislaus County.
- A concentrated study of ground water quality conditions in Madera County in cooperation with the U. S. Geological Survey.
- 3. A concentrated study of ground water quality conditions in a portion of western Kern County.
- 4. A study of wells and the surrounding area where a significant deviation in quality was noted during past years to determine, when possible, the cause of the deviation and the area affected.

The results of these activities are summarized in Appendix E.

Summary of Basic Data Activities

Table 1 presents a summary of the basic data activities in the San Joaquin District. The table shows for each program the origin, purpose, authorization, type of data collected, frequency of measurements or service, agency collecting the data, and number of stations of each type.

TABLE 1 SUMMARY OF BASIC DATA ACTIVITIES Bulletin 130-65 San Joaquin District

					Park		
20+1400	Origin	Popular	Anthorization		חשרש	Predilency	Number
ACLIVICY	OF 19 111			Type Collected	Collected by1/	Measured or Serviced	Stations
Climate	1956	To supplement record compiled by the U. S. Weather Bureau and other agencies. To index and file and publish all data not published in other reports.	Sections 228, 12616 of the Water Code	Precipitation Precipitation Strrage gages Storage gages Temperature Evaporation Wind	Cooperators USWB DWR Other agencies Cooperators Cooperators	Daily Daily Annually Annually Daily Daily	201 139 6 50 60 12
Surface Water Flow	1924	To supplement the stream gaging network of the U.S. Geological Survey and other agencies to provide an inventory of surface water data for (1) forecasting streamflow, (2) planning water devolopment projects, (3) operation of flood control and multiple purpose projects, and (4) formulation of agreements on water rights without expensive litigation.	Sections 225, 226 of the Water Code	Discharge Discharge Stage Stage Diversions Diversions Miscellaneous discharge measurements	DWR Other agencies DWR DWR Other agencies DWR	Serviced twice monthly measured monthly Monthly Serviced twice monthly Visited and measured monthly	31 30 18 9 137 124 10
Ground Water Measurements	1930	To supplement the collection of ground water data earlied out by other agencies. Compile data and prepare annual ground water maps, and publish date on selected weels in annual report so that: (1) information will be available for drainage and overdraft problems. (2) planning to develop potential ground water basins can be facilitated.	Sections 225, 226, 228, 12622 of the Water Code	Depth to ground water measurements	DWR Other agencies	Key wells measured: Monthly Spring Fall Wey wells measured: Monthly Spring Fall	1,500 1,500 550 275 6,000 1,500
Surface Water Quality	1951	District's sufface waters through a network of sampling stations representative of all significant surface stream and lakes in the District. (2) To detect changes in the guality of surface waters and alert control agencies when adverse changes are noted. (3) To determine trends in surface water quality, (4) To record and catalogue the data in a readily available form. (5) To disseminate the data and information gathered to interested agencies as soon as possible.	Sections 226, 229, 12616, and 1262 of the Water Code	Mineral Sample Mineral Sample Electrical Conductivity Coliform Heavy metals Heavy metals	DWR Cooperators DWR Cooperators Cooperators Cooperators	Monthly Semianulally Sonothly Cuarterly Monthly Monthly Monthly Cuarterly Cuarterly Cuarterly Semianually Semianually Semianually Semianually Semianually Semianually	11 122 133 14 14 14 17
Ground Water Quality	1953	(1) To determine the quality of the ground water (where deemed necessary) through a grid of selected wells. (2) To detect changes in the quality of the ground water and to determine the cause of these changes when possible and to notify the appropriate regulatory agency. (3) To determine trends in ground water quality. (4) To record and catalogue the data in a readily available form. (5) to dissembnate the data in	Sections 226, 229, and 12616 of the Water Code	Mineral and Trace Element Samples Mineral and Trace Element Samples	DWR Cooperators	Annually Annually	100

1/ DWR - Department of Water Resources as soon as possible.
USWB - U. S. Weather Bureau

APPENDIX A
CLIMATE

APPENDIX A. CLIMATE

Introduction

This appendix presents climatological data pertaining to precipitation, temperature, wind movements, and evaporation, as well as climatological station description and summaries of seasonal and mean precipitation at selected stations. These data are presented for the period July 1, 1964, to September 30, 1965, and are reported in monthly and seasonal values except for data collected by precipitation storage gages. These values are obtained on an annual basis and may vary depending on time of servicing.

Presented in Table A-1 is the index to climatological stations. Presented in Table A-2 is a summary of seasonal and mean precipitation at selected stations. Table A-3 shows the accumulative monthly precipitation at key stations. Table A-4 presents the monthly precipitation. Table A-5 presents the monthly temperature. Table A-6 presents the monthly summary of evaporation data.

Plate 1 shows the location and types of climatological stations, the San Joaquin District's boundary, the hydrographic unit boundaries, and the major drainage boundaries. Plate 2 shows lines of mean seasonal precipitation for the 50-year period 1915 to 1965. Plate 3 shows the 1964-65 seasonal precipitation in percent of the 50-year normal.

Measurement Techniques

One of the major objectives of this program is to document the location, equipment, and methods of observation in use at all of the weather stations. Many of the records presented in this appendix were collected by individual observers and local agencies. Wherever possible observers are encouraged to use the methods which are prescribed by the U. S. Weather Bureau.

Definitions of Terms and Abbreviations

The definitions of terms and abbreviations used in this appendix and related to precipitation, temperature, evaporation, and wind movement are given below:

Term or Abbreviation	<u>Definition</u>
Precipitation (Precip.)	The total amount of precipitation, in inches, for the period indicated. $% \label{eq:continuous}%$
Maximum (Max.)	The highest temperature in degrees Fahrenheit for the month.
Minimum (Min.)	The lowest temperature in degrees Fahrenheit for the month.
Average Maximum (Avg. Max.)	The arithmetical average of daily maximum temperatures in degrees Fahrenheit for the month.
Average Minimum (Avg. Min.)	The arithmetical average of daily minimum temperatures in degrees Fahrenheit for the month.
Average (Avg.)	The arithmetical average of the average maximum and average minimum temperature in degrees Fahrenheit.
Evaporation (Evap.)	The net amount of water evaporation, in inches, for the period indicated. $\label{eq:continuous} \begin{tabular}{ll} \end{tabular}$
Wind	The total movement of air, in miles, for the period indicated.
All temperatures shown i	n this appendix are air temperatures.
T	Trace
Е	Wholly or partially estimated.
-	No record.
М	One or more days of record missing; if average value is entered, less than 10 days of record is missing.
N	Record not available at time of publication.
*	Amount included in the following measurement; time distribution unknown.

Includes total for previous month.

Methods and Procedures

The Department of Water Resources gathers basic data relating to climatic phenomena in the San Joaquin Valley. This activity includes field measurements and office computations to determine the instantaneous, daily, monthly, seasonal, and annual temperatures, precipitation, and evaporation.

The field activities include the installation and maintenance of weather stations. The installed equipment obtains measurements of: (1) daily maximum and minimum temperatures; (2) precipitation--annual amounts from storage gages in remote areas, daily amounts from standard rain gages, and instantaneous amounts from recording rain gages; (3) evaporation in inches; and (4) wind movement in miles.

The office activities consist of computation and compilation of approximately 257 monthly and annual climatological observations to provide a continuous and current record. This includes the computations of intensities from recording rain gages and preparation of hourly precipitation records for future use in development of rainfall intensity-duration-frequency relationships.

Accuracy and Limitations

The equipment used to obtain climatological data is in most cases of the type used and accepted by the U. S. Weather Bureau.

To insure the utmost accuracy in the data published in this appendix, a program of annual and semiannual station inspections has been inaugurated. These inspections insure that the equipment is being properly maintained and the observations are taken in accordance with U. S. Weather Bureau standards.

Due to the influences of geography, direction and degree of slope, elevation, terrain, wind currents, and many other factors, the ability of a climatological station to reflect the conditions of the area surrounding it is greatly limited.

Significant Figures

The following is a listing of significant figures used in reporting climatological data:

Precipitation to hundredths of an inch.

Temperature to tenths of degree Fahrenheit.

Evaporation to hundredths of an inch.

Wind movement in miles.

Drainage Basin Designation

The State is divided into major hydrographic areas, and each of these areas is assigned an alphabetical letter which is the first digit of station number. The second number has been assigned to streams of primary importance.

The major hydrographic areas and stream basins which are reported in this appendix are as follows:

Hydrographic Area B

San Joaquin River Basin

BO - San Joaquin Valley Floor B6 - Fresno-Chowchilla Rivers

B3 - Stanislaus River B7 - San Joaquin River

B4 - Tuolumne River B8 - San Joaquin River on West Side

B5 - Merced River

Hydrographic Area C

Tulare Lake Drainage Basin

CO - Tulare Lake Valley Floor C4 - Green Horn Mountain

Cl - Kings River C5 - Kern River

C2 - Kaweah River C6 - Tehachapi Mountains

C3 - Tule River C7 - Tulare Lake Basin on West Side

Alpha Order Number and Subnumber

A four-digit alpha order number is assigned each station to denote its order in alphabetical sequence for the purpose of identification in machine processing. The subnumber is used to supplement the alpha order number in that it allows for more stations to be placed into the program.

Coding and Numbering System

Explanation of the Headings and Symbols Used in the Columns of Table A-1

The station name, elevation, section, township, and range are self-explanatory.

40-Acre Tract. This denotes the location of the station within the section in which it is located. The letter code is derived from the following diagram:

D	С	В	A
E	F	G	Н
М	L	К	J
N	P	Q	R

Base and Meridian. The code for this column is as follows:

M - Mount Diablo Base and Meridian

S - San Bernardino Base and Meridian

Latitude and Longitude. The location of the station is given in degrees, minutes, and seconds.

Cooperators' Numbers. These numbers are assigned from the following list:

000 - Private Cooperators

001 - 399 Private Agencies

001 Kern County Land

002 Boswell Company

003 P. G. and E. Company

004 Southern California Edison Company

005 California Electric Power Company

010 Amateur Radio Weather Network KTRB

011 Southern Pacific Company

012 Miller and Lux, Inc.

013 Mr. Roger C. Rice

400 - 799 Counties and municipalities

401 Hetch Hetchy Water District

405 City of Los Angeles, Department of Water & Power

420 Stanislaus County

800 - 899 State

801 Pomology Department, University of California, Davis

804 Division of Beaches and Parks

805 State Department of Fish and Game

808 Division of Forestry

809 Division of Highways

812 Regional Subsidence Exploration, Department of Water Resources

814 University of California, Davis, Westside Field Station

815 University of California, School of Forestry

900 - 999 Federal

900 U. S. Weather Bureau (Climate Data)

902 U. S. Air Force, Air Weather Service

903 U. S. Army Corps of Engineers, Sacramento

904 U. S. Bureau of Reclamation

905 U. S. Forest Service

906 U. S. Department of Agriculture, Agricultural Research Service

907 State Climatologist & Unpublished (U.S.W.B.)

916 U. S. Geological Survey

Cooperators' (Coop) Index Numbers. These are the numbers assigned to the stations by the agencies responsible for handling the station records. With few exceptions, the alpha order numbers assigned to the U.S. Weather Bureau stations are the same as those used by the Weather Bureau. The U.S. Weather Bureau station number is shown in this column only when it differs from the alpha order number.

Record Began. This is shown to year only.

Record End. If record continues this column is left blank.

Missing Years. This denotes missing record to the nearest full year.

County Code. Numbers used to designate specific counties are listed below:

Alpine

02

Calaveras	05
Fresno	10
Inyo	14
Kern	15
Kings	16
Madera	20
Mariposa	22
Merced	24
San Benito	35
San Joaquin	39
Stanislaus	50
Tulare	54
Tuolumne	55

TABLE A-I

INDEX OF CLIMATOLOGICAL STATIONS FOR 1964-65

	Station	Elevation (In Feet)	Section		Township	Range	re Tract	Meridian		itude	-	-	11 nde		Cooperator	rator's dex nber	Record	Record	Missing	y Code
Number	Name	Eler (In	Sec		Town	Ro		Bose 8	0	- Lati	11	0	- Longil	11	Coop	Cooperator ¹ Index Number	Re	Re	Yeors	County
C0 0009 B6 0049 C0 0204 C7 0215 C0 0332	ACADEMY AHWAHNEE 2 NNW ANGIOLA ANNETTE ARVIN	2680 205	SEC SEC	24 27 19	T12S T06S T22S T26S T31S	R20E R23E R17E	D R	M M M	37 35 35	23 59 38	22 25 48	119	44 28 10	07 42 12	907 900 000	040049	1958 1959 1899 1952 1936	1965		10 20 54 15
C0 0332-02 C2 0343 B0 0373-80 C2 0374 B7 0379	ARVIN FRICK ASH MOUNTAIN ATWATER CRAIG ATWELL AUBERRY 1 NNE	1708 150 6400	SEC SEC	34 02 12	T31S T16S T07S T17S T10S	R29E R12E R30E	L	M M M	36 37 36	29 21 28	30	118 120 118	49 37 40	35	900 000 900		1959 1925 1961 1948 1915	1965		15 54 24 54 10
C0 0396~02 C7 0399 C7 0399-01 C7 0399-02 C2 0422	AVENAL WALDEN AVENAL ORCHARD RCH AVENAL 8 SW AVENAL 6 SSW BADGER	712 1424	SEC SEC	25 03 18	T22S T24S T23S T23S T15S	R17E R16E R17E	P G K	M M M	35 35 35	48 57 55	23 33 30	120	05 13 10	18 25 05	000		1957 1919 1957 1953 1940			16 16 16 16 54
B5 0425 B5 0430 C0 0440 C0 0442 C1 0449	BADGER PASS BAGBY BAKERSFIELD 1 W BAKERSFIELD WB AP BALCH POWER HOUSE	825 400	SEC SEC	06 26 02	T03S T04S T29S T29S T12S	R17E R27E R27E	J H Q	M M M	37 35 35	36 22 25	48 41 38	119	07 02 02	48 17 34	900		1941 1958 1913 1933 1921			22 22 15 15
C6 0466 C1 0534 B5 0570 B5 0570-80 B3 0573	BALLINGER BARTON FLAT BEAR VALLEY TRABUCCO BEAR VALLEY BEARDSLEY DAM	3760 2000 2060	SEC SEC	01 20 20	T09N T13S T04S T04S T04N	R28E R17E R17E		M M M	36 37 37	49 34 34	00	118	53 07 07	00	812 900 903 903 404	000003	1961	1964		15 10 22 22 55
C2 0596 B4 0617 C0 0631 B6 0753-80 B7 0755	BEARTRAP MEADOW BEEHIVE MEADOW BELLEVUE BIG CEDAR SPRINGS BIG CREEK PH 1	6500 369 3280	SEC SEC	28 07 26	T14S T02N T30S T06S T08S	R20E R27E R21E	ВА	M M M	38 35 37	00 20 23	00 11 14	119 119 119	47 05 37	00 27 56	900 900 001 000 900		1959 1947 1961 1964 1915			54 55 15 20 10
87 0755-01 B7 0755-02 B7 0755-05 C1 0821 C6 0825-01	BIG CREEK PH 2 BIG CREEK PH 3 BIG CREEK PH 8 BISHOP PASS SNOW COR BITTER CREEK	1400 2260 11040	SEC SEC SEC	17 27 02	T08S T09S T08S T10S T11N	R24E R24E R31E	E G	M M M	37 37 37	08 12 06	54 00 00	119 119 118	23 20 34	00	004 004 900	000002	1913 1922 1921 1947 1961	1964		10 10 10 10
C0 0875 C1 0880-80 C5 0981 C1 1069-11 C0 1174	BLACKWELLS CORNER BLASINGAME BOREL PH BRETZ MILL BUENA VISTA RCH	1050 2280 3250	SEC SEC	22 10 27	T27S T11S T27S T10S T30S	R23E R32E R25E	D	M M M	36 35 37	57 35 02	37 00 18	119	26 31 14	45 00 24	808	040875	1944 1961 1905 1960 1944		13	15 10 15 10 15
C0 1175 C0 1175-80 C6 1199-01 C0 1244 B3 1280	BUENA VISTA RCH MGL 2 BUENA VISTA RCH MGL 2 BURGESS CORRALS BUTTONWILLOW CALAVERAS RANGER STA	290 1600 268	SEC SEC	08 02 14	T31S T31S T10N T29S T04N	R25E R23W R23E	R	M S M	35 34 35	14 58 24	25 28 00	119 119 119	18 18 28	23 38 00	012 812 900	000001	1955 1962 1960 1940 1944			15 15 15 15 05
C3 1300 C3 1425 C0 1479 C0 1490 C0 1557	CALIF HOT SPRINGS R S CAMP NELSON CANFIELD RANCH CANTUA RANCH CARUTHERS 4 E	4825	SEC SEC	33 26 26	T23S T20S T30S T16S	R31E R26E R15E	N N	M M M	36 35 36	08 16 30	24 58	118	36 09 18	54 41 50	000 001 000		1907 1959 1952 1955 1960	1965		54 54 15 10
80 1580 B8 1583 B6 1588 B5 1588-03 B6 1590	CASTLE A F B CASTLE ROCK RAD LAB CATHEYS VAL BULLRUN R CATHEYS VALLEY 3 NNW CATHEYS VALLEY SAWYER	625 1425 1250	SEC	34 24 28	T06S T06S T05S T06S	R04E R17E R17E	НВ	M M	37 37 37	38 23 28	00 56 33	121 120 120	32 03 06	00 08 33	900 000		1951 1956 1940 1957 1957			24 39 22 22 22
B6 1591 C5 1647 B4 1697 B7 1737 C7 1743-02	CATHEYS VAL STONHOUSE CHAGOOPA CHERRY VALLEY DAM CHIQUITO CREEK CHOLAME TWISSELMAN	10390 4765 7290	SEC SEC	05 07	T06S T16S T01N T05S T27S	R33E R19E R24E	L	M M M	36 37 37	30 58 30	00	118 119 119	27 55 23	00	000 901 900 900		1951 1964 1955 1961 1951			22 54 55 20 40
B6 1754 C0 1770-80 87 1844 C0 1864 C7 1864-02	CHUCHAPATE R S CITRUS CLOVER MEADOWS GS COALINGA COALINGA ROBERTS RCH	7002 671	SEC SEC	13 06 32	T08N T11N T05S T20S T22S	R20W R25E R15E	M	S M M	35 37 36	02 32 09	18	118 119 120	58 17 21	28	900		1941 1963 1946 1942 1953			56 15 20 10
C0 1867 C7 1869 C0 1870-80 C0 1871-80 B6 1878	COALINGA 1 SE COALINGA 14 WNW COALINGA CDF COALINGA FEED YRDS 1 COARSEGOLD	1640 690 N 1000	SEC SEC	33 05 04	T21S T19S T21S T20S T08S	R13E R15E R15E	Q	M M M	36 36 36	14 08 13	00 03 23	120	34 22 21	00 00 12	900 808 806	041878	1911 1949 1961 1964 1952			10 10 10 10

INDEX OF CLIMATOLOGICAL STATIONS FOR 1964-65

	Station	evation n Feet)	Section		Township	Range	re Troct	Meridian		tude			Longitude		rotor	rotor's dex nber	Record	Record	Missing	y Code
Number	Name	Elev (In I	Seci		Towr	Rai	12	Bose &	0	- Lo1	II.	0	- Long	11	Caoperator Number	Caoperator's Index Number	a a	F. P.	Yeors	County
C0 1885 B4 1904 B3 2003 C0 2012 C0 2013	COIT RANCH HDQ COLD SPRINGS COPPEROPOLIS CORCORAN IRRIG DIST CORCORAN EL RICO 1	5680 1000 200	SEC SEC	36 34 15	T14S T04N T02N T21S T22S	R17E R12E R22E	A K P	M M M	38 37 36	09 59 05	57 00 53	120 120	38 34	52 00 51	000		1954 1960 1954 1912 1958	1964	03	10 55 05 16 16
C0 2013-05 B5 2072 C5 2114 B7 2122 C6 2222-80	CORCORAN EL RICO 33 COULTERVILLE FFS CRABTREE MEADOW CRANE VALLEY PH CUMMINGS VALLEY 2	1870 10720 3440	SEC SEC	33 01 25	T07S	R16E R33E R22E	A M	M M M	37 36 37	43 34 17	25 00	120 118	12 20	12 00	900		1951 1959 1948 1903 1961			16 22 54 20 15
B6 2288 C0 2346 B8 2369 B0 2375 B0 2389-05	DAULTON DELANO DEL PUERTO ROAD CAMP DELTA RANCH DENAIR 3 NNE	323 1125 90	SEC SEC	11 12 26	T09S T25S T06S T09S T04S	R25E	A Q	M M M	35	46 25 07	23	119	14	37	000 900 900 000 900		1946 1876 1958 1949 1964		01	20 15 50 24 50
C0 2408 C0 2436 C0 2440-01 C7 2464 C7 2464-01	DEVILS DEN SLF DIGIORGIO DINUBA ALTA I D DOMENGINE RCH DOMENGINE SPRING	483 334 1000	SEC	10 17 29	T25S T31S T16S T18S T18S	R29E R24E R15E	B C A	M M M	35 36 36	15 32 20	08 40 24	118	51 23 21	00 06	000		1959 1937 1944 1959 1958			15 15 54 10 10
B4 2473 C5 2492 B5 2539 C1 2577 C3 2591	DON PEDRO RESERVOIR DOUBLEBUNK MEADOW DUDLEYS DUSY BENCH EAGLE CREEK	700 6200 3000 9470 6650	SEC SEC SEC	35 11 21		R14E R31E R17E R31E R31E	D	M . M	37	45 06	00 00 14	120 118 120 118 118	06	18 00 30	401 900 900 901 903		1940 1955 1909 1964 1964			55 54 22 10 54
B4 2609 C1 2653 C0 2752-80 B0 2820 B0 2860	EARLY INTAKE PH EAST VIDETTE MEADOW EIGHTH STAND RCH EL SOLYO RCH ESCALON SWANSON	10400 338 50	SEC SEC	03 36 08	T01S T14S T32S T04S T02S	R33E R27E R07E	С	M M M	36 35 37	44 06 36	00 05 30	118 119 121	23 01 13	00 45 35	900 001 000		1925 1955 1963 1953 1944	1964		55 54 15 50 39
B5 2920 C0 2922 B0 2968 C7 3005 B0 3063	EXCHEQUER RESERVOIR EXETER FAUVER RANCH FANCHER RCH CAMP 3 FELLOWS FIREBAUGH 9 W	439 225 1340	SEC SEC	20 16 06	T04S T18S T07S T32S T12S	R27E R15E R23E	D N C	M M M	36 37 35	21 19 10	28 04 44	119 120	04 20	45 04 39	900		1935 1938 1959 1956 1934			22 54 24 15 10
CO 3083 CO 3084 B7 3093 CO 3257 CO 3258-80	FIVE POINTS 5 SSW FIVE POINTS DIENER FLORENCE LAKE FRESNO WB AP FRESNO CO WESTSIDE FD	263 7345 331	SEC SEC	10 36 29	T18S T18S T07S T13S T20S	R17E R27E	R N C	M M M	36 37 36	22 16 46	20 27 33	120 118	06 58	12 27 39	900		1942 1933 1940 1899 1963			10 10 10 10
B7 3261 C2 3397 C0 3428-01 C4 3463 C4 3465	FRIANT GOVERNMENT CP GIANT FOREST GIN YARD GLENNVILLE GLENNVILLE FULTON RS	6412 295 3140	SEC	06 12 25	T32S T25S	R30E R25E	E R F	M M M	36 35 35	34 09 43	05 12 28	118 119 118	46 14 42	01 10 07	900 012 900		1896 1921 1960 1951 1940			10 54 15 15
B4 3529 C1 3548 C1 3551 B5 3612-03 B4 3669	GRACE MEADOW GRANITE BASIN GRANT GROVE GREEN VALLEY RCH GROVELAND 2	8900 10000 6580 3170 2825	SEC SEC	28 32 12	T13S T02S	R31E R28E R16E	N J	M M M	36 36 37	44 46	00 29 24	118 118 120	36 57 09	00 40 00	900 900 900 000 900		1924	1964 1964		55 10 54 22 55
B4 3672 B0 3690-02 B0 3690-04 B0 3694 B0 3698-B0	GROVELAND R S GUSTINE 5 SW GUSTINE SNYDER GUSTINE AVOSET GUSTINE 7 SSW	150 98	SEC SEC	35 08	T08S	ROSE ROSE	F B B	M M M	37 37 37	13 12 15	26 00 28	121	02 03 59	37 00	000	PN9065	1940 1927 1954 1928 1958			55 24 24 24 24 24
C0 3747 C0 3749 C1 3811-11 B4 3939 B6 3948	HANFORD HANFORD WELL # 21 HASLETT BASIN HETCH HETCHY HIDDEN VALLEY	240 2400 3870	SEC SEC	26 14 16	T18S T18S T11S T01N T06S	R21E R25E R20E	K	M M M	36 36 37	20 58 56	18 42	119	40 12 46	54	900 000 905 900 000		1899 1964 1960 1910 1949			16 16 10 55 22
B0 3981 C3 4012 C0 4061-01 C0 4061-02 C0 4061-03	HILMAR HOCKETT MEADOWS HOMELAND DIST SEC 9 HOMELAND DIST SEC 17 HOMELAND DIST SEC 34	8500 190	SEC SEC	07 09	T06S T18S T23S T24S T23S	R31E R22E	A	M M M	36 35 35	22 56	00 53	11B 119	39 35 36	00 30	900 002		1948 1959 1952 1952 1951	1964		24 54 16 16
B5 4102-01 B5 4103 B5 4104-80 C3 4120 B4 4148	HORNITOS ERICKSON RCH HORNITOS GILES RCH HORNITOS USCE HOSSACK HUCKLEBERRY LAKE	1050 850 7100	SEC SEC	29 17 16	T05S T05S T05S T20S T03N	R16E R16E R31E	H	M M M	37 37 36	28 30 11	10 10 00	120 120 118	14 14 37	00 08 00	000 901		1955 1939 1960 1959 1948			22 22 22 54 55

INDEX OF CLIMATOLOGICAL STATIONS FOR 1964-65

	Station	Elevation (in Feet)	up.	fownship	Range	re Tract	Meridian		Lohtude			Longitude		ratar	rator's lea iber	Record	Record	Missing	Code
Number	Nome	Elev (In	Secti	Town	Rar	40-Acre	Base B N	0	- Loh	11	0	- Long	10,	Cooperator	Cooperator's Index Number	Rec	P. E.	Years	County
B3 4170 B7 4176 C0 4188 B8 4204 B5 4246	HUNTERS DAM HUNTINGTON LAKE HURON RANCH IDRIA INDIAN GULCH	7020 2650	SEC 2 SEC 2	8 T04N 5 T08S 4 T19S 9 T17S 3 T06S	R25E R17E R12E	R	M M M	37 36 36	13 16 24	45 58	119 120 120	13 06 40	10	900 900		195 1 1915 1951 1918 1952			1 1 35 22
C5 4303 B5 4369 C5 4389 B7 4442 C2 4452	ISABELLA DAM JERSEYDALE G S JOHNSONDALE KAISER MEADOWS KAWEAH PH 3	4680 9110	SEC 3 SEC 3	9 T26S 5 T04S 2 T22S 6 T07S 3 T16S	R19E R32E R26E	K	M M M	37 35 37	32 58 18	36 13 00	119 118 119	50 32 06	27	905 900 900		1949 1958 1954 1946 1913			15 22 54 1 54
C6 4463 B8 4508 C0 4510-02 C5 4513 C5 4518	KEENE KERLINGER KERMAN 2 ESE KERN CANYON KERN RIVER INTAKE 3		SEC 1 SEC 1	0 T31S 6 T03S 7 T14S 6 T29S 2 T23S	ROSE R18E R30E	E H B	M M M	37 36 35	26		121	25 01 47	59 26 45	900 806 0 3	044463	1947	1961		15 39 10 15 54
C5 4519 C5 4520 C5 4523 C5 4527-01 C0 4534	KERN R 3 INTAKE SCE KERN RIVER PH NO 1 KERN RIVER PH NO 3 KERNVILLE R S KETTLEMAN CITY 1 SSW	970	SEC 2	2 T23S 9 T28S 9 T25S 5 T25S 9 T22S	R30E	N	М	35	27	37	118	46	48	900		1921 1904 1946 1953 1930	1964	03	54 15 15 15 16
C0 4535 C0 4536 B0 4590 B3 4664 B4 4679	KETTLEMAN HILLS KETTLEMAN STATION KNIGHTS FERRY 2 ESE LAKE ALPINE LAKE ELEANOR	315 7500	SEC 2 SEC 2	1 T22S 5 T21S 7 T01S 8 T07N 3 T01N	R12E R18E	L	M M M	36 37 38	04 47 28	28 54 42	120	05 38 00	08 42 48	900 900 900		1931 1933 1905 1948 1909			16 16 50 02 55
C6 4863 B0 4884 B0 4884-05 C2 4890 C0 4957	LEBEC LE GRAND LE GRAND 6 N LEMON COVE LINDSAY	280	SEC 1 SEC 1	6 T09N 7 T08S 9 T07S 2 T18S 7 T20S	R16E R16E R27E	N H N	M M M	37 37 36	13 18 23	50 39	120	14 15 01	50 05 31			1940 1899 1946 1899 1913			15 24 24 54 54
B0 4999-02 B0 4999-03 BB 5074 C6 5098 B0 5116	LIVINGSTON CITY HALL LIVINGSTON 5 W LONE TREE CANYON LORAINE LOS BANOS 5 S	4 20 27 20	SEC 0	5 T06S 2 T06S 2 T04S 1 T30S 1 T11S	ROSE R33E	R	M	37 35	36 18	40 05	121	22	49 54	900 900		1948 1952 1933 1941 1948			24 24 39 15 24
B0 5117 B0 5118 B8 5119 C0 5151 C1 5155-51	LOS BANOS FIELD STA LOS BANOS LOS BANOS ARBURUA LOST HILLS LOWER BIG CREEK	125 860 285	SEC 2	2 T10S 3 T10S 4 T12S 5 T26S 4 T12S	RIOF	C	M M M	37 36 35	03 52 37	00	3.20	51 56 41	00 25 17	900		1956 1873 1932 1912 1960			24 24 24 15
B4 5160 B6 5202 B0 5233-03 B0 5236 C0 5257	LOWER KIBBEY RIDGE LUSHMEADOWS RCH MADERA I D YARD MADERA R S MAGUNDEN	3215 270	SEC 1	2 T02N 8 T05S 2 T11S 3 T11S 6 T29S	R20E R18E	N N	M	37 36	29 55	26 15	119	49 01 03	54	900 000 904 900 004		1948 1959 1952 1950 1927	1965		55 22 20 20 15
B7 5288 B0 5303 C7 5338 C7 5338-01 B5 5346	MAMMOTH POOL MANTECA MARICOPA MARICOPA F S MARIPOSA	680 885	SEC 3 SEC 1	1 T07S 4 T02S 6 T12N 2 T11N 3 T05S	RO7E R24W R24W	J E	M S S	37 35 35	47 04 04	52	121 119 119	12 23 24	09	905 900 900 000 900		1947 1964 1911 1959 1919			20 39 15 15 22
B5 5346-01 B6 5346-04 B5 5348 B5 5352 C7 5372-01	MARIPOSA REYNOLDS MARIPOSA 8 ESE MARIPOSA CIR 9 RCH MARIPOSA R S MARTINEZ SPRING	3536	SEC 2 SEC 1	3 T05S 6 T06S 7 T04S 5 T05S 6 T18S	R20E R19E R18E	ERF	M M M	37 37 37	26 33 30	30 13 04	119	49 50 59	37 35 05		045352	1958 1952 1957 1943 1919	1965		22 22 22 22 10
B4 5400 B0 5408-80 B0 5418-80 B5 5460 C7 5480-01	MATHER MATTOS RANCH MAZE BR 2 S MCDIERMID STA MC KITTRICK F S	4518 170 35 2990 1051	SEC C SEC C SEC C SEC 3	2 T01S 4 T11S 5 T04S 3 T02S 1 T30S	R19E R10E R07E R17E R22E	G J H E	M M M M	37 36 37 37 35	53 59 37 43 18	25 .0 18 20	119 120 121 120 119	51 51 13 05 37	10 03 48 20	900		1930 1961 196 1959 1956	1961	21	55 24 5 22 15
B7 5496 B3 5511 B0 5526 C0 5526-04 B0 5528	MEADOW LAKE MELONES DAM MENDOTA 1 NNW MENDOTA MURIETTA RCH MENDOTA DAM	900 172 261	SEC 1 SEC 2 SEC 2 SEC 0 SEC 1	1 T10S 1 T01N 5 T13S 4 T15S 9 T13S	R23E R13E R14E R14E R15E	F K H N G	M M M M	37 37 36 36 36	04 57 46 39 47	38 10 23 0 15	119 120 120 121	26 30 23 27 22	00 53 09 18 12	9 0 4 4 043 806 9 0	PN3064	194 1955 1941 1958 1873			1 55 1 1
C0 5529 C0 5530 B0 5532 B0 5532-01 B0 5532-03	MENDOTA HALFWAY PUMP MENDOTA V D L FARMS MERCED FIRE STN NO 2 MERCED SP MERCED 5 SE	450 230 169 170 198	SEC 0 SEC 2 SEC 3 SEC 0	7 T17S 2 T13S 5 T07S 0 T07S 6 T08S	R15E R14E R13E R14E R15E	DQDE	M M M M	36 36 37 37 37	28 44 17 18 16	10 58 43 11 00	12 120 12 12 12	23 28 29 29 29	30 00 13 2 36	9 0 011 B 6		19 6 1948 1872 1872 1959			1 24 24 24

INDEX OF CLIMATOLOGICAL STATIONS FOR 1964-65

	Station	evation 7 Feet)	ion	T	ship	əbi	e Tract	Meridion	Lotitude			tude		rotor ber	ofor's ex iber	Record	Record	Missing	Code
Number	Nome	Eleve (In F	Section		Township	Ronge	2	Brose Br	- Log		0	- Longitude	16	Cooperator	Cooperofor's Index Number	Rec	Rec	Years	County
B0 5534 B0 5535 B8 5550 C3 5669 B7 5677-80	MERCED FANCHER RCH MERCED 2 MERCY HOT SPRINGS MILO 5 NE MINARETS R S	168 1165 3400	SEC :	19 ' 15 ' 18 '	T07S T14S T19S	R14E	A R C	м 3	7 18 5 42 5 16	3 53 2 15 3 40	120	28 51 46	12			1920 1938 1932 1957 1962	1965		24 24 10 54 20
C2 5680 C2 5708 C1 5723 B4 5735 B0 5738	MINERAL KING MIRAMONTE HONOR CAMP MITCHELL MEADOW MOCCASIN MOCESTO	3005 9700 950	SEC :	31 ' 33 '	T14S T13S T01S	R27E R30E	D B	M 3 M 3 M 3	5 40 5 45 7 48	00 00 00 00 00 00 00 00 00 00 00 00 00	118	05 43 18	00 00 20	900		1956 1958 1957 1935 1926			54 10 10 55 50
B0 5740 B0 5741 C5 5777 C0 5822-80 C1 5832	MODESTO KTRB MODESTO 2 MONACHE MEADOWS MOODY RANCH MORAINE CREEK	92 8000	SEC SEC SEC	32 ' 10 ' 34 '	T03S T20S T32S	R09E	Α	м 3	7 38 5 13 5 06	3 18 3 00 5 15	120	59 10 58	47 00	900		1959 1942 1940 1963 1964			50 50 54 15 54
C3 5883-02 B7 5893 B7 5927 B0 6168 B0 6168-01	MOUNTAIN HOME 2 MOUNTAIN REST FFS MT GIVENS NEWMAN 2 NW NEWMAN 1 SE	4100 9500 108	SEC SEC SEC SEC	17 ' 26 ' 12 '	T10S T07S T07S	R24E R26E R08E	R E E	M 3 M 3 M 3	7 03 7 13 7 20	3 18 7 0 33	119 119 122	22 06 50	00	905 004		1963 1960 1963 1889 1960			54 10 10 50 24
C0 6230-50 87 6252 B0 6303 B0 6305 B6 6321-80	NORTH BELRIDGE NORTH FORK R S OAKDALE OAKDALE WOODWARD DAM OAKHURST	2630 155 215	SEC SEC	18 ' 11 ' 09 '	T085 T025 T015	R20E R23E R10E R10E R21E	M N O	M 3 M 3 M 3	7 13 7 46 7 53	3 57 5 10 1 28	120	30 50 52	15 53 42	000 900 000 900 000		1953 1904 1880 1918 1961		01	15 20 50 50 20
C0 6393 C7 6395 C5 6462 C0 6476 B0 6490	OILFIELDS F S OILFIELDS JOAQUIN RDG ONYX ORANGE COVE ORESTIMBA	3620 2700 431	SEC SEC SEC SEC	01 ' 04 '	T19S T26S T15S	R14E R35E	K	M 3 M 3 M 3	5 43 6 3	3 00 L 00	120 118 119	24 14 18	00	808 900 903 900 000	046393	1952 1949 1938 1931 1896			10 10 15 10 50
B5 6552 B8 6583 C0 6651 B8 6675 B8 6676	OSTRANDER LAKE PACHECO PASS PALOMA RANCH PANOCHE PANOCHE 2 W	290 1265	SEC SEC SEC	10 1 33 1 25	T10S T31S T15S	R26E R10E	B P F	м 3	7 04 5 10 6 35	00 0 52 5 47	121	11 11 49	00 28 58	012	06	1947 1949 1957 1922 1957			22 24 15 35 35
B0 6677 B0 6679-05 B4 6688 D3 6706 B0 6746-01	PANOCHE CREEK PANOCHE WATER DIST PARADISE MEADOW PARKFIELD 7 NNW PATTERSON	183 7700 3590	SEC	14 09 21	T12S T02N T22S	R11E R21E	H	M 3 M 3	6 5: 8 0: 6 5:	3 24 3 00 9 46	120 119 120	40	00 26	900		1963 1949 1948 1948 1912			10 10 55 10
C6 6754 C2 6767 B8 6847 C1 6857 B3 6893	PATTIWAY PEAR LAKE PFEIFFER RCH PIEDRA PINECREST STRAWBERRY	9700 1615 580	SEC	24 19 08	T15S T12S T13S	R30E R08E R24E	С	M 3 M 3 M 3	6 30 6 53 6 41	5 00 2 59 9 00	118 121 119	40 08 23	00 12 00	900	046839		1964		15 54 24 10 55
B3 6893-01 C1 6896 C1 6902 B7 6959-80 C0 7055-80	PINECREST SUMMIT R S PINE FLAT DAM PINEHURST PLACER G S POND 1 N	615 4050	SEC	02 23 29	T13S T14S T06S	R24E R27E R24E	A D	м 3	6 4 6 4 7 2	9 55 1 54 2 26	119 119 119 119	19 00 21	54	905 903 905 905 806		1964 1949 1954 1962 1962	1965		55 10 10 20 15
C0 7077 C0 7079 C5 7093 C4 7096 C0 7098-11	PORTERVILLE PORTERVILLE 3 W PORTUGUESE MEADOW POSEY 3 E POSO RCH	413	SEC	20 31 28	T21S T24S T24S	R27E	R	M 3 M 3 M 3	6 04 5 48 5 41	4 50 3 00 8 00	118	04 34 38	14 00 00	900 000 900 900 001		1893 1958 1953 1954 1913		02	54 54 54 54 15
B0 7099-11 B4 7145 C5 7179 C1 7259 B6 7270-01	POSO CANAL CO HDQ PRIEST QUAKING ASPEN RATTLESNAKE CREEK RAYMOND 3 SSW	2245 7200	SEC	31 08 08	TOIS T21S T11S	R16E R32E		M 3 M 3 M 3	7 4° 6 0° 6 5°	9 00 7 00 9 00	120 118 118	16 32 43	00	013 401 900 900 000		1955 1928 1955 1961 1940			10 55 54 10 20
B6 7272-01 B6 7273 B6 7276 C0 7288 C0 7354-80	RAYMOND 10 N RAYMOND 9 N RAYMOND 12 NNE RECTOR REEDLEY MVFD	1210		03 25 03	T075	R19E R19E R25E	R	M 3 M 3	7 2: 7 2: 6 1:	0 49 2 37 8 15	119	52 49 14	33 58	900		1957 1962 1954 1888 1962	1965		22 22 22 54 10
B0 7447~80 C0 7460 B6 7528 C3 7529 C0 7555	RIPON RIVERDALE ROCKY VILLAGE ROGERS CAMP ROSEDALE	220 820 6240	SEC SEC SEC SEC	24 19 09	T17S T06S T21S	R19E R17E R31E	P	M 3 M 3 M 3	6 25 7 26 6 04	5 58 0 45 4 24	120	51 08 38	36 42 12	901		1963 1917 1957 1964 1914			39 10 22 54 15

INDEX OF CLIMATOLOGICAL STATIONS FOR 1964-65

		Station	Feet)	u		div	<u>a</u>	Tract	Meridion		ode .			ap.		ator er	for's er	D C	p.d p.d	Missing	Code
	Number	Nome	Elevas (In Fe	Section		Township	Range	Ac	Bose & M	0	- Lafilude	11		- Longitude	19	Cooperator	Cooperator's index Number	Record Began	Record	Years Mi	County
C5 84	7560 7579 7623 7753 7800-02	ROSE MARIE MEADOW ROUND MEADOW SACHES SPRINGS SAN EMIGDIO RCH SANGER 1 NE	7900 1450	SEC	36 25 36	T07S T22S T03N T11N T14S	R33E R19E R22W	L	M M S	35 38 34	58 06 59	00 00 45	118	21 51 10	00 00 59	900 900 900 900 000		1953 1947 1948 1901 1959			10 54 55 15 10
C0 B7 C0	7800-03 7816 7817 7819-80 7836-01	SANGER R S SAN JOAQUIN SAN JOAQUIN EXP RANGE SAN JOAQUIN MVFD SAN JUAN HQ M & L	174 1100	SEC	23 06 23	T14S T15S T10S T15S T10S	R16E	E	M M M	36 37 36	36 05 36	25 40 28	120	11 43 11	15 38 18	808	PN5121	1958 1919 1934 1962 1947			10 10 20 10 24
B0 C0 C6	7846 7855 7987-80 8304 8318	SAN LUIS DAM SAN LUIS CANAL CO HQ SANTIAGO RANCH M & L SMITH FLAT SNOW FLAT	106 437 3800	SEC SEC	21 27 32	T10S T10S T12N T10N T01S	R12E R22W R23W	C	M S S	35 34	03 05 54	35 24	121 120 119 119 119	12	35 15	904 013 000 812 900	000004	1959 1944 1963 1960 1947			24 24 15 15 22
B4 C0 B0	8323-01 8353 8375-50 8378 8380	SOAPROOT SADDLE SONORA R S SOUTH BELRIDGE SOUTH DOS PALOS SO ENTRANCE YOSEMITE	1745 575 116	SEC SEC	36 33 21	T10S T02N T28S T11S T05S	R14E R21E R12E	A	M M M	37 35 36	59 27 57	00 18 52	119 120 119 120 119	23	00	900		1960 1887 1938 1938 1941			10 55 15 24 22
B3 C3 C3	8407-11 8450 8455 8460 8463	SOUTH LAKE FARMS HDQ SPRING GAP FOREBAY SPRINGVILLE 7 ENE SPRINGVILLE R S SPRINGVILLE TULE HDW	3000 2470	SEC SEC	21 26	T23S T04N T20S T21S T20S	R17E R30E	H D B	M M M	38 36 36	11 09 08	15 47 09	120 118	06 42	24	900		1959 1921 1953 1924 1907			16 55 54 54 54
B3 C1 C0	8474-80 8499 8510 8520 8620	SQUAW VALLEY FR STANISLAUS PH STATE LAKES STEVENSON DIST SC 33 SUCCESS DAM	1130 10300 212	SEC SEC	06 34 33	T08S T03N T11S T21S T21S	R15E R31E R23E	L	M M	38 36 36	08 56 03	23 00 27	120 118 119	22 35 29	10	900		1959 1957 1955 1951 1959			10 55 10 54 54
C7 C7 C6	8643 8752 8755 8826 8832	SUMMIT MEADOW TAFT TAFT KTKR RADIO TEHACHAP1 TEHACHAP1 R S	6240 1025 1030 3975 3975	SEC SEC	14 14 21	T10S T32S T32S T32S T32S	R23E R23E R33E	J G M	M M M	35 35 35	80 80 80	34 50 00	119	28 27	18	000 900 000 900 900		1960 1940 1954 1876 1940			10 15 15 15 15
C2 C7 C2	8839 8868 8893-80 8912 8914	TEJON RANCHO TERMINUS DAM THIRTY-TWO CORRAL THREE RIVERS 6 SE THREE RIVERS PH NO 2	1425 965 1700 2200 950	SEC	36 32	T175	R27E R15E	E	M M	36 36	24 18	37 47	119	00	20	900 903 000 900 900		1895 1959 1959 1940 1909			15 54 10 54 54
C0 C0 C1	8917 9006 9011-80 9025 9051	THREE RIVERS PH NO 1 TRANQUILLITY GLOTZ TRAVER 4 ESE TRIMMER R S TULARE	283 736	SEC SEC	16 19 12	T15S T17S T12S		P E A	M M M	36 36	26	17 05	119	25 17	00 16			1940 1953 1962 1948 1919			54 10 54 10 54
C0 C3	9051-04 9052 9059 9060 9061	TULARE DIST SEC 27 TULEFIELD TULE RIVER INTAKE TULE RIVER PH TUNNEL R S	300 2450	SEC SEC	18 26 06	T20S T21S	R28E R30E	B D	M	35 36 36	09	00 42 07	119	01 42 47	00 22	002 900 004 004 900		1953 1948 1910 1910 1945			16 15 54 54 54
В0 В0	9062 9063 9073 9073-01 9073-02	TULLOCH DAM TUOLUMNE MEADOWS TURLOCK TURLOCK 5 SW TURLOCK 8 WSW		SEC SEC	03 22 30	T01S T05S T05S	R12E R24E R10E R10E R09E	D Q	M M M	37 37 37	53 29 27	00 28 52	120	20 51 54	00 39	404 900 900 000 000		1958 1947 1893 1958 1958			05 55 50 50 50
C0 B7 B7	9120 9145 9162~80 9301 9304	UHL R S U S COTTON FIELD STN UPPER CHIQUITO VERMILLION VALLEY VESTAL	3680 367 6800 7520 500	SEC SEC	33 13 26	T27S T05S T06S	R31E R25E R23E R27E R27E	J	M M M	35 37 37	22	55 00	119	24 59	29 00	900 906 905 900 004		1965 1922 1962 1946 1920	1965		54 15 20 10 54
C0	9328 9367 9369 9452 9482	VIDETTE MEADOW VISALIA VISALIA 4 E WASCO WAWONA R S	9500 354 357 333 3975	SEC	36 12	T18S T18S T27S	R24E	D J	M M M	36 35	19 19	32	119	13	24	901 900 000 900 900		1964 1903 1959 1899 1941			10 54 54 15 22
C0 B6 C0	9512 9535 9556~80 9560 9565	WELDON 1 WSW WEST CAMP SLF WESTFALL R S WESTHAVEN WESTLEY	4795 285	SEC SEC SEC	11 35 34	T24S	R21E R18E	R M R	M M M	35 37 36	50 26 13	51 58 38	119 119 119	52 38 59	43 59 40	905		1940 1959 1961 1925 1928			15 16 20 10 50

INDEX OF CLIMATOLOGICAL STATIONS FOR 1964-65

Number Nome				SAN	JOAG	ו אוטנ	DIS.	RIC	т										
S 9602 WET MEADOW 9200 T188 R32E M 36 22 00 18 32 00 900 1959		1	Elevotion (in Feet)	Section	Township	Range	13	5	Lotitude			ongstude		Joperotor Number	operator's Index Number	Record	Record	Years Missing	apro Contaction
CO 9614-81 WHEELER RDE LAU A-12 1230 SEC 01 TION R20W G S 34 58 88 118 57 25 806 1963 86 9640-80 WHILTER ROCK PRESTON 994 SEC 07 TOTS R18E K M 37 20 12 120 02 18 000 1950 CO 9670-80 WILBUR DITCH 210 SEC 18 T23S R21E D M 35 36 10 119 45 10 1962 C1 9749 WISHON LAKE 6560 SEC 01 T11S R27E M 37 00 40 118 58 20 003 1957 C5 9754 WOFFORD HEIGHTS 2700 SEC 32 T25S R33E H M 35 43 00 118 57 00 90 PM527 1894 C1 9773 WODDCHUCK MFADOW 9200 SEC 27 T10S R2RE M 37 02 00 118 54 00 900 1955	Number	Nome					9	0		. !!	0		11	Ö	8			Ϋ́e	
1 9773 WOODCHUCK MEADOW 9200 SEC 27 TIOS R28E M 37 02 00 118 54 00 900 1955	0 9614-81 86 9640-80 0 9670-80	WHEELER RDE LWU A-12 WHITE ROCK PRESTON WILBUR DITCH	1230 984	SEC 01	T10N	R20W R18E	G .	34 4 37	58	38	118	57	25	806		1963 1950 1962			54 1: 2: 1:
	1 9773	WOODCHUCK MEADOW WOODY	9200	SEC 27	TIOS	R28E		4 37	0.2	0.0	118	54	0.0	900		1955			1 1 2

TABLE A-2

SEASONAL AND MEAN PRECIPITATION AT
SELECTED STATIONS IN THE SAN JOAQUIN VALLEY

		50-Year Mean	1964-65	Season
Station 	County	1915-1965 in Inches	in Inches	Percent of Mean
Panoche	San Benito -	7.51	8.13	108
Coalinga l SE	Fresno	6.66	-	-
Kettleman Sta.	Kings	6.03	6.11	101
Buttonwillow	Kern	4.90	4.97	101
Maricopa	Kern	5.41	6.24	115
Manteca	San Joaquin	11.79	11.59	98
Modesto	Stanislaus	11.34	10.99	97
Turlock	Stanislaus	11.53	11.89	103
Merced F. S. 2	Merced	11.77	12.63	107
Madera	Madera	10.18	10.07	99
Fresno W.B. A.P.	Fresno	10.39	11.20	108
Visalia	Tulare	9.47	8.79	93
Hanford	Kings	7.87	7.48	95
Wasco	Kern	6.25	6.61	106
Bakersfield 1 W	Kern	6.32	6.58	104
Knights Ferry 2 SE	Stanislaus	17.30	24.13	139
Catheys Val Bull Run R.	Mariposa	19.17	24.41	127
Mariposa	Mariposa	28.73	36.15	126
Friant Gov't. Camp	Fresno	13.25	14.37	108
Lemon Cove	Tulare	13.28	14.57	110
Orange Cove	Fresno	12.70	13.56	107
Porterville	Tulare	10.36	12.50	121

TABLE A-3

TABLE A-3
ACCUMULATIVE MONTHLY PRECIPITATION

AT KEY STATIONS IN THE SAN JOAQUIN VALLEY

1964-65

	ason	in	Percent	Mean		0	0	200	211	162	135	109	84	87	111	105	
BAKERSFIELD 1 W	1964-65 Season	441		0 £		00	.01	. 20	66.	1.62	2.61	3.30	3.46	4.50	6.58	6,58	
RSFIEI	_		1,0	Inches		Ŭ,	Ŭ.				2.						
BAKE	50-Year	Mean	1915-65	in Inches		00.	.01	.10	.47	1,00	1.94	3.04	4.14	5.17	5.94	6.26	
	1964-65 Season	ņ	Percent	of Mean		00	00	391	225	243	177	136	101	84	6	93	
VISALIA	1964-65		in	Inches		00.	E	.43	1.26	3.36	5.25	6.40	19.9	6.83	8.79	8.79	
Λ	50-Year	Mean	1915-65	in Inches		00.	.02	.11	.56	1.38	2.97	4.71	6.54	8.10	6.07	9.41	
Ъ	1964-65 Season	tu	Percent	of Mean		00	1250	178	285	179	169	126	101	109	112	108	
FRESNO WB AP	1964-65		in	Inches		000.	.25	.25	1.48	2.97	5,60	6.65	7.08	9,46	11.20	11.20	
FRE	50-Year	Mean	1915-65	in Inches Inches		00.	.02	.14	.52	1.66	3.31	5.26	6.98	8.66	9.95	10,33	
	1964-65 Season	in	Percent	of Mean		0	009	92	188	181	184	142	111	64	103	100	
MADERA	1964-65		in	Inches	-1	00.	.12	.12	1.20	2.95	6.18	7.32	7.84	8.48	10.07	10.01	
	50-Year	Mean	1915-65	in Inches Inches of Mean		.01	.02	.13	.64	1.63	3,36	5.16	7.07	8.72	9.75	10.11	
#2	1964-65 Season	in	Percent	Inches of Mean		0	1300	87	273	213	197	155	120	105	112	108	
MERCED FS #2	1964-65		in			00.	.13	.13	1.80	3.98	7.76	9.33	98.6	10,53	12.62	12.63	
MER	50-Year	Mean	1915-65	of Mean in Inches		00.	.01	.15	99.	1.87	3.94	6.03	8,23	10,09	11.26	11.67	
	1964-65 Season	in	Percent	of Mean		200	20	128	220	207	168	126	101	16	102	98	
MODESTO	-		in	Inches		.02	.02	.32	1.67	3.79	6.73	7.57	8.15	9.46	10.99	10.99	
Σ	50-Year	Mean	1915-65	in Inches		.01	.04	. 25	.76	1.83	4.00	6.01	8.03	9.73	10.81	11.25	
		Month				July	August	September	October	November	December	January	February	March	April	May	

TABLE A-4

PRECIPITATION DATA SAN JOAQUIN DISTRICT

							Precipitot	Precipitation in Inches									F
Station Name	Total			1964	34							1965					Totol Oct.I
	To June 30	yluly	Aug	Sept.	Oct.	Nov.	Dec.	Jon.	Feb.	Mor	Apr.	Мау	June	July	Aug	Sept.	To Sept.30
SAN JOAQ R BASIN																	
SAN JOAQ VAL FL											-				-		
ATWATER CRAIG CASTLE AFB DELTA RANCH DENAIR 3 NNE EL SOLYO RCH	12.53E 11.72 9.48 14.22 10.50	0.00E 0.00 0.00 T	0.00	0.16 0.00 0.14 T	1.68 1.40 1.65 1.98	2.02 2.08 1.22 2.65 1.52	3.32 3.51 2.42 2.72 2.05	1.17 1.00 0.79 2.09 0.88	0.74 0.61 0.66 0.66	0.70 1.31 0.72 1.77	2.74 1.69 2.16 2.12 2.95	0.00 0.00 1	000000	0.00 0.00 0.00 0.00	0.26 0.20 0.20 0.65 N	0.00 0.00 0.00 N	12.63 11.80 9.54 14.64
ESCALON SWANSON FANCHER RCH CAMP 3 FIREBAUGH 9 W GUSTINE 5 SW GUSTINE SNYDER	14.54 14.20 6.71 11.85 13.13	00000	0.00	0.24 0.00 1.00 0.00	1.44 1.33 1.14 2.00 2.56	2.56 3.33 1.11 1.21 1.35	3.99 4.20 1.54 3.47	1.53 1.59 0.44 1.20	0.57 0.65 0.12 0.46 0.47	1.30 1.08 1.06 0.42 0.86	2.91 2.02 1.24 2.82 2.92	000000	000000	ZZZEZ	N N N N N N N N N N N N N N N N N N N	ZZZĘZ	N N 11.93
GUSTINE AVOSET GUSTINE 7 SSW HILMAR KNIGHTS FERRY 2 ESE LE GRAND	10.62 10.46 24.13 14.40	0.00	0.25	0.00	1.68	1.41	2.70 2.91 7.74 4.89	1.11 1.23 - 2.24 1.51	0.44	1.15	1.88 2.05 4.02 1.90	0.00 0.06 0.01	00.00	0.00 NIHH	0.25 N 0.74	0.00 0.00 0.00	10.62 N 24.68 14.28
LE GRAND 6 N LIVINGSTON 5 W LOS BANOS 5 S LOS BANOS FIELD STA LOS BANOS	14.82 10.54 7.65 8.58 10.71	00000	0.00 0.00 0.00	0.00 0.16 0.12 0.24 0.24	1.20 1.80 1.36 1.35 2.69	3.27 0.92 0.78 0.86 1.08	4.71 2.58 2.09 2.24 2.76	1.37 1.64 0.54 0.63	0.58 0.68 0.37 0.31	1.37 0.49 0.70 0.91 0.74	2.18 2.27 1.69 2.01 2.08	0.00	00000	N 00000	0.43 0.31 0.11 0.28	N 00000	N 10.81 7.84 8.45
MADERA ID YARD MANDERA R S MANTECA NO 2 MANTECA MATTOS RANCH	9.12 10.07 11.59 8.35	0.00	0.11	0.00E 0.00	1.09	1.41	3.23	1.05 0.40 1.14 0.52 NAME CHANGED SEE 1.37 0.36 0.57 0.38	0.40 0.52 NGED SEE 0.36	0.48 0.64 MANTECA 1.28 0.68	1.82	T 0.00	0.00	0.00	0.02	0.00 0.00 0.00	9.03 9.98 11.62 8.54
MAZE BR 2 S MENDOTA 1 NNW MENDOTA DAM MERCED FIRE STN NO 2 MERCED S P	6.41 6.25 12.63 12.35	00000	0.26	0.03	1.09 0.79 0.75 1.67	1.54 0.83 0.82 2.18 2.06	2.22 2.17 1.97 3.78 3.88	0.86 0.33 0.41 1.57	0.34 0.39 0.28 0.53	1.19 0.56 0.65 0.67 0.89	2.13 1.29 1.34 2.09 2.28	0.00 0.00 T 0.001	AE 00.00	0.00 T 0.00	0.00 T 0.49	0000 N	6.36 6.25 12.99
MERCED 5 SE MERCED FANCHER RCH MERCED 2 MODESTO KTRB	13.26 12.69 11.78 10.99	0.00	0.08	T 0.11 0.00 0.30E 0.31	1,39 1,36 1,50 1,35 1,37	2.46 2.73 1.95 2.12 1.82	4.32 3.68 3.56 2.94 2.88	1.32 1.30 1.41 0.84 0.88	0.65 0.66 0.58 0.58	1.03 0.83 1.01 1.31 0.86	2.01 2.02 1.76 1.53	0.00	000000	0.00 0.01 0.01	N N 0.52 0.74 0.70	N N O O O O O O O O O O O O O O O O O O	N 12.20 11.45 11.00

TABLE A-4 (Cont.)
PRECIPITATION DATA
SAN JOAQUIN DISTRICT

	Total Oct.1	To Sept.30	10.28	9.92 5.47 8.17 N 8.04	12.48 11.41E 11.59E 7.71 12.17	N N 9.99		45.04 62.69E 64.71	37.22 54.11 N 54.96 42.80	27.69	59.75 23.10 N
		Sept.	T. T. O.02	00.00 00.00 00.00	00000	N N 0 .00		0.60 0.37 N 0.49	0.07 0.71 N 0.80	0.01	0.04 N N
		Aug.	0.55	0.35 0.04 0.16 N	0.59 0.16 0.17 0.52	N N 0 0 0 0 0 0		1.47 1.08 N 1.15	0.51 2.26 N 1.79 1.11	0.70	0.68 0.76 N
		ylut	00.00	0.00 N N 0.00	00.00	N N 0.00		T 0 0 N T	00.00 0.00 0.00	00.00	0.01 N N
		June	0.00 0.00 RE 0.00	00000	0.00 0.00 0.00 0.00	00.00		0.29	0.00 0.89 0.41 T	00.00	0.32
	1965	May	0.00 0.05 0.01 T	0.00	0.00	0.00 0.00		0.32	T.0.96	E	0.68
		Apr.	1.53 2.19 2.23 2.73 2.21	2.35 1.17 1.76 2.77 1.61	1.28 2.20 1.80 1.70	2.20		5.27 7.12 4.07 7.19	6.64 6.34 5.53 6.36	4.97	1965 5.80 3.52 4.65 12, 196
		Mar.	1.33 0.75 0.87 1.50 1.55	0.51 0.66 0.77 0.82 0.46	1.64 0.78 0.65 0.67	1.50		2.44 4.93 3.52 4.78 1.78	4.05 2.65 2.64 3.01 3.46	3,42	1964 TO AUGUST 8, 2.33 3.15 1.32 1.93 1.57 2.92 964 TO SEPTEMBER 1
8 0		Feb.	0.52 0.44 0.39 0.63 0.52	0.36 0.33 0.25 0.51 0.29	0.51 0.52 0.25 0.34 0.64	0.61		1.34 2.19 1.25 2.28 2.28 964 TO JUI	1.89 1.64 1.50 1.77	1.09	1964 TO 7 2.33 1.32 1.57 964 TO SI
Precipitation in Inches		Jan.	0.88 1.02 1.43	0.86 0.23 0.40 1.01 0.50	1.08 0.86 0.75 0.44 1.75	1.88 0.99 0.81		5.90 7.84 4.16 7.93	3.87 7.69 8.00 7.85 5.95	3.30	SER 15, 8.38 2.44 5.63 ER 17, 1
Precipita		Dec.	2.65 2.73 2.73 5.10	2.57 1.38 1.88 2.02 2.06	3.75 2.90 2.83 1.72 2.64	2.95 2.13 1.74		17.93 26.18E 27.38	12.87 20.51 19.72 22.19 14.87	8.67	SEPTEMBER 15, 125.92 8.38 7.66 2.44 15.46 5.63 SEPTEMBER 17, 19
		Nav.	2.02 1.43 1.12 2.61 2.52	1.44 0.74 0.97 1.42 1.94	1.98 1.55 1.72 1.17 1.95	1.45		7.40 8.92E 4.43 9.26	4.64 8.38 RB 8.63 6.65	3.92	10.36 3.40 6.66
	964	001.	1.27 1.49 1.38 1.71 1.30	1.48 0.87 1.98 1.48	1.64 2.44 3.45 1.50	1.50		2.08 3.24 1.82 3.26	2.68 2.08 2.06 2.06	1.61	2.08
	61	Sept.	0.00 0.00 0.18 0.25	0.21 0.00 0.00E 0.22 0.03	0.00 0.05 0.07 0.09	0.00		0.34	0.73 0.15 0.20 0.19	0.20	0.70
		Aug	0.30 0.21 T T 0.00	0.00 0.04 0.11 0.02	0.000	0.20		T 0.33 0.30	0.00	00.00	0.00
		July	00000	00.00	00.00 00.00 00.00 E	0000		0.00	0.00	E	H 0 H
	Tatal	To June 30	10.17 9.83E 15.96 13.47	9.78 5.45 8.12E 10.29 7.95	12.18 11.30E 11.52 7.63 11.82	12.29		43.31 61.57E 63.57 81.34	37.37 51.69 52.87 41.63	27,18	64.48 59.72 22.49 39.78 50.42
	Station Name		MODESTO 2 NEWMAN 2 NW NEWMAN 1 SE NEWMAN 1 SE OAKDALE GAKDALE WOODWARD DAM	ORESTIMBA PANOCHE CREEK PANOCHE WATER DIST PATTERSON POSO CANAL CO HDQ	RIPON SAN JUAN HO M & L SAN LUIS CANAL CO HO SO DOS PALOS TURLOCK	TURLOCK 5 SW TURLOCK 8 WSW WESTLEY	STANISLAUS RIVER	BEARDSLEY DAM CALAVERAS RANGER STA COPPEROPOLIS HUNTERS DAM LAKE ALPINE	MELONES DAM PINECREST STRAWBERRY PINECREST SUMMIT R S SPRING GAP FOREBAY STANISLAUS P H	TULLOCH DAM	TUOLUMNE RIVER BEBHIVE WEADOW CHERY UALLEY DAM DON PEDRO RESERVOIR EARLY INTRAGE P H GRACE WEADOW

TABLE A-4 (Cont.)

PRECIPITATION DATA SAN JOAQUIN DISTRICT

	TotoI Oct.1	To Sept.30		44.81 44.58 45.99	46.87E	ΙZ	Z	38.87		30.31 N N 36.78E	49.99 20.95 N 22.16 N	35.93 N N	zz	56.83	48,38	
		Sept.		0.00	0.10	ΕZ	z	0.11		0.00 N 0.00E	00.00 N 0.00	N N O O O	ZZ	0.02	0.00	
		Aug.		1.14	3.00E	2.68 N	z	0.65		0.42 N N 0.71	0.64 0.00 N 0.35	N N O . 12	ZZ	0.20	0.31	
		July	T	0.00	0.30	0.52 N	z	E		P N N O	T 0 0 N F N	N N O N	zz	0.03	0.14	
		June	<u> </u>	0.05	0.40	0.07	F	0.07		00000	00.00	0.00	0.00	0.40	0.35	
	1965	May	t	0.00	1,00	0.01	0.03	0.05		0.10 0.09 0.00	0.00 0.00 1	0.00 0.00 0.00	0.00	1.16	0.60	
		Apr.	T	6.92 5.94 4.27	3.60	3.71	1965	20, 1965 5.62 965		1965 5.12 5.03 4.15 5.84	8.78 3.85 4.84 3.45	4.12 * 5.72 6.73	5,3 1 5,98 1965	7.02	5.43	
		Mar.	1	3.35	3.30	AUGUST 21,	JGUST 6	JGUST 20		1.07 2.00 1.32 2.60 1.30 1.70 1.44 2.84	3.36 1.46 1.81 1.78	1.66	2.78 3.77 UST 30,	3.04	3.28	
		Feb.	1	1.61 3.35 1.75 3.16 2.17 2.58	2.10	1964 TO AI	964 TO AI	TEMBER 23, 1964 TO AUGUST 20 23 4.23 1.82 3.57 JULY 14, 1964 TO JULY 13,			1.71 0.72 1.23 1.12 0.88	0.95 2.05 1.47	5.13 1.50 2.78 9.95 1.90 3.77 17, 1964 TO AUGUST 30,	2.46	1.75	
Precipitation in Inches		Jon.	T	5.31	20, 1	5.81	ER 15, 1	ER 23, I		2, 1 .97 .75 .95	7.23 2.78 3.91 3.49	3.07 8.84 4.32 5.00	5.13 9.95 17, 196	11.47	5.84	
Precipitati		Oec.		15.82 14.59 16.64	SEPTEMBER 18.20	SEPTEMBI	SEPTEMBER 15, 1	SEPTEMBER 23, 14.23 4.23 JULY 14, 1		APRJL 1 8.88 10.00 9.60 13.23	17.00 6.58 7.08 6.14 5.91	6.49 20.15 12.87 14.28	12.80 11.17	JULY 17.85 1	14.86	
		Nov		6.89	8.10	6.68		5.92		5,32 6,04 4,10	8.1.8 4.57 4.08	3.93 9.93 6.40 6.36	6.55	10.03	8.25	
	4	100	3	2.72 2.67 1.85	1.77	2.10	2.74	2,60		2.43 2.19 2.60 2.75	3.02 1.71 1.98 1.75	1.91 3.24 2.74 2.70 3.56	3.21	3,15	2.72	
	1964	1000	Sapr.	0.00	0.32	0.26	0,42	0.32		0.00	0.00	0.00 0.67 0.34 0.24	0.01	0.48	0.00	
			DOM.	0.43 0.00	0.28	0.25	٥٠.00	E		0.21	0.38 0.31 0.35	0.28	0.30	0.48	0.45	
		1	July	0.02 0.00	00.00	0.04	₽ ₽	H		0.00 0.00		000000	0.00	0.01	0.00	
	Totol	July I	June 30	44.12	62.96	74.10	32.81 68.14 34.91	68.30		57.80 30.10 32.40 27.83 36.57E	49.82 21.27 25.77 22.13	22.41 51.18 36.15 39.27	37.21	62.05	46.28	
	e e e			GROVELAND 2 GROVELAND R S	HELCH HELCH: HUCKLEBERRY LAKE LAKE ELEANOR	LOWER KIBBY RIDGE MATHER	MOCCASIN PARADISE MEADOW PRIEST	SACHES SPRINGS SONORA R S TUOLUMNE MEADOWS	MERCED RIVER	BADGER PASS BAGBY BEAR VALLEY CATHERS VALLEY 3 NIW	DUDLEYS EXCHEQUER RESERVOIR HORNITOS GILES RCH	IORN FIOS USCE INDIAN GULCH JERSEYDALE G S MARIPOSA REYNOLDS MARIPOSA REYNOLDS	MARIPOSA R S MC DIERNID STA	SNOW FLAT SO ENTRANCE YOSEMITE	WAWONA R S YOSEMITE NAT PARK	

							Precipitati	Precipitation in Inches	v,								
Station Name	Total			1964	4.							1965					Totol Oct.1
	To June 30	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	Мау	June	July	Aug.	Sept.	Sept.30
FRESNO-CHOWCHILLA R																	
AHWAHNEE 2 NNW BIG CEDAR SPRINGS CATHEYS VAL BULLRUN R CATHEYS VALLEY SAWYER CATHEYS VALLEY SAWYER	35.23 24.41 25.59 23.28	F F F 0 0 0 0 0	T 0.00 0.27 0.33	0.43 RB 0.25 0.00	2.34 2.82E 1.62 1.65 1.98	6.57 7.17 4.81 4.31 4.14	11.33 12.41 8.42 8.38 7.73	4.44 7.71 2.97 3.43 2.96	1.16 1.72 0.97 0.96 0.92	2.67 3.54 1.72 2.13 2.01	6.14 4.79 3.61 4.40	0.12 0.15 0.04 0.06	00.00	00000 00000 H	0.09 0.09 0.24 0.12	00.00 00.00 00.00	34.85 40.61E 24.21 25.56 23.07
CCOARSEGOLD DAULTON HIDDEN VALLEY LUSHMEADOW RCH MARIPOSA 8 ESE	32.63 16.58 35.24 44.99	0.00 0.00 0.01	0.00	0.36 0.00 0.27 0.00	2.27 1.40 2.97 3.07 3.18	5.81 2.80 8.02 11.33 8.03	9.66 5.07 9.52 11.17E 15.18	4.35 1.90 5.92 9.43	1.17 0.85 1.18 1.47 1.26	3.10 1.90 2.24 4.11 2.62	5.86 2.50 5.12 8.85 6.70	0.00	H 00000	NN H 0.00	N N 0.00E 0.35	N N 0.21 RE 0.00	N 35.18E 42.60
OAKGURST RAYMOND 3 SSW RAYMOND 10 N RAYMOND 12 NNE	35.33 15.90 30.79 25.20	00000	0.39	0.00	2.66 1.60 2.43 2.31 3.13	6.42 6.45 6.45 4.95	10.38 3.40 9.53 7.80 9.48	5.51 2.05 4.19 2.74 2.73	1.19 0.55 0.97 0.97	2.69 1.60 2.26 1.94 2.88	5.96 3.15 4.81 4.35	0.13 0.00 0.15 0.00	00000	1 N N 1 0	N N N O . 23	0.00 N N RE 0.00	N N 1 28.76
ROCK VILLAGE WESTFALL R S WHITE ROCK PRESTON	23.50 66.64	000	0.30	0.00	1.75 3.75 1.33M	4.01 8.71 3.72	8.14 26.31 6.67	2.66	1.12	2.07 4.34 2.06	3.45 9.45 2.96	0.00	0.00	ZZZ	ZZZ	222	ZZI
SAN JOAQUIN RIVER														_			
AUBERRY 1 NNE BIG CREEK PH 1 BIG CREEK PH 2 BIG CREEK PH 3 BIG CREEK PH 3	27.39 36.61 34.30 31.52	0.07 0.05 0.01 0.02	0.34 0.39 0.29 0.41	0.27 0.45 0.52 0.39	1.98 2.68 2.37 2.62 1.94	4.62 5.29 5.49 5.05	5.84 9.88 10.22 8.04	4.82 6.70 5.90 5.09	1.47 1.76 1.56 1.37 1.38	3.05 3.24 3.27 2.99 2.88	4.71 5.13 4.12 5.23 4.90	0.22 0.84 0.38 0.09	0.00 0.11 0.17 0.21 0.18	0.00 0.00 1	0.15 0.48 0.09 0.04 0.07	0.00E 0.00E 0.00E	26.94 36.19E 33.57E 30.73E
CHIQUITO CREEK CLOVER MEADOW G S CRANE VALLEY PH FLORENCE LAKE FRIANT GOVERNMENT CP	59.16 50.66 46.86 29.99 14.37	T 1.36 0.00	0.19	0.56	2.71 1.44 1.46	8.46 4.63 2.24	JULX JULX 14.11 8.85 3.37	X 13, 1964 TO JULX 12, 1 8.87 1.50 4.02 8.87 1.50 0.96 1.73 0.32 1.63	54 TO JUI 54 TO JUI 1.50 1.03 0.32	LY 12, 1 LY 12, 1 4.02 0.96 1.63	1965 1965 2 3.22 6 3.22 3 3.36	0.50	0.00	1.51 0.00	0.11 2.29 0.01	0.03	46.25 31.00 14.13
HUNTINGTON LAKE KAISER MEADOWS MAMMOTH POOL MEADOW LAKE MOUNTAIN REST FFS	50.51 48.33 38.20 33.57	0.03	0.96	0.05	2.14	9.25	15.49E JUNE JUNE 7.40	8.49 2.02 3.86 6. 23, 1964 TO JULY 7, 1965 E 24, 1964 TO JULY 28, 1965 6.27 1.44 3.71 6.	2.02 64 TO JUJ 54 TO JUJ 1.44 1.51	3.86 LY 7, 19 LY 28, 1 3.71 3.86	6.37 1965 1965 6.71 RE	0.03	0.23	0.34 T	0.00	0.00	32.67
	42.19	0.02	0.02	00.00	2.44	6,90	RB 2	2.70	2.20	1.40	2.10	1.00	0.80	z E	0.00	z Fi	42.15
ROSE MARIE MEADOW SAN JOAQUIN EXP RGE VERMILLION VALLEY	44.05 19.41 27.74	00.00	0.25	00.00	1.76	3.20	JUNE 5.38 JUNE	NE 23, 1964 TO JULY 7, 1965	64 TO JU 0.57 64 TO JU	NE 28, 1 1.99 LY 7, 19	3.42 65	0.02	00.00	00.00	0.02	00.00	19.18

							Precipitat	Precipitation in Inches									
Station Name	Total July i			1964	95							1962					Toto1 Oct.1
	To June 30	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jon.	Feb.	Mar	Apr.	May	June	July	Aug	Sept.	To Sept.30
SAN JOAQ VAL WESTSIDE																	
CASTLE ROCK RAD LAB DEL PUERTO ROAD CAMP IDNIA KERLINGER LONE TREE CANYON	12.07 16.75 14.56 8.47 6.34	6.00 00.00 00.00 00.00	0.20 0.34 0.14 0.05	00000	1.60 1.22 1.47 0.89	2.37 2.02 2.38 1.25 1.18	2.52 4.45 2.91 1.67 1.80	1.95 1.90 2.12 1.13 0.95	0.43 0.62 0.49 0.15	0.92 1.32 2.53 1.10	1.99 4.88 2.52 1.84 0.15	0.00 0.00 0.00	00000	0.03 0.00 0.07 0.26 0.20	0.37	00000	12.20 16.65 14.54 8.89 6.61
LOS BANOS ARBURUA MERCY HOT SPRINGS PACHECO PASS PANOCHE PANOCHE 2 W	8.78 8.00 14.14 8.13 9.66	0000 0000 0000	0.11 0.19 0.27 0.17	00000	0.97 0.99 1.29 0.82 0.90	1.12 1.02 1.94 1.27	1.88 2.12 4.48 1.83	0.75 0.76 1.96 0.86 1.09	0.36 0.00 0.42 0.26 0.26	1.22 1.08 1.80 1.43	2.37 1.84 1.93 1.49	0.00	00000	0.00 0.001 0.00	0.07 0.06 0.02 0.02 N	00.00 0.00 0.00 0.00 0.00 0.00	8.74 7.88 14.12 8.01
PFEIFFER RCH SAN LUIS DAM	23.50	0.00	0.31	0.00	1.03	3.88	7.98	2.81	0.66	3.62	3.14	0.07	0.00	0.00	0.13	0.00	23.68
TULARE LAKE BASIN																	
TULARE LAKE VAL FL																	
ACADEMY ANUIOLA ARVIN ARVIN FRICK AVENAL WALDEN	14.50 6.97 4.70 6.12 6.10	0.00	0.30	0.00	0.98 0.76 0.56 1.04	2.10 0.73 0.65 0.66	3.73 1.13 1.22 1.44 0.71	1.55 0.79 1.00 0.68 0.87	0.81 0.28 0.52 0.26 0.26	2.40 0.69 0.75 0.84 0.71	2.63 2.31 0.00 1.60	00.00	000000	0.00 0.02 0.28 0.32	0.00	0.00	14.20 7.08 4.98 6.71 6.06
BANCRSFIELD 1 W BANCRSFIELD WB AP BELLEVUE BLACKWELLS CORNER BUENA VISTA RCH	6.58 5.75 5.86 6.25	T. 0.04	0.01 0.17 0.04 0.25	0.19 0.12 0.00	0.79 0.67 0.86 0.87	0.63 0.54 0.29 0.64	0.99 0.70 0.81 0.84	0.69 0.74 0.80 0.62 1.15	0.16 0.17 0.03 0.07 0.08	1.04	2.08 1.65 1.67 0.61 2.23	0.00	0.00 0.00	0.35	0.01 0.13	0.04	6.78 5.98 6.35 7.04
BUENA VISTA RCH MALL BURNA VISTA RCH M6L2 BUTTOWMILLOW CANFIELD RANCH CANFIELD RANCH	4.67 4.94 4.97 5.52 6.38	00.00	0.20 0.16 0.03 0.03	0.00	0.83	00.42	0.71 0.69 0.63 0.57	0.62 0.75 0.60 0.87	0.00 0.00 0.21 0.01	0.42 0.47 0.54 0.82	1.44 1.56 1.75 1.42 2.23	00000	000000	N N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N N 0.00 0.19	N N 0.09 0.10	N N S S S S S S S S S S S S S S S S S S
CARUTHERS 4 E CITRUS COALINGA 1 SE COALINGA CDF	7.79 8.02 6.96 5.55	0.00 0.00 0.00	0.00 T 0.12 0.15	0.28 0.08 0.40 0.00	1.25 0.67 0.66 0.66	1.06 0.43 0.82 0.66	2.22 1.01 1.15 0.79	0.97 1.50 0.61 0.46	0.41	0.23 0.90 0.94 0.81	1.37 2.52 1.96 1.75	00000	00000	0.05 0.91 0.10 0.08	0.03 0.12 T	0.00	7.59 9.35 6.55 5.50
COALINGA FEED YRD IN COIT RANCH HDO CORCORAN IRRIG DIST CORCORAN EL RICO I CORCORAN EL RICO 33	5.74 5.81 7.10	00000	00000	0.00 0.30 0.33E 0.34	0.86 0.86 0.76 0.79	0.78 0.63 0.66	0.73 1.50 0.91 1.20	0.32 0.24 0.89 0.87	0.17 0.33 0.34 0.28	1.18 0.89 0.19 0.22 1.09	1.86 1.29 1.41 1.75	000000	00000	N 0 0 0 0 N	0.00 0.00 0.00 0.00	0.00 N 0.00 N	5 2 2 8 5 4 4 8

	Tata! Oct.1	To Sept.30	7.26 6.37 6.29 10.15	4.33 10.97 5.89	N 7.26 6.68 N	z	6.44 6.28 6.16	12.37 6.68 6.95 5.17 4.17	7.28 5.88 N 13.14	7.59 12.40 10.14 6.66	8.71 11.34 6.33 5.31 8.25	
		Sept.	0.00	0.04	0.07 0.07 N	Z	0.00	0.24	N 0.51 0.01 N 0.07	0.06 0.16 0.08 0.02	0.07 0.08 0.00 0.00	
		Aug.	0.17 0.00 0.05 0.11 0.26	0.04 T 0.02	0.05 0.05 N N	N	0.00 0.00	0.00	0.12 0.34 N	N 0.22 0.05 0.27 0.08	0.00	
		July	0.00 0.42 0.14 0.00	0.00 0.04 T T	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Z	0.11 0.18 0.17	0.05 0.80 0.28 0.00	N 0.50 0.52 N 0.00	0.00 0.10 0.00	T 0.00 0.30	
		June	00000	0.00 0.00E 0.00	000000	00.00	0.00	00.00	00.00	0.00	000000	
	1965	Моу	0.00 0.00 0.00	0.00	00000	00.00	0.00	00000	1.21	00000	00.00	
		Apr.	3.02 1.34 1.96 1.71	2.10 1.29 1.44 1.74	1.61 1.60 1.16 2.11 2.17	2.36	1.81	2.91 1.52 1.86 1.07 V 2.19E	0.90 1.87 0.85 1.78	1.66 2.24 3.77 3.06 2.22	1.87 2.22 0.98 1.40 2.87	
		Mor.	1.34 1.00 0.86 1.02	1.03 0.59 0.44 2.38 1.06	0.75 0.33 0.53 1.02 0.93	0.33	0.88	0.80 1.41 1.49 0.96	0.14 0.73 1.20 0.91 0.80	0.89 1.25 1.08 0.72 1.06	0.43 1.15 0.83 0.89 0.67	
2		Feb.	0.04 0.20 0.32 0.34 0.44	0.24 0.32 0.22 0.43 0.17	0.00 0.33 0.26 0.27	0.53	0.20	0.27 0.45 0.15 0.52	0.31 0.31 0.26	0.40 0.25 0.19 0.10	0.14 0.22 0.31 0.05 0.91	
Precipitotion In Inches		Jan.	0.52 1.04 0.58 1.72 0.96	1.81 0.33 0.19 1.05 0.27	0.51 1.18 0.87 0.93	0.48	0.87 0.69 0.45	1.58 0.40 0.62 0.21	1.00	0.54 0.84 1.80 1.43 0.64	1.23 1.51 0.55 0.74 1.74	
Precipitot		Oec.	0.76 0.72 1.01 2.52 0.72	3.19 0.76 0.59 2.63	0.65 1.44 1.43 1.18	0.71	0.78	2.62 0.57 1.23 1.16	0.92	0.82 1.06 1.88 1.71 0.85	2.42 2.76 1.40 0.56 0.45	
		Nov.	1.08 0.81 0.68 1.58	1.58 0.89 0.60 1.49	0.30 1.31 1.43 1.23	69.0	0.58 0.58 0.51	2.73 0.76 0.66 0.48	0.50 0.43 1.33	0.42 0.87 2.05 1.47 0.76	1.69	
	1964	Oct.	0.66 1.28 0.54 0.88	1.06 0.91 0.81 1.23	0.80 0.95 0.93 0.84	1.42	1.21	1.14 0.77 0.54 0.77	0.62 0.80 0.91 1.07	0.89 0.80 1.32 1.30	0.86 1.11 1.16 0.72	
	1961	Sapt.	0.00 0.26 0.00 0.00	0.01E 0.00 0.00 0.00	0.00	0.00	0.00	0.00	0.05	0.00 0.00 0.41 0.41	0.22 0.00 0.00 0.24 0.13	
		Aug	0.00 0.00 0.06 0.48	0.18E 0.15 0.15 0.25	0.13 0.34 RB 0.00	00.00	0.13	0.40 0.17 0.03	0.04 0.04	0.15 0.25 0.00	0.24 0.13 0.03	
		July	F F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00 0.00 0.00	00 00	00.00	0.00	000000 000000	0.00	00000	00000	
L	Total	Ta June 30	7.42 6.65 6.01 10.25 5.51	11.20E 5.24E 4.44 11.20 5.94	4.75 7.48 7.88	6.52	6.50 6.31 6.11	12.50 6.05 6.68 5.20 4.19	6.20 5.39 6.81 13.56	5.77 7.56 12.50 10.20 6.78	9.10 10.90 6.46 5.16	
	Station Nome		DELANO DEVILS DEN SLF DIGLORGIO DINUBA ALTA ID EIGHTH STAND RCH	EXETER FAUVER RANCH FIVE POINTS 5 SSW FIVE POINTS DIENER FRESNO WB AP FRESNO CO WESTSIDE FD	GIN YARD HANFORD WELL #21 HANFORD WELL #21 HOWELAND DIST SEC 9 HOWELAND DIST SEC 34	HURON RANCH	KERMAN 2 ESE KETTLEMAN CITY 1 SSW KETTLEMAN HILLS KETTLEMAN STATION	LINDSAY LOST HILLS MAGUNDEN MENDOTA MURIETTA RCH MENDOTA HALFWAY PUMP	MENDOTA VDL FARMS MOODY RANCH NORTH BELRIDGE OILFIELDS F S ORANGE COVE	PALOMA RANCH POND 1 N PORTERVILLE PORTERVILLE 3 W POSSO RCH	RECTOR REDLEY WYD RIVERDALE ROSEDALE SAN EMIGDIO RCH	

TABLE A-4 (Cont.)

PRECIPITATION DATA SAN JOAQUIN DISTRICT

	Toto1 Oct.1	To Sept.30	11.53 N N 6.08	5.26 7.14 N	8.47 7.01 N 6.23	8.59 8.46 N 6.59 7.49	5.56 N N N		34.69 23.4	43.94 33.70 N	20.64 34.09 N
		Sept.	0.38 N 0.00	0.00 0.00 0.82 0.00	0.02 0.01 N 0.55	0.21 0.10 N 0.03 0.00	00°0 N N	_	0.56 N	0.46 0.00 N	0.00 0.01 N
		Aug.	FNN O	0.20 0.01 N 0.00	0.02 N T T O.00	0.03 N 0.00	FZZ		0.15 0.38 N	0.50 0.00 N	0.10 0.20 N
		July	T N 0.02	0.54 0.03 N	0.09 N 0.23	0.04 0.00 N 0.22 0.42	0°03 N		F 0.04	0.00 N	F 0 N
		June	000000	00000	00000	00000	0000		0.00	0.00	00.00
	1965	May	F.00.00	0.00 0.00 0.00	000000	0.00	0000		0.25	0.46	0.03
		Apr.	2.01 2.01 1.52 1.34 1.96	0.82 2.06 1.65 3.06	1.68 1.89 1.40 1.69	2.99 1.96 2.16 2.2 1.86	2.11 2.71 1.86		6.38 1965 4.98 7.40	7.66 7.30 6.50 1965	4.99 7.50 965 7.10
		Mar.	0.81 0.95 0.20 1.34	1.21 0.67 1.06 0.71 0.52	0.70 0.30 0.27 0.73 0.93	1.25 0.22 0.50 0.95 1.03	0.23 0.61 0.91		5.68 1.38 2.54 10,1964 TO SEPTEMBER 7, 3.91 0.93 2.46 6.18 1.88 3.67 UST 26, 1964 TO AUGUST 27,	10.16 1.40 3.19 3.60 1.57 2.54 4.99 1.32 1.91 1.7 1964 TO AUGUST 10, 1.5, 1964 TO AUGUST 4,	0.34 1.89 1.21 3.06 TO JULY 15, 19
591		Feb.	0.41 0.41 0.35 0.27 0.41	0.36 0.18 0.35 0.89	0.24 0.22 0.25 0.27 0.27	0.23 0.21 0.18 0.25 0.25	0.47		1.38 4 TO SEP 0.93 1.88	1.40 1.57 1.32 964 TO A	0.34 1.21 54 TO JU 1.88
Precipitation In Inches		Jan.	1.55 1.43 0.29 0.20	0.43 0.76 1.02 1.74	1.40 1.11 0.84 0.83	1.14 1.15 1.30 0.58 1.02	0.69		5.68 10, 196 3.91 6.18 ST 26, 1	10.16 3.60 4.99 ST 17, 15	3.83 6.71 1.7 9, 1964 6.57
Precipita		Oec.	3.13 3.14 1.17 1.11 0.81	0.72 1.83 0.90 2.02 1.10	2.25 1.28 0.99 0.90	1.05 1.89 2.43 0.91	0.49		9.91 AUGUST 10 5.06 16.18 AUGUST	10.31 10.85 11.40 AUGUST	4.47 7.52 30 15.85
		Nov.	2.19 2.16 0.66 0.40	0.22 0.71 0.85 0.84	1.41 1.28 1.65 0.42	0.77 2.10 1.80 0.73 0.82	0.70		5.87	7.39	3.58
	1964	Oct.	1.05 1.07 0.73 1.40 0.84	0.76 0.89 0.84 0.81 1.40	0.74 0.81 0.83 0.61	0.88 0.83 0.67 0.65	0.84		1.92	2.27	RE 1.20 2.36 7.25
	61	Sept.	0.41 0.38 0.00 0.02	0.00 0.30 0.34 0.00	0.00 0.32 0.08	0.30 0.43 0.40 0.16	0.16		0.00	1.11 0.48 0.44	0.45
		Aug	0.00	0.23	0.47	0.00 0.28 0.09	0.00		0.18	00.00	0.00
		July	0.00 0.00 0.00 0.00	0.00 0.00	00.000	0.00 0.00 0.00 1	0.00		0.00	00.00	0.00
	Total July I	To June 30	11.63 11.55 4.95 6.08 5.93	4.75 7.40 7.01 10.30 5.94	H.90 7.33 7.01 5.53 6.72	8.61 8.79 9.72 6.61 7.30	5.69 8.53 6.82		34.85 27.85 23.51 45.65 33.83	44.11 34.18 33.28 35.51 29.65	21.00 35.67 47.22 46.16
	Station Name		SANGER 1 NE SANGER R S SAN JOAQUIN SAN JOAQUIN MVFD SANTIAGO RANCH M&L	SOUTH BELRIDGE SOUTH LAKE FARMS HDO STEVENSON DIST SC 33 TEJON RANCHO TRANQUILLITY GLOTZ	TRAVER 4 ESE TULARE TULARE DIST SEC 27 TULEFIELD U S COTTON FIELD STA	VESTAL VISALIA VISALIA 4 E WASCO WEST CAMP SLF	WESTHAVEN WHEELER RDE LWU A-122 WILBUR DITCH	KINGS RIVER	BALCH POWER HOUSE BARTON FLAT BLASINGAME BRETZ MILL DUSY BENCH	GRANT GROVE HASLETT BASIN LOWER BIG CREEK MITCHELL MEADOW MORAINE CREEK	PIEDRA PINE FLAT DAM PINEHUSST RATTLESNAKE CREK SOMPROOT SADDLE

TABLE A-4 (Cont.)
PRECIPITATION DATA
SAN JOAQUIN DISTRICT

							Prachoitot	Precipitation in Inches									
Station Name	Total			1961	1964							1965					Total Oct.i
	To June 30	July	Aug.	Sept.	0ct.	Nav.	Oec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug	Sept.	Ta Sept.30
STATE LAKES SUMMIT MEADOW TRIMMER R S VIDETTE MEADOW WISHON LAKE	35.00 54.14 30.77 36.57 50.29E	0.00	0.29	0.43	1.96	5.07	AUGUS JUL 7.61 AUGUS 14.03	T 12, 19 X 11, 19 5.67 T 29, 19	AUGUST 12, 1964 TO AUGUST 9, 1 JULY 11, 1964 TO JULY 12, 1 AUGUST 29, 1964 TO AUGUST 5, 1 AUGUST 29, 1964 TO AUGUST 5, 1 11,33 1.80 JC.79E	GUST 9, LY 12, 1 2.37 GUST 5,	1965 1965 5.99 1965 6.59E	0.11	0.00	0.00	0.00	0.00	30.05 52.71E
WOODCHUCK MEADOW	49.24						JULY	X 7, 1964	4 TO JULY	Y 13, 1965	65						
KAWEAH RIVER																	
ASH MOUNTAIN	26.77	00.00	00.00	0.55	1.54	4.93	7.11	4.80	1.20 1.96	1.96	4.61	0.07	00.00	00.00	09.0	0.54	27.36
ATWELL CCC CAMP BADGER	28.63	0.05	0.56	0.02	2.38	4.67E	7.58	5.25	0.72	2.29	2,00	0.07	0.04	0.03	0.10	0.11	28.24E
BEARTRAP MEADOW GIANT FOREST	51.74	00.00	00°0	1.14	1.90	8.22	14.98	9.19	1.64 3.67	3.67	7.00	0.42	0.08	0.23	1.81	1.03	50.17
HOCKETT MEADOW KAWEAH PH 3 LEMON COVE	44.65 26.41 14.57	00.00	0.00	0.47	1.54	4.93	7.50	21, 1964	TO SEPTEMBER 15, 1.03 2.00 0.51 0.82	MBER 15, 2.00 0.82	1965 4.77 2.97	0.08	0,01 T	0.15 T	0.76	0.00	26.85
MIRAMONTE HONOR CAMP	27.42	00.00	00.00	0.80	2.00	4.56	6.37	5.06	0.46 2.44	2.44	5.70	E	0.03	0.21	0.13	0.03	26.99
PEAR LAKE SQUAW VALLEY FR TERMINUS DAM THREE RIVERS 6 SE THREE RIVERS PH NO 2	41.83 25.59 15.46 21.39 23.50	0000	0.15 0.00 0.44	0.45	1.78 1.28 2.10 1.77	5.01 2.28 3.72 3.92	3.74 4.89 6.14	13, 1 4.83 2.92 3.37 3.68	0.1 0.4 0.9 0.8	JULY 22, 1 3 0.79 7 1.17 7 1.56 2 1.84	965 5.99 3.21 4.29 4.88	0000	0.00 T 0.00	0.00	0.00	0.05	25.04 15.43 22.19 23.65
THREE RIVERS PH NO 1	22.45	00.00	0,41	0.05	1.71	3.82	5.63	3.47	0.85	2.17	4.34	00.00	00.00	0.03	0.49	0.38	22.89
TULE RIVER																	
CALIF HOT SPRS RS CAMP NELSON EAGLE CREEK	34.57	0.00E	0.34E	0.08E	1,61E 1,22	4.66E 6.64	- N	7.40 7.7, 1964	6.42 RE 1.40 1.28 0.46 7.40 1.40 1.28 WEMBER 7, 1964 TO SEPTEMBER 29	1.28 EMBER 29	5,35	0.00	00.00	ı	r	ı	1
HOSSACK MILO 5 NE	31.69	00.00	0.42	0.05	1,63	5.37	8.62	5.00 I	364 TO J	3.00 I	6.39	0.05	0.04	0.24	0.54	0.62	32,62
MOUNTAIN HOME 2 ROCERS CAMP SPRINGVILLE 7 ENE SPRINGVILLE RS SPRINGVILLE HDM	40.91 37.44 31.53	000	0.06	0.49	1.75	6.97	JUNE 2 SEPTEM 8.61 3.86 13.25	SEPTEMBER 30, 1 8.61 4.84 3.86 -	TO SEPTEMBER 30, 1964 TO JUNE 30, 1.19 2.38 0.68 1.40 1.10 3.20	MBER 30, JUNE 30, 2.38 1.40	1965 1965 5.15 4.07	0.08	0.00	0.16	0.14	0.62	31.90
SUCCESS DAM TÜLE RIVER INTAKE TÜLE RIVER PH ÜHL RS	12.90 31.69 22.42	0000	0000	0.33	1.28	2.57 7.01 4.64	2.03 8.84 5.62 RB	1.81 4.66 2.89 3.82	0.17 1.24 0.89 1.06	1.15 2.32 1.44 2.70	3.56 5.31 5.24 6.51	0.00 0.08 0.03 0.11	0.00 0.03 0.00 0.13	0.03 0.18 0.20 0.15	0.23 0.15 0.77 0.51	0.13	12.96 31.57 23.06

							Precipitoti	Precipitation in Inches									
	Total											300					Toto1
Stotion Nome	Julyl			1964	5.4							1962	Ì			1	Oct.1
	To June 30	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jon.	Feb.	Mar.	Apr.	Moy	June	July	Aug.	Sept.	Sept.30
GREEN HORN MOUNTAIN																	
GLENVILLE GLENVILLE FULTON RS POSEY 3 E WOODY	21.64 30.47 13.97	0.00	0.00	0.21 0.05 0.00 0.27	1.03 0.88 1.13 0.98	3.44 3.76 5.83 2.30	5.10 5.78 9.63 2.20	3.63 4.33 2.04	0.70	2.30 2.62 3.02 1.92	5.15 4.91 5.16 3.74	0.05	0.03	0.32	1.25	0.40	22.73 32.22 14.10
KERN RIVER															-		
BOREL PH CHAGOOPA CRARTREE MEADOW DOUBLESTURK MEADOW ISABELLA DAM	15.43 29.10 28.31 43.07 11.91	0.00	0.00	0.03	0.27	2.32	4.89 2.39 0.44 1.97 JULY 25, 1964 TO JULY 19, 1 JULY 21, 1964 TO JULY 30, 3,49 1 J.75 0.27 1.21	2.39 Y 25, 19 R 13, 19 E 23, 19	0.44 64 TO JU 64 TO JU 64 TO JU	1.97 LY 19, 1 PTEMBER NE 30, 1	3.12 1965 115, 1965 1965 2.58	0.01	0.00	N 0.39	N 0.50	N 0.20	N 12.99
JOHNSONDALE KERN CANYON FORN RIVER 1NTAKE 3 KERN R 3 INTAKE 5CE KERN R 19 FN NO 1	9.64E 19.02 18.53	0.00 0.02 0.02	0.26 0.00 0.31 0.08	0.00 0.11 0.00 0.11	1.08 0.52 0.80 0.80	6.23 1.28 3.48 3.47	2.17 6.81 6.62 2.94	1.08 2.90 2.97 1.38	0.86 0.21 0.20 T	1.07 1.54E 0.81 1.01 1.83	4.32 1.94E 3.60 3.41 2.86	0.12 0.79E 0.04 0.01	0.02 0.00 0.07 0.03	0.05	0.02	0.03 0.17 0.00	9.63E 20.02 19.40 11.56
KERN RIVER PH NO 3 MONACHE MEADOWS ONTX PORTUGUESE MEADOW QUAKING ASPEN	13.02E 16.83 8.50 46.59 43.06	0.05	0.00	0.00	0.29	1.34	3.80 August 2.20 JUNE	1057 5, 1964 TO SEPTEMBER 3, 1064 TO JUNE 28, 1964 TO JUNE 28, 1964 TO JUNE 30, 1964 TO JUN	0.29 TO SEPT 0.17 64 TO JU	1.49 0.73 NE 28, 1	3, 1965 3, 2.27 1965	0.01	0.00	0.18 N	N N	0.34 N	13.97E
ROUND MEADOW TUNNEL RS WELDON 1 WSW WET MEADOW WOFFORD HEIGHTS	42.78 23.45 7.66 42.47 12.27	0.00	0 · 00	٥٠٠٥	0.31	1.06	AUGUST 2.19 JULY 2 3.89	JUNE 22, 1964 TO JUNE 29, 100.00 TO JUNE 29, 100.00 JULY 21, 1964 TO SEPTEMBER 15, 3.89 1.72 0.23 1.47	64 TO JU TO SEPT 0.25 TO SEPTE 0.23	NE 29, I EMBER 3, 0.94 MBER 15, 1.47	1965 3, 1965 2.27 5, 1965 5, 1965	0.00	0.00	0.29	0.46	0.11	8.52
TEHACHAPI MOUNTAINS																	
BALLINGER BITTER CREEK BURGES CORALS CHUCHUPATE RS CUMMINGS VALLEY 2	8.70 8.38 12.16	0.00	0.05	0.00	0.72	1,59E 2,40	JULY 1.09E 2.86	Y 1, 1964	4 TO JUNE 0.33 0.37	E 30, 1965	3.53	0.04	0.00	0.31	1.77	0.26	12.61
KEENE LEBEC LORAINE PATTIWAX SMITH FLAT	16.83 11.53 14.22 10.02 7.48	0.31 0.00 0.18 0.00	0.00 0.13 0.00 0.16	0.01	0.38 0.65 0.59 1.35	3.02 1.32 3.02 1.23	4.71 1.30 5.57 0.73	2.48 1.42 1.78 1.44	0.55 0.71 0.42 0.83	1.53 1.21 1.92 0.91	3.79 4.65 3.42 3.15	0.02	0.03 0.02 0.00	0.19	0.29	0.01	16.71
TEHACHAPI TEHACHAPI RS	10.90	0.22	0.01	0.00	0.29	1.02	4.43	0.78	0.19	1.28	2.97	0.00	0.00	0.44	1.18	0.00	12.29

	Total Oct.1	Ta Sept.30		N 12.95 11.52 N 11.11	14.64 8.29 N N 6.29	N 4.57 5.68	5.43 N		
		Sept.		N 0.10 0.10 N 0.00	0.00 N N 0.00	N 0.18	0.11 N		0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		Aug.		0.00 0.00 N	0.00 T N N 0.08	N 0.04	0.17 N		0
		July		N 0.16 0.17 N 0.00	0.32 0.04 N 0.04	N 0.17 0.00	0.05 N		0.25
		June		00000	00000	00000	00.00		0
	1965	May		00000	00000	00.00	T 0.00		0
		Apr.		1.96 2.18 2.70 2.08 2.23	2.86 1.57 3.95 1.78	1.54 3.75 1.58 965	1.85		1.85
		Mar.		1.48 2.44 1.09 1.32	1.90 2.09 0.52 1.17 0.81	0.45 0.52 0.40 0.50 0.23 0.43 4 TO JULY 15, 0.25 0.77	0.40		1.60
se		Feb.		0.50	0.66	0.45 0.40 0.23 64 TO JU	0.30		
Precipitation in Inches		Jan.		1.12 2.58 2.61 1.28 1.97	2.32 0.65 0.66 0.83	0.80 0 1.25 0 0.47 0 1E 30, 1964	0.79		1.49
Precipita		0ec.		1.24 2.57 1.90 1.77 2.41	3.11 1.41 0.98 0.36	0.95 1.10 0.18 JUNE 0.59	0.54		. 848
		Nov.		1.08 1.21 1.15 2.16 1.93	2.55 1.09 1.60 0.97	0.55	0.69		0 4.
	1964	Oct.		1.04 1.11 1.19 0.90	0.83 0.86 1.20 0.72 0.93	1.02 1.10 0.80	0.83		0.71
	61	Sept.		0.00 0.00 0.40 0.17	0.00 0.00 0.00 0.40	0.45	0.33		0
		Aug.		0.40 0.31 0.00 0.00	0.06	0.00	0.03		0
		July		000000	0.00	0.00	T 0.00		0
	Total July I	Ta June 30		8.82 13.00 11.65 10.06	14.29 8.38 10.64 6.29	6.28 9.35 4.54 11.86E 5.80	5.46		t
	Station Name		TULARE L BAS WESTSIDE	AVENAL 8 SW AVENAL 8 SW AVENAL 6 SSW CHOLAME TWISSELMAN COALINGA ROBERTS RCH	COALINGA 14 WWW DOWENGINE RCH DOWENGINE SPRING FELLOWS MARICOPA	MARICOPA FS MARTINEZ SPRING MCKITTRICK FS OILFIELDS JOAQ RDG TAFT	TAFT KTKR RADIO THIRTY-TWO CORRAL	UPPER SALINAS RIVER	PARKFIBLD 7 NNW

					TE	TEMPERATURE IN DEGREES FAHRENHEIT	E IN DEGRE	EES FAHREI	инент							
Station Name				961	964							1965				
		July	Aug	Sept.	0ct.	Nov.	Dec.	Jan.	Feb.	Mar	Apr.	May	June	ylol	Aug	Sept.
SAN JOAQUIN BASIN																
SAN JOAQUIN VAL FL																
CASTLE AFB	MAX MIN AV MAX AV MIN AVG	104 51 93.4 62.2 77.8	100 54 90.9 61.6 76.8	96 48 84.4 53.3 68.9	95 40 80.0 52.2 66.1	69 29 55.7 40.8	67 30 55.4 43.4	64 27 51.0 40.5	71 30 59.1 37.6 48.4	75 37 64.2 42.3 53.3	91 35 68.4 49.3 58.9	97 38 81.1 51.5 66.3	97 50 83.7 55.6	103 51 93.1 61.9	98 56 90.7 62.9 76.8	92 83.0 54.5 68.6
LIVINGSTON 5 W	MAX MIN AV MAX AV MIN	112 45 100.4M 58.2M 79.3M	107 55 98.9M 61.0M 80.0	102 47 90.3 51.2 70.8	98 45 86.1M 52.7M 69.4M	72 31 63.1M 42.5M 52.8M	69 28 57.0 40.4 48.7	64 53.1 36.9 45.0	73 26 60.6 34.6 47.6	80 33 67.3 39.7 53.5	94 35 70.0 46.9 58.5	101 36 84.3M 45.3M 64.8M	100 41 84.8 50.2 67.5	102 50 93.7 56.7 75.2	100 51 93.1 57.8	94 38 84.4 48.1 66.2
LOS BANOS FIELD STA	MAX MIN AV MAX AV MIN AVG	107 52 95.9 61.4 78.6	103 55 95.4 62.3 78.8	96 47 85.2 53.4 69.3	94 47 82.2 53.1 67.6	69 288 39.4 49.4	70 28 57.1 39.3 48.2	66 29 51.6 38.2 44.9	71 31 58.4 36.8	80 36 66.9 42.4 54.6	91 35 70.3 47.8 59.0	93 43 80.8 52.1 66.4	97 47 83.2 54.5 68.8	102 52 93.4 58.9 76.1	101 54 92.9 61.7 77.3	94 47 84.9 53.2
MODESTO KTRB	MAX MIN AV MAX AV MIN AVG	104 51 93.1 58.6 75.9	100 53 91.9 59.1 75.5	98 47 86.0 51.7 68.9	95 44 81.4 50.6 66.0	70 27 59.3 40.9	71 30 57.4 43.5 50.5	66 27 53.7 39.3 46.5	75 30 61.9 37.0 49.5	83 33 68.1 41.4 54.8	93 36 71.0 48.8 59.9	97 39 81.4 48.9 65.2	98 43 82.8 51.1 67.0	102 49 .92.7 58.0 75.3	99 55 91.5 60.1 75.8	92 44 82.9 51.1 67.0
STANISLAUS RIVER																
HUNTERS DAM	MAX MIN AV MAX AV MIN AVG	95 38 87.2 49.6 68.4	94 54 86.9 49.3 68.1	92 34 80.5 42.1 61.3	93 34 78.1 41.5 59.8	75 19 54.8 31.2 43.0	58 22 58.8 34.5 42.0	70 10 53.0 29.5 41.3	72 21 58.9 28.2 43.6	69 26 56.8 30.7	78 26 57.1 36.3	85 27 68.5 35.7 52.1	86 33 74.8 42.8 58.8	93 40 87.0 49.1 67.6	93 44 85.1 50.2 67.6	32 74.5 40.6 57.6
PINECREST STRAWBERRY	MAX MIN AV MAX AV MIN AVG	88 38 82.1 48.3 65.2	88 38 83.3 48.8	86 30 93.7 40.3 67.0	84 32 74.6 40.5 57.6	78 9 49.9 25.8 37.9	60 18 45.0 28.7 36.9	68 4 48.5 26.1 37.3	66 16 54.8 24.9	62 22 51.9 27.5	74 18 52.4 31.8 42.1	74 24 54.6 34.3 44.5	82 32 69.5 39.9	986 04 0 M M M	EEEEE	280 280 280 280
SPRING GAP FOREBAY	MAX MIN AV MAX AV MIN AVG	88 42 M M	4 2 4 2 M M M M M M M M M M M M M M M M	NNNN	88 30 M M	66 11 46.8M 27.2M 37.0M	52 18 M M	64 47.3M 26.7M 37.0M	64 20 52.5M 28.4M 40.5M	MMMM	72 15 M M	76 26 61.8M 35.5M 48.6M	MMMM	88 40 80.9M 49.8M 65.4M	EEEEE	XXXXX.

TABLE A-5 (Cont.)
TEMPERATURE DATA
SAN JOAQUIN DISTRICT

			1 1 - 1	4		MPERATURE	E IN OEGRE	TEMPERATURE IN DEGREES FAHRENHEIT	HEIT			1965				
		July	Aug.	Sept.	0¢ 1 .	Nov.	0ec.	Jon.	Feb.	Mor	Apr.	Moy	June	July	Aug	Sept.
STANISLAUS P H	MAX MIN AV MAX AV MIN AVG	107 50 97.5 60.9 79.2	106 57 98.5 61.9 80.2	100 46 90.1 53.2 71.7	101 44 86.5 52.4 69.5	80 26 63.4 59.8	69 28 57.5 41.2	72 27 27 58.2 37.8 48.0	78 28 66.0M 36.4 51.2	76 50 66.0 40.4 53.2	86 32 67.1 45.5 56.3	90 36 79.4 47.5 63.4	94 44 83.2 51.7 62.4	104 53 85.4 60.7 73.0	101 54 94.5 63.0 78.7	95 43 86.5 52.3 69.4
TUOLUMNE RIVER																
DON PEDRO RESERVOIR	MAX MIN AV MAX AV MIN AVG	103 47 97.0 58.1 77.6	104 44 95.5 57.3 76.4	99 43 88.0 48.4 68.2	96 39 83.8 48.7	72 24 60.1 35.2 47.7	65 23 56.2 37.5 46.9	64 253.2 33.9 43.6	70 26 60.1 32.7 46.4	76 32 64.1 37.7 50.9	88 34 67.2 43.4 55.3	96 32 80.3 44.4 62.4	97 41 84.3 48.1 66.2	103 48 95.4 57.4 76.4	100 49 94.3 57.4 75.8	94 41 85.1 48.0 66.6
MERCED RIVER																
вАсву	MAX MIN AV MAX AV MIN AVG	108 53 99.8 63.8 81.8	106 58 98.0 65.0 81.5	102 50 90.6 55.6 73.1	99 47 85.5 54.8	82 28 62.2 40.9 51.6	66 33 57.1 44.1 50.6	66 29 57.0 40.2 48.6	74 29 63.0 36.8 49.9	77 37 65.6 42.3 54.0	88 37 67.6 48.6 58.1	94 36 80.5 49.5	98 48 85.7 70.7	104 56 97.3M 63.1M 80.2M	104 58 96.4M 65.4M 80.9M	96 48 86.5 55.0 77.0
HORNITOS GILES RCH	MAX MIN AV MAX AV MIN AVG	104 50 94.3 64.7 79.5	102 50 92.1 64.2 78.2	96 46 85.1 56.4 70.8	94 44 80.6 56.1	71 29 57.9 41.0 49.5	64 30 53.6 42.1 47.9	61 26 49.6 38.8 44.2	68 30 57.0 38.4 47.7	74 36 61.8 41.7 51.8	87 34 65.4 46.3 55.9	93 38 77.3 49.3 63.3	94 42 81.3 52.7 67.0	100 52 92.3 62.6 77.5	98 54 90.7 63.8 75.8	90 46 81.1 54.4 67.8
MARIPOSA CIR 9 RCH	MAX MIN AV MAX AV MIN AVG	103 48 94.1 55.3	38 38 38 38	EEEEE	96 38 77.0M 46.1M 61.6M	70 13 53.2M 31.3M 42.3M	61 16 47.1 31.9	22 22 22 22 22 22 23 22 22 24 25 25 26 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26 2								
FRESNO - CHOWCHILLA R																
АНМАНИЕЕ 2 ИМ	MAX MIN AV MAX AV MIN AVG	97 58 90.1 69.3 79.7	96 54 90.0 69.4 79.7	94 52 84.0M 61.3M 72.7M	92 47 80.1M 62.6M 71.4M	80 30 63.3M 42.4M 52.9M	72 32 57.4 42.9 50.2	76 26 59.8 41.0 50.4	76 31 65.8 42.9 54.4	78 38 62.0M 43.9M 53.0M	84 34 63.6M 48.0M 55.8M	88 38 73.4 53.0 63.2	88 448 77.8 58.9 68.4	94 60 88.0 67.5	95 58 88.5 67.8 78.2	88 50 79.0 58.2 68.6
BIG CEDAR SPRINGS	MAX MIN AV MAX AV MIN AVG				RB RB RB RB	70 22 55.4 33.9 44.7	70 26 51.1 34.8 43.0	68 18 51.2 33.2 42.2	68 24 56.8 33.3 45.1	66 30 35.5 45.0	80 25 58.1 39.5 46.3	85 28 69.9 43.3 56.6	86 36 75.7M 49.8M 62.8M	94 42 87.1 56.2	92 50 86.6 58.1 72.4	85 40 76.3M 47.1M 61.7M

			mæn	2M 5M 4M	@ m @		3M 9M 1M			mos
		Sept.	92 42 82.3 50.8 66.5	89 38 82.2M 46.5M 64.4M	93 449 82.8 56.3	22222	85 29 80.3M 37.9M 59.1M	55555		90 744 79.3 55.6 67.5
		Aug.	101 51 93.5 60.8	97 48 91.2 56.1 73.7	EEEEE	93.9M 63.5M 78.7M	1111	11111		98 88.9 61.5 75.2
		July	104 49 94.1 58.3	100 45 91.1 54.6 72.9	EEEEE	ΣΣΣΣΣ	11111			96 899.9 75.3
		June	96 40 82.1 50.9 66.3	89 39 81.0 48.1 64.6	EEEEE	96 45 81.3M 53.8 67.6M	90 32 80.7 40.5 60.6	100 39 87.1M 48.7M 67.9M		90 40 79.3 52.6 66.0
	1965	May	94 32 76.3 44.8 60.6	91 31 76.0 41.8 59.9	94 36 74.5 48.7 61.6	95 34 77.2M 48.2M 62.7M	89 21 73.8M 34.7M 54.3M	100 32 80.3 43.0 61.7		87 32 72.4 46.5 59.5
		Apr.	86 36 65.7 46.1 55.9	86 33 64.7 43.8 54.3	83 34 61.3 46.6 54.0		84 28 61.7 37.5 49.6	88 32 67.5 43.9 55.7		80 28 60.0 41.0 50.5
		Mor.	72 32 60.9 39.2 50.1	72 30 61.6 36.8 49.2	73 34 61.3 41.4 51.4		71 23 60.1 31.4 45.8	75 32 65.0M 38.0M 51.5M		70 32 58.2 37.3 47.8
ENHEIT		Feb.	69 27 57.6 35.6 46.6	68 24 57.9 33.0 45.5	73 29 61.6 37.3 49.5		71 17 60.9 26.3 43.6	71 26 61.7 33.9 47.8		72 22 23 34.3 47.0
REES FAHRI		Jan.	61 24 51.5 37.3 44.4	58 22 51.1 34.6 42.9	72 20 54.6 37.8 46.2	73 20 52.6M 36.5M 44.6M	72 9 54.4M 28.6M 42.0M	67 22 55.6M 35.0M 45.3M		70 20 20 34.4 44.4
TEMPERATURE IN DEGREES FAHRENHEIT		Dec.	64 29 53.1 40.9 47.0	63 25 54.7 38.3 46.5	66 30 55.3 40.0	66 25 51.4M 37.1M 44.3M	19 M 31.7	66 27 57.4 38.1 47.8		72 26 52.7 36.7 44.7
TEMPERATI		Nov.	74 24 57.6 38.0 47.8	73 22 58.2 35.0 46.6	75 28 59.8 39.9 49.9	76 25 58.2 37.3 47.8	15 M 28.7	77 24 61.0 36.2 48.6		76 26 57.9 37.1 47.5
	964	0c1.	95 42 81.9 52.0 67.0	EEEEE	96 46 81.3 53.2 67.3	EEEEE	29 M 37.6	97 41 84.2 50.1 67.2		90 442 78.9 52.3 65.6
	-	Sept.	97 45 86.7 52.5 69.6	95 40 85.2 47.0 66.1	98 45 86.1 54.9 70.5	98 45 88.5M 56.4M 72.5M	32 M 38.2 M			92 4 4 6 8 8 2 . 3 6 8 4 . 6 5 5 . 5
		Aug	102 50 94.0 61.4 77.7	100 47 92.1 56.3	101 55 95.5 63.8	101 52 95.0M 65.8M 80.4M	95 40 89.7 48.6 69.2	M M 98.4M 59.8M 79.1M		96 50 90.3 61.4
		July	105 49 95.6 62.1 78.9	103 44 93.8 56.2 75.0	106 52 97.6 65.3M 81.5M	104 54 96.0M 64.5M 80.3M	98 89.3 48.2	105 45 97.9 58.2 78.1		98 54 91.1 62.4 76.8
			MAX MIN AV MAX AV MIN AVG		MAX MIN AV MAX AV MIN AVG					
	Station Name		CATHEYS VAL SAWYER	CATHEYS VAL STONHOUS	HIDDEN VALLEY	LUSHMEADOWS RCH	OA KHURST	RAYMOND 9 N	SAN JOAQUIN RIVER	CRANE VALLEY P H

TABLE A-5 (Cont.)
TEMPERATURE DATA
SAN JOAQUIN DISTRICT

					1	MPERATUR	FEMPERATURE IN DEGREES FAHRENHEIT	ES FAHREN	HEIT							
Station Name				1964	4							1965				
		July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.
MEADOW LAKE	MAX MIN AV MAX AV MIN AVG	94 56 85,3 65,3	92 50 86.6 64.9 75.8	88 42 78.8 56.5 67.7	90 41 76.6M 56.9M 66.8M	80 20 53.9 37.2	72 22 50.3 36.1	68 17 49.4 35.9	70 26 54.9 37.4 46.2	74 32 53.5 37.7 45.6	78 22 54.3 35.6 45.0	84 33 67.1M 47.2M 57.2M	84 41 72.7 51.0 61.9	90 56 84.5 63.2	93 58 84.7 64.3	88 42 73.4 53.2
MOUNTAIN REST FFS	MAX MIN AV MAX AV MIN AVG	96 49 87.6 61.2	93 51 86.5M 61.2M 73.9M	88 36 78.8M 52.7M 65.8M	89 26 77.0M 52.3M 64.7M	EEEEE	68 21 48.2M 37.6M 42.9M	SEEEE	65 25 54.4M 37.2M 45.8M	65 30 53.3 45.2	22222					
SAN JOAQ VAL WESTSIDE																
CASTLE ROCK RAD LAB	MAX MIN AV MAX AV MIN AVG	107 54 93.9 63.5 78.7	103 55 94.1 63.0 78.6	99 48 86.2 57.2	96 43 82.6 53.8	82 25 62.5 41.8	71 26 59.3 43.1	68 26 54.6 38.5 46.6	74 27 60.2 38.4 49.3	79 35 65.7 41.6 53.7	94 30 69.3 46.0	95 41 79.8 50.4 65.1	98 45 82.9 54.4 64.5	106 51 94.0 60.7 77.4	104 53 94.0 61.8	94 39 84.7 50.6 67.7
DEL PUERTO ROAD CAMP	MAX MIN AV MAX AV MIN AVG	104 50 95.8 58.5 77.2	100 50 92.5M 57.9M 75.2M	94 42 81.3 50.7 66.0	96 41 78.0M 47.8M 62.9M	70 24 57.1 37.8 47.5	65 30 54.8M 38.9M 46.9M	60 24 53.0 35.8 44.4	70 29 59.0 35.7 47.4	72 32 61.9 38.5 50.2	86 33 65.9 43.4 54.7	92 36 77.3 45.5 61.3	98 38 84.8 49.9 67.4	107 50 96.9 56.8 76.9	100 50 90.8 58.0 74.4	90 40 80.0 48.1 64.1
TULARE LAKE BASIN																
TULARE LAKE VAL FL																
ARVIN	MAX MIN AV MAX AV MIN AVG	107 53 97.4 64.4 80.9	102 56 96.1M 63.9M 80.0M	100 47 88.1 54.8 71.5	6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	78 28 63.0 39.3 51.2	74 22 60.9M 39.4M 50.2M	75 28 57.6M 38.0M 47.8M	28 64.9 37.6 51.3	84 35 70.3 45.5 57.9	98 39 85.2 68.9	11111	98 48 87.8M 57.1M 72.5M	104 53 96.5 63.8 80.2	102 52 95.0 64.0 79.5	94 46.0 86.1 53.9 70.0
ARVIN FRICK	MAX MIN AV MAX AV MIN AVG	105 50 94.0 59.0 76.6	100 50 92.0 58.0 75.1	96 42 86.0 48.0 67.0	96 38 82.0 47.0	77 20 58.0 33.0 45.8	72 17 56.0 35.0	72 25 53.0 43.0	74 21 59.0 31.0	80 30 66.0 52.8	94 36 69.0 44.0 56.7	94 30 79.0 46.0 62.0	96 38 83.0 52.0 67.4	102 52 93.7 59.0 76.4	99 54 93.9 60.3	92 39 83.0 48.8
AVENAL WALDEN	MAX MIN AV MAX AV MIN AVG	108 59 100.3 69.8 85.1	106 60 98.5 69.4 84.0	99 54 89.6 60.4M 75.0M	NENE	74 32 64.0 44.6 54.3	73 32 61.1M 45.4M 53.3M	69 34 58.7 43.6M 51.2M	76 25 61.8 38.9 50.4	83 37 69.9M 46.9M 58.4M	94 39 71.5M 52.1M 61.8M	99 44 84.7M 56.7M	99 51 88.7M 60.1 74.4	105 60 98.9 68.8 83.8	104 61 98.2 67.2 82.7	95 86.8 58.5 72.6

					TEI	EMPERATURE IN	IN DEGRE	DEGREES FAHRENHEIT	неіт							
Station Name				1964	4							1965				
		July	Aug.	Sept	Oct.	Nov.	Dec.	Jan.	Feb.	Mar	Apr.	May	June	July	Aug	Sept.
CARUTHERS 4 E	MAX MIN AV MAX AV MIN	EEEEE	EEEEE	98 44 88.0 48.4 68.2	97 38 83.9 47.3	73 23 61.9 36.9 49.4	72 26 57.0M 38.0M 48.0M	63 24 52.3M 36.0M	75 24 60.6 32.5 46.6	81 30 68.1 39.2 53.7	95 37 71.7M 45.2M 58.5M	99 33 83.5 64.3	98 46 85.6 52.5 69.1	103 53 94.5 58.7 76.6	102 52 95.5 58.5M 77.0M	94 38 86.1 48.0 67.1
CORCORAN EL RICO 1	MAX	098	106 54 97.2 60.7	100 46 88.1M 51.6M 69.9M	97 45 83.1 52.7 67.9	76 28 60.2 41.1 50.7	71 30 56.2 42.7 49.5	1 [] [1111	1111	96 35 69.4 46.1 57.8	100 35 82.5 47.7 65.1	99 47 86.1 53.7 69.9	106 52 96.2 60.0 78.1	103 52 95.0 60.2 77.6	95 42 85.2 51.9 68.6
COALINGA FEED YRD 1N	TAX TIN		1111	1111	92 46 80.3M 56.0M 68.2M	68 29 60.1 40.9 50.5	71 27 56.6 42.8M 49.7M	68 28 52.6M 38.9M 45.7M	74 31 59.7M 39.8M	80 38 64.1M 43.8M 53.9M	91 34 69.2M 48.7M 58.9M	96 39 82.0M 50.4M 66.2M	97 46 86.5M 55.2M 70.8M	1111	102 58 96.3 68.7 82.5	94 54 84.6 56.7 70.6
DEVILS DEN SLF	MAX MIN AV MAX AV MIN AVG							22 22 22 22 22 22 22 22 22 22 22 22 22	79 28 64.3M 35.9M 50.1M	82 33 69.8 42.4 56.1	97 34 73.4 48.1 60.8	102 41 85.0 51.7 68.4	101 49 87.9 56.0 72.0	108 54 99.5 61.5 80.5	107 58 99.0 64.4 81.7	100 43 90.4 55.9 73.2
DIGIORGIO	MAX MIN AV MAX AV MIN AVG	112 53 100.7 64.8 82.8	106 56 98.4 64.0	103 48 91.6 54.5 73.1	100 46 87.8 53.0 70.4	82 30 63.7 40.0	73 22 58.6 38.8 48.7	73 29 56.0 37.4 46.7	78 28 62.7 37.6 50.2	84 38 70.8 46.9	99 38 73.7 48.6 61.2	99 34 83.4 51.0 67.2	100 46 87.6 55.3 71.5	106 55 97.8 62.2 80.0	103 56 96.3 62.6 79.5	94 44 86.1 50.4 68.3
FIVE POINTS DIENER	MAX MIN AV MAX AV MIN AVG	108 53 97.2 63.4 80.3	103 56 94.8 62.9 78.9		94 45 82.4 53.9	79 28 61.1 41.3	72 28 57.6 42.2	69 29 39.9 46.9	74 28 61.4 37.9 49.7	79 36 68.0 42.6 55.3	95 36 71.3 48.3 59.8	98 37 82.7 50.7 66.7	98 47 86.2 55.2	104 56 96.3 62.9 79.6	102 55 96.0 63.6 79.8	95 47 84.7 54.8 69.8
FRESNO CO WESTSIDE FD		108 50 99.5 63.6	104 56 98.3 62.7 80.5	100 46 90.1 53.9 72.0	97 42 85.7 53.2 69.5	76 27 62.9 39.0 51.0	73 23 59.2M 40.5M 49.9M	71 26 57.0 38.5 47.8	78 27 63.6 36.8 50.2	82 32 69.1 41.0 55.0	95 34 72.2 47.6 59.9	36 36 84.4 49.7 67.0	100 46 82.1M 54.0M 68.0M	107 54 98.1 62.9 80.5	106 54 98.0 64.0	98 44 85.9 52.7 69.3
HANFORD WELL #21	MAX MIN AV MAX AV MIN		88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	97 46 88.4 50.1 69.8	96 38 84.0 48.9 66.5	76 24 63.3 37.5 50.4	74 25 58.1 40.0	68 25 54.0 36.5 45.3	76 25 63.2 35.6 49.4	81 32 69.8 42.3 56.1	95 36 72.0 47.1 59.6	99 38 84.0 49.9 67.0	97 47 86.4 55.0	103 54 95.4 61.7 78.6	107 52 95.1 60.8 78.0	94 41 85.1 51.5
							1		1	1						

TABLE A-5 (Cont.)
TEMPERATURE DATA
SAN JOAQUIN DISTRICT

					TEN	EMPERATURE IN	IN DEGRE	DEGREES FAHRENHEIT	HEIT							
Station Name				1964	4							1965				
		July	Aug.	Sept.	0ct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.
KETTLEMAN HILLS	MAX MIN AV MAX AV MIN AV MIN	102 55 95.7 70.2 83.0	105 56 94.7 71.8 83.3	97 52 85.6 63.8	94 50 81.4 63.1	68 36 57.9 44.3	62 35 52.9 41.8	65 32 51.8 42.1	75 37 61.3 46.0 53.7	EZZZZ	ZZZZZ	99 47 80.5 59.1	96 50 84.7 60.8	106 57 95.7 72.4 84.1	105 63 96.6 75.6 86.1	11111
	MAX MIN AV MÁX AV MIN AVG	110 58 100.3 67.9	105 58 98.1 67.3	103 52 89.5 57.8 73.7	96 48 85.3 56.1	80 30 62.5 40.1 51.3	75 25 59.9 40.7 50.3	73 31 56.4 38.9 47.7	77 30 62.1 38.5 50.3	84 39 67.8 46.2 57.0	100 39 74.0 50.6 62.3	100 40 84.1 54.6 69.4	99 49 87.8 58.5 73.2	106 62 98.3 66.8 82.6	103 62 97.7 68.9 83.3	94 51 86.1 58.1 72.1
NORTH BELRIDGE	MAX MIN AV MAX AV MIN AVG	108 62 99.3 71.4 85.4	105 57 97.7 70.9 84.3	100 54 89.7 61.4 75.6	96 50 84.0 59.2 71.6	73 32 61.0 42.7 51.9	74 29 59.5 42.8	68 32 54.4 39.8 47.1	75 32 61.0 39.7 50.4	81 41 68.3 46.9 57.6	95 38 71.4 51.0 61.2	98 43 82.2 56.8 69.5	98 50 86.3M 58.7M 72.5M	104 62 96.9 69.4 83.2	104 62 98.0M 71.3M 84.7M	96 54 86.0 60.0 73.0
	MAX MIN AV MAX AV MIN AVG	105 46 96.3 62.0 79.2		100 45 87.9 52.6 70.3	95 42 83.8 51.1 67.5	75 28 62.0 39.2 50.6	73 30 57.3 40.8	68 27 54.0 39.4 46.7	74 30 61.0 37.3 49.2	78 36 68.0 43.7 55.9	95 40 72.0 48.3 60.2	100 37 83.0 49.5 66.3	97 45 86.3 56.2 71.3	103 55 95.0 61.5 78.3	100 50 94.7 62.1 78.5	94 45 82.3 52.8 67.6
	MAX MIN AV MAX AV MIN AVG	106 50 96.0 61.2 78.6			94 42 81.3 50.0 65.7	72 27 60.5 38.6 49.6	72 27 56.6 38.8 47.7	67 29 52.5 37.0 44.8	74 27 61.4 34.3 47.9	80 33 68.2 41.0 54.6	95 36 72.6 47.0 59.8	100 39 82.4 49.7 66.6	99 46 85.6 53.7 69.7	105 54 94.8 61.6 78.2	101 52 93.1 61.0	91 43 83.1 51.1 67.1
SANGER 1 NE	MAX MIN AV MAX AV MIN AVG	107 53 99.4 61.2 80.3	104 54 97.9 60.2 79.1	97 47 88.7 53.1 70.9	93 45 81.5 66.8	72 30 60.2 42.1 51.2	69 32 57.0 44.3	65 30 54.5 41.5 48.0	72 31 61.8 39.8 50.8	80 37 68.2 44.3 56.3	93 41 71.9 50.0	99 37 83.5 50.4 67.0	99 47 87.8 55.5	104 54 96.6 61.6 79.1	103 55 93.6 61.9 77.8	93 47 85.1 53.2 69.2
SOUTH BELRIDGE	MAX MIN AV MAX AV MIN AVG		105 54 98.0M 66.7M 82.4M		97 46 84.1M 54.7M 69.4M	77 28 61.8 39.2 50.5	74 26 56.2M 40.7M 48.5M	67 29 55.4M 37.6M 46.5M	32 62.4 38.4 50.4	81 40 67.7 44.7 55.7	96 36 72.1 50.6 61.4	98 42 83.8 54.0 68.9	98 48 87.8 58.0 72.9	105 57 98.4 68.5 83.5	107 62 99.8 68.2 84.0	96 49 88.6 58.1 73.3
SOUTH LAKE FARMS HDQ	MAX MIN AV MAX AV MIN AVG	108 52 98.3 64.9 79.6	104 54 96.5 60.9 78.7	98 47.9 87.9 52.2M	96 42 83.2 50.6 66.9	75 24 61.7 37.6 49.7	73 29 57.5 40.2 48.9	69 28 38.4 45.6	75 24 61.5 34.3M 47.9M	32 68.1 41.0 54.6	95 36 72.2 44.9 58.6	98 33 82.7M 47.1M 64.9M	98 40 86.4 53.1 69.8	105 54 74.0 61.8 67.9	103 55 96.4 62.4 79.4	94 41 85.0 52.1 68.6

					TE	EMPERATUR	E IN DEGRE	EMPERATURE IN DEGREES FAHRENHEIT	VHEIT							
Station Name				1964	54							1965				
		yluly	Aug	Sept.	0ct.	Nov.	Dec.	Jan	Feb.	Mar.	Apr	May	June	July	Aug.	Sept
TRANQUILLITY GLOTZ	MAX MIN AV MAX AV MIN	EEEEE	ZZZZZ	EEEEE	95 45 83.4M 53.9M 68.7M	72 24 61.3M 40.2M 50.8M	72 24 58.3M 43.9M 51.1M	70 28 53.2M 39.9M 46.6M	74 28 59.7 37.4 48.6	80 32 67.2 42.5 54.9	96 35 71.3 47.5M 59.4M	99 42 82.8 50.4 66.2	95 46 84.5 55.2 69.9	103 55 95.3 63.0 79.1	100 54 92.7 63.3 78.0	96 48 84.6 55.0
TULARE	MAX MIN AV MAX AV MIN AVG	108 53 98.7 62.3 80.5	106 53 97.0 62.3 79.7	102 48 90.2 53.2 71.7	99 42 86.4 51.6 69.0	77 28 62.2 40.1 51.2	72 30 56.6 42.1 49.4	67 28 39.4 46.2	75 29 62.3 37.0 49.7	82 36 68.8 44.0 56.4	97 38 74.0 38.8 56.4	103 3.9 85.0 50.9 68.0	100 49 87.8 55.9 71.7	106 55 97.6 62.4 80.0	106 56 97.6 63.2 80.4	96 46 87.5 52.7
U S COTTON FIELD STA	MAX MIN AV MAX AV MIN AVG	109 55 96.6 64.8 80.7	102 56 94.4 63.6 79.0	100 49 87.1 54.7 70.9	95 44 83.6 53.3M 68.5M	75 28 60.7 39.4 50.0	75 27 58.3 40.1 49.2	70 28 54.0 37.8 45.9	74 27 62.0 36.9 49.5	81 39 67.9 46.0 57.0	95 39 72.3 49.0 60.7	98 39 82.8 51.5 67.1	97 47 85.6 56.4 71.0	101 56 94.5 63.7 79.1	101 58 94.5 64.7 79.6	93 48 84.0 54.6
VESTAL	MAX MIN AV MAX AV MIN AVG	109 58 99.5 68.9	107 62 97.4 68.7 83.1	102 53 90.4 60.1 75.3	96 44 86.2M 58.1M 72.2M	87 34 63.9 44.7 54.3	73 31 60.1 45.1 52.6	72 32 56.9 41.8	76 33 61.6M 39.2M 50.4M	80 40 70.2M 47.9M 59.1M	97 42 73.5 52.0 62.8	100 39 85.0 54.6 69.8	100 52 87.5 59.3 73.4	104 58 96.2 67.5	101 61 96.4 68.1 82.3	96 86.3 73.0
WEST CAMP SLF	MAX MIN AV MAX AV MIN AVG							8 8 8 8 8 8 8 8 8 8	76 26 59.9M 34.4M 47.2M	81 32 68.4 40.9 54.7	94 34 72.1 44.5 58.3	100 40 83.8M 51.3M 67.6M	102 48 88.5 55.4 72.0	104 58 98.4 63.6 81.0	107 51 100.1 64.1 82.1	102 44 93.7 59.2 76.4
KINGS RIVER																
PINE FLAT DAM	MAX MIN AV MAX AV MIN AVG	106 50 98.5 60.8 79.7	104 52 98.0 61.0 79.5	99 47 88.9 51.8	96 42 85.2 49.5 67.4	77 26 61.9 35.4 48.7	67 25 56.9 38.0 47.5	67 25 53.0 35.2 44.1	72 27 60.5 34.3 47.4	78 34 65.5 41.0 53.3	91 37 68.3 46.8 57.6	97 32 82.2 47.8 65.0	98 44 86.4 52.7 69.6	104 50 97.1 59.2 78.2	105 52 98.1 61.6 79.8	94 44 86.7 51.4 69.1
PINEHURST	MAX MIN AV MAX AV MIN AVG	94 50 885.7 61.5	90 49 85.2 61.3 73.3	86 39 79.2 54.1 66.7	87 39 75.2M 52.2M 63.7M	72 19 M M M	EEEEE	EEEEE	66 23 56.5M 35.8M 46.2M	91 M M	76 24 M M	80 30 66.7 45.1 55.9	82 35 72.1 49.9 66.0	89 52 83.3 60.1 71.7	92 53.4 83.5 60.9 72.2	85 41 73.6M 50.7 62.2M

TABLE A-5 (Cont.)
TEMPERATURE DATA
SAN JOAQUIN DISTRICT

		Sept.	EEE		93 45 84.1 555.0 69.6		95 51 85.1 56.4 70.8		95 41 85.1 50.1 67.6		95 42 83.2 50.4 66.8	90 54 81.5M 59.8M 70.7M	
		Se	76										
		Aug	83 41 75.5M 46.6M 61.1M		101 52 94.8 64.6 79.7		105 56 95.8 64.4 80.1		100 50 94.7 61.2 78.0		103 50 93.6 60.4 77.0	98 60 93.6M 69.4M 81.5M	
		July	82 0 4 0 M M M		101 55 94.2 63.2 78.7		103 56 95.2 63.3 79.3		101 50 96.2 60.2 78.2		100 51 94.1 60.0	100 60 M M	
		June	75 31 64.2M 38.9M 51.6M		94 44 84.4 54.5		96 47 85.3 55.9		95 41 85.5 51.8		93 45 81.3 52.3 66.8	94 48 81.1M 57.6M 69.4M	
	1965	May	69 16 M M		98 35 80.9 51.6		99 35 82.2 51.2		95 32 79.2 48.0 63.6		91 34 74.6 47.0 60.6	94 40 82.5M 54.4M 69.0M	
		Apr.	68 5 45.3M 25.3M 35.3M		92 37 68.8 48.9 58.9		93 38 70.0 48.2 59.1		91 32 66.2 44.7 55.5		88 33 64.7 42.2 53.5	MMMM	
		Mar	56 19 45.7M 24.8M 35.6M		76 39 64.8 44.3		78 40 66.0 444.3 55.2		79 36 61.5 40.3		73 29 60.4 38.5 49.5	77 56 64.9M 45.9M 55.4	
INHEIT		Feb.	57 9 48.4M 23.5M 36.0M		71 30 59.5 39.6 49.6		72 32 60.5 38.0 49.3		70 29 58.8 35.7 47.3		76 22 62.1 34.1 48.1	75 33 57.2M 37.9M 47.6M	
EMPERATURE IN DEGREES FAHRENHEIT		Jan.	59 M M		566 30 32.8 45.7		68 29 54.3 38.1 46.2		66 23 53.7 35.0 44.4		72 23 56.4 34.6 45.5	70 30 54.9M 37.2M 46.1M	
RE IN DEGR		Dec.	54 3 42.6M 26.0M 34.3M		70 28 57.0 41.5 49.3		71 29 57.7 41.0 49.4		67 28 55.8 38.7 47.3		72 23 57.1 39.1 48.1	68 28 M M M	
EMPERATU		Nov.	65 10 46.9M 24.9M 35.9M		75 33 60.8 41.0 50.9		76 31 61.7 40.8 51.3		77 27 58.9 38.0 48.5		76 24 59.5 37.7 48.6	32 M M	
	964	Oct.	80 28 69.0M 41.0M 55.0M		95 48 83.3 56.7 70.0		97 45 84.8 55.8 70.3		94 42 82.5 52.6 67.6		98 41 85.7 48.4 67.1	94 46 82.1M 57.4M 69.8M	
	6)	Sept.	79 30 70.4M 40.7M 55.6M		98 51 86.8 72.5		100 47 89.0 56.5 72.8		98 43 87.6 52.7 70.2		98 41 88.7 51.1 69.9	94 52 84.6M 59.1M 71.9M	
		Aug.	83 41 M M		103 58 95.8 66.3 81.1		105 57 97.6 64.3 81.0		107 47 95.6 62.2 78.9		103 52 96.3 62.6 79.5	99 59 92.7M 68.6M 80.7M	
		July	84 40 77.2M 48.3M 62.7M		105 52 96.5 65.9 81.2		105 53 98.3 65.1		106 42 97.5 61.6 79.6		104 52 96.1 62.3 79.2	104 56 M M	
			MAX MIN AV MAX AV MIN AVG		MAX MIN AV MAX AV MIN AVG		MAX MIN AV MAX AV MIN AVG		MAX MIN AV MAX AV MIN AVG		MAX MIN AV MAX AV MIN AVG	MAX MIN AV MAX AV MIN AVG	
	Station Name		WISHON LAKE	KAWEAH RIVER	TERMINUS DAM	TULE RIVER	SUCCESS DAM	GREEN HORN MOUNTAIN	WOODY	KERN RIVER	ISABELLA DAM	KERN CANYON	

_	_	_	_							
			Sept.		87 28 75.2 37.5 56.3	88 28 77.6 42.8 60.2		99 51 83.4 59.6 71.4	93 48 83.3 54.8 69.1	
			Aug		95 35 83.4 45.7	94 43 86.9 56.1 71.5		100 59 93.6 68.5	100 57 93.5M 65.7M 79.6M	
			July		98 34 83.4 63.6	95 40 87.3 51.5 69.4		103 54 93.9 68.1 81.0	103 56 93.9 65.3 79.6	
			June		84 30 73.2 39.1 56.2	89 37 77.2 46.6 61.9		96 44 81.8 55.5 68.7	96 45 84.4 55.9	
		1965	May		87 24 66.9 33.7 50.3	88 28 72.8 43.3		93 43 75.5 54.6 65.1	96 40 80.5 52.2 66.4	
			Apr		81 26 57.6 34.7 46.2	86 29 64.2 37.4 50.8		88 37 66.4 50.9	94 37 68.0 48.0 58.0	
			Mar.		68 22 53.2 30.7 42.0	22 M 34.9M		77 41 64.7 46.2 55.5	80 39 65.6 44.0 54.8	
	NHEIT		Feb.		74 20 56.0 26.2 41.1	21 57.5M 32.9M 45.2M		75 37 61.1 43.8 52.5	74 27 60.4 37.1 48.8	
	DEGREES FAHRENHEIT		Jan.		70 9 53.0 30.3	76 21 57.9 33.5 45.7		73 29 56.0 37.4 46.7	68 30 54.1 36.7	
-	∠		Dec.		70 115 51.5 31.0	65 14 54.8 31.8 43.3		72 30 57.1 44.8 51.0	75 26 59.1 39.5 50.5	
	FEMPERATURE		Nav.		74 11 53.3 32.8 43.0	78 22 59.1 35.9 47.5		73 32 59.6 44.8 52.2	78 31 60.2M 40.1M 50.2M	
	-	964	Oct.		90 28 76.1 40.5 58.3	89 39 76.9 48.5 62.7		94 48 82.9 61.1	94 44 82.6 56.2	
		61	Sept.		89 30 78.9 38.7 58.8	94 39 81.6 46.7 64.2		98 45 85.6 58.0 71.8	98 50 86.2 57.4	
			Aug.		91 30 83.8 46.3 65.0	96 41 89.1 53.7 71.4		101 50 93.8 66.8	102 53 95.5 65.6	
			July		92 38 84.4 47.4 65.9	99 40 90.8 55.1		105 49 93.6 66.4 80.0	107 57 95.3 66.5	
					MAX MIN AV MAX AV MIN AVG	MAX MIN AV MAX AV MIN AVG		MAX MIN AV MAX AV MIN AVG	MAX MIN AV MAX AV MIN AVG	
		Station Name		TEHACHAPI MOUNTAINS	CUMMINGS VALLEY 2	KEENE	TULARE L BAS WESTSIDE	DOMENGINE RCH	TAFT KTKR RADIO	

TABLE A-6
EVAPORATION DATA
SAN JOAQUIN DISTRICT

	Tatai Oct I	Sept.30		88.90 8.45 37000		74.15		11111			64.16 6.17 22900	82.76	82.50 6.75 24600		63.01 20.64 9270
		Sapt.		8.63 0.00 2820 84.9 53.2		6.12 0.01 85.1 48.0		RE RE RE			6.34 0.10 1577 83.0 48.0	8.27 0.00 1440 85.2 51.9	8.31 0.03 1580 84.0 54.6		7.45 0.00 835 86.7 51.4
		Aug.		13.49 0.11 3490 92.9 61.7		11.90 0.76 94.3 57.4		11111			8.98 0.25 1445 94.0	12.62 0.00 1820 95.0	10.55 0.00 1300 94.5 64.7		10.38 0.10 847 98.1 61.6
		July		13.68 0.00 3400 93.4 58.9		14.25 T - 95.4 57.4		11111			9.91 0.32 2119 94.0 59.0	13.98 0.00 1850 96.2 60.0	12.45 0.31 1780 94.5 63.7		10.73 734 97.1 59.2
		June		13.82 0.00 6240 83.2 54.5		11.08 0.00 84.3 48.1		7.29 0.00 667 87.1M 48.7M			8.98 0.00 2420 83.0 52.0	12.39 0.00 2400E 86.1 53.7	12.30 0.00 2960 85.6 56.4		8.78 0.00 760 86.4 52.7
	1965	Мау		14.04 0.03 5100 80.8 52.1		10.14 0.00 80.3 44.4		7.11 0.00 435 80.3 43.0			9.00 0.00 2660 79.0	13.18 0.00 82.5 47.7	12.90 0.00 3350 82.8 51.5		8.26 0.03 865 82.2 47.8
		Apr.		5.90 2.01 2620 70.3 47.8		4.10 3.52 67.2 43.4		3.40 4.35 287 67.5 43.9			4.98 1.60 2250 69.0	6.19 1.75 2150 69.4 46.1	7.50 2.32 2320 72.3 49.0		3.77 4.99 732 68.3 46.8
		Mor.		4.91 0.91 2600 66.9 42.4		3.74 1.93 64.1 37.7		2.98 1.94 497 65.0M 38.0M			4.55 0.84 2550 66.0	4.53 0.22 1660	5.34 0.93 2140 67.9 46.0		3.23 1.89 704 65.5 41.0
		Feb.		3.20 0.31 2190 58.4 36.8		2.22 1.32 60.1		1.84 0.97 429 61.7 33.9			2.40 0.26 1800 59.0	2.54 0.28 1320	3.48 0.26 1500 62.0 36.9		1.83 0.34 725 60.5 34.3
		Jan.		1.08 0.63 2210 51.6 38.2		1.06 2.44 53.2 33.9		1.04E 2.74 690 55.6M 35.0M			1.29 0.68 1700 53.0	0.68 0.87 1120	1.20 0.67 1260 54.0		0.90 3.83 851 53.0 35.2
		Dec.		1.50 2.24 2250 57.1 39.3		1.30 7.66 56.2 37.5		1.55E 7.80 258 57.4 38.1			1.54 1.44 1840 56.0	0.78 0.91 1430 56.2	1.36 1.09 1350 58.3 40.1		0.73 4.47 668 56.9 38.0
		Nov.		1.94 0.86 2080 59.4 39.3		1.78 3.40 60.1		4.86 269 61.0 36.2			1.90 0.66 1320 58.0	1.60 0.66 1360 60.2	1.72E 0.49 1150 60.7 39.4		1.47 3.79 716 61.9 35.4
	964	0ct.		6.71 1.35 2010 82.2 53.1		6.46 2.06 83.8 48.7		2.31 344 84.2 50.1			4.29 0.56 1230 82.0 47.0	6.03 0.79 1380 83.1 52.7	5.39 0.65 1250 83.6 53.3M		5.48 1.20 830 85.2 49.5
	5	Sept.		10.35 0.24 3400 85.2 53.4		9.26 0.00 88.0 48.4		000000			5.98 0.00 1350 86.0 48.0	9.14 0.33E 1850 88.1M 51.6M	8.51 0.25 1350 87.1 54.7		7.87 0.45 867 88.9 51.8
		Aug.		14.98 0.00 4140 95.4 62.3		13.22 0.16 • 95.5 57.3		0.23 M 98.4M 49.8M			8.32 0.08 1410 92.0 58.0	13.79 0.00 2240 97.2 60.7	11.60 0.05 1420 94.4		11.47 0.01 927 98.0 61.0
		yluk		17.53 0.00 4680 95.9 61.4		14.61 0.00 97.0 58.1		0.00 804 97.9 58.2			8.98 T 1580 94.0	14.99 0.00 2430 99.0 60.6	13.00 0.01 1580 96.6 64.8		12.42 0.00 915 98.5 60.8
	Tatal July 1	Ta June 30		95.96 8.58 39500		78.97		25.20			62.21 6.12 22100	85.84 5.81E	84.30 6.72 21600		66.21 21.00 9560
L				EVAP PRECIP WIND AV MAX		EVAP PRECIP WIND AV MAX AV MAX		EVAP PRECIP WIND AV MAX AV MAX			EVAP PRECIP WIND AV MAX AV MAX	EVAP PRECIP WIND AV MAX AV MAX	EVAP PRECIP WIND AV MAX AV MAX		EVAP PRECIP WIND AV MAX AV MIN
	Stotion Name		SAN JOAQ R BAS SAN JOAQ VAL FL	LOS BANOS FIELD STA	TUOLUMNE RIVER	DON PEDRO RESERVOIR	MERCED RIVER	RAYMOND 9 N	TULARE LAKE BASIN	TULARE LAKE VAL FL	ARVIN FRICK	CORCORAN EL RICO 1	U S COTTON FIELD STA	KINGS RIVER	PINE FLAT DAM

TABLE A-6 (Cont.)

EVAPORATION DATA
SAN JOAQUIN DISTRICT

	9		10.10.0	_	10.10.0	_	m.o.c	_	m	_	3
Total Oct i	Sept 30		77.95 15.46 18800		78.66 12.96 17500		74.38 12.99 22200		74.98 12.61 305 0		93.09E 5.43 17400
	Sept.		8.39 0.30 1680 84.1 55.0		8.88 0.13 1630 85.1 56.4		8.29 0.20 1760 83.2 50.4		7.74 0.10 1890 75.2 37.5		9.90 11.00 11.00 88.30 84.8
	Aug		11.57 0.05 1670 94.8 64.6		12.29 0.23 1580 95.8 64.4		10.47 0.50 1520 93.6		9.74 0.18 1780 83.4 45.7		13.49 0.17 10.19 93.5M 65.7M
	July		13.12 0.01 1520 94.2 63.2		13.25 0.03 1640 95.2 63.3		11.95 0.39 1610 94.1 60.0		11.17 0.22 1920 83.4 43.6		15.07 10.05 10.05 93.30 65.3
	June		10.59 1430 84.4 54.5	_	10.82 0.00 1650 85.3 55.9		10.33 0.13 2250 81.3 52.3		8.86 0.02 2260 73.2 39.1		12.56 0.00 16.00 84.4 55.9
1962	May		10.10 0.00 1490 80.9 51.6		10.50 0.00 1620 82.2 51.2		8.81 0.18 2080 74.6 47.0		8.54 0.00 2710 66.9		12.57 0.00 0.00 8.00 5.00 5.00 5.00 5.00
	Apr.		4.96 3.21 1110 68.8 48.9		5.11 3.56 1140 70.0		4.49 2.58 1880 64.7		4.56 3.53 2210 57.6 34.7		6.74 11.85 68.00 68.00 0.00
	Mor.		3.75 1.17 1190 64.8		4.03 1.15 1330 66.0		4.00 1.21 2080 60.4 38.5		4.20 1.35 2970 53.2 30.7		0004 046 000 0000
	Feb.		2.37 0.47 1550 59.5 39.6		2.23 0.17 1370 60.5 38.0		2.99 0.27 1540 62.1 34.1		3.68 0.37 2620 56.0		3.28 0.30 10.30 37.1
	Jan.		1.23 2.92 1580 52.8 38.5		1.13 1.81 1170 54.3 38.1		1.71 1.75 1550 56.4 34.6		3.53 1.01 3180 53.0		1.51 0.079 10.079 36.7
	Dec.		1.34 3.74 1750 57.0 41.5		1.21 2.03 1360 57.7 41.0		2.10 3.49 2390 57.1		2.64 2.86 4030 51.5		440.00 440.00 440.00
	Nav.		2.40 2.28 1830 60.8		2.12 2.57 1360 61.7 40.8		2.56 1.82 2040 59.5 37.7		4.37 2.40 3070 53.3		2.81 1380 60.13 60.23 1380
1964	0c1.		8.13 1.28 2070 83.3 56.7		7.09 1.28 1670 84.8 55.8		6.68 0.47 1480 85.7 48.4		5.95 0.49 1830 76.1		7.49 10.83 10.83 5.20 5.20 5.30
61	Sept.		10.19 0.39 1930 86.8 58.2		9.09 0.33 1660 89.0 56.5		9.33 0.01 1750 88.7 51.1		8.21 0.04 2060 78.9 38.7		0.00 10.33 10.00 1
	Aug.		14.01 0.00 1830 95.8 66.3		12.65 0.00 1740 97.6 64.3		12.88 0.00 2090 96.3 62.6		9.22 0.04 1900 83.8 46.3		13.93 10.00 10.00 95.5 65.6
	July		14.99 0.00 1760 96.5 65.9		14.20 0.00 1800 98.3 65.1		13.90 0.00 2230 91.6 62.3		10.95 0.05 1880 84.4 47.4		21 20 4 5 5 6 4 6 7 0 0 7 9 9 # 0 # 0 # 0 # 0 # 0 # 0 # 0 # 0 # 0 #
Tatai July I	Ta June 30		84.06 15.46 19500		80.18 12.90 17900		79.78 11.91 23400		74.71 12.16 30700		93.87 17300 17300
			EVAP PRECIP WIND AV MAX AV MIN		EVAP PRECIP WIND AV MAX AV MAX		EVAP PRECIP WIND AV MAX AV MAX		EVAP PRECIP WIND AV MAX AV MIN		EVAP PIRECTP PIRECTP AV MAX AV MAX AV MIN
Station Name		KAWEAH RIVER	TERMINUS DAM	TULE RIVER	SUCCESS DAM	KERN RIVER	ISABELLA DAM	TEHACHAPI MTN	CUMMINGS VALLEY 2	TULARE L BAS WESTSIDE	TAFT KTVR RADIO

APPENDIX B
SURFACE WATER FLOW

APPENDIX B. SURFACE WATER FLOW

Introduction

This appendix presents surface water data for the 1965 water year which is from October 1, 1964, to September 30, 1965. The data presented consist of daily mean discharge, daily mean gage heights, station locations, diversion quantities, imported water, exported water, summary tables of monthly and annual unimpaired runoff from major streams, changes to previous reports, and storage in major reservoirs.

The daily discharge tables show the daily mean discharge in cubic feet per second, maximum and minimum monthly discharge, monthly acre-feet total, and the total acre-feet for the water year. Also shown are the station location description, maximum discharge of record, date of occurrence, as well as gage datum, drainage area and other useful information.

Tables of daily mean gage heights are presented for key stations on major streams in the San Joaquin Valley. Also shown in these tables are the major crests and times of occurrence.

Diversion tables are presented for diversions from the major streams, and are shown as monthly acre-feet and total acre-feet for each diversion, as well as total acre-feet for a certain reach of a stream.

Measurement Techniques

Definitions of Terms and Abbreviations

<u>Garding station</u> is a particular site on a stream, canal, lake or reservoir where systematic observations of gage height or discharge are obtained.

<u>Cubic foot per second</u> (cfs) is a unit expressing rate of discharge. One cubic foot per second is equal to the discharge of a stream of rectangular cross section one foot wide and one foot deep, flowing at an average velocity of one foot per second.

Acre-foot (ac-ft) is the quantity of water required to cover one acre to a depth of one foot. It is equivalent to 43,560 cubic feet or 325,850 gallons.

<u>Drainage area</u> of a stream above a specific location is that area, measured in a horizontal plane, which is enclosed by a drainage divide.

Unimpaired runoff is the flow that would occur naturally at a point in a stream if there were:

(1) no upstream controls such as dams or reservoirs; (2) no artificial diversions or accretions; and (3) no change in ground water storage resulting from development. Unimpaired flow is computed from measured runoff by allowing for man-made changes in natural conditions.

<u>Water year</u> is the 12-month period from October 1 of any year through September 30 of the aubaequent year and is designated by the calendar year in which it ends.

<u>Stage-discharge relation</u> is the relation between gage height and the amount of water flowing in a channel, expressed as volume per unit of time.

<u>Contents</u> is the volume of water in a reservoir or lake, unless otherwise indicated. Volume is computed on the basis of a level pool and does not include bank storage.

Methods and Procedures

The field activities include the construction and maintenance of stream gaging stations, and the collection of basic data at these stations such as records of stage and measurements of discharge. In addition, observations of factors affecting the stage-discharge relation, weather records, and other information are used to supplement base data in determining the daily flow. Records of stage are obtained from a water stage recorder that gives a continuous record of the fluctuations (for digital recorders, a tape punched at 15-minute intervals), or from direct readings on a nonrecording gage. Measurements of discharge are made with a current meter by the general method adapted by the Department which conforms to that used by the U. S. Geological Survey, or by indirect method such as slope area in instances where it was impossible to obtain current meter measurements.

Rating tables giving the discharge for any stage are prepared from stage-discharge relation curves defined by discharge measurements to which curve a formula is related. This formula is used by an electronic computer in computing the discharge.

The field work also consists of obtaining discharge measurements of water diverted for use. This is done by use of a Cox flow meter in closed conduits or current meter in open ditches.

The office work consists of preparation of hydrographic data for computation by machine methods, and the computation of the discharge of certain rivers and streams which are not readily computable by electronic computer. All diversion discharge computations are hand computed as are discharges for those streams or rivers where backwater or control structures affect the stage-discharge relationship.

Accuracy

A stage-discharge relationship or rating is developed for each stream gaging station where discharge is reported. The rating gives the flow in cubic feet per second for each gage height at the station. When flows at a single station occur in excess of 140 percent of the highest actual discharge measurement used in preparing the rating, the computed daily mean discharge from an electronic computer is shown as estimated. Normally, the rating is fairly permanent where there is a fixed channel and a fixed flow regimen at the station. The rating varies, however, where the bed of the channel is of loose shifting sand, or where aquatic growth builds up in the channel changing the flow regimen.

Where the rating is not permanent and varies periodically, more frequent measurement of discharge is necessary to accurately determine the daily mean discharge, and even then it is necessary to apply the shifting control method for determining the discharge.

All streamflow data reported herein are derived through the use of mechanical, arithmetical, and empirical operations and methods. Since the results are affected by inherent inaccuracies in the procedures and equipment used it becomes necessary to establish limits of accuracy for the data which are reported.

Significant Figures

The following is a listing of significant figures used in reporting streamflow data:

1. Daily flows, cubic feet per second

0.0 - 99 two significant figures 100 - up three significant figures

2. Means, cubic feet per second

0.0 - 99.9 tenths 100 - 999 three significant figures 1000 - above four significant figures

The water year totals are reported to a maximum of four significant figures.

Coding

Each gaging station is assigned a six-digit code to facilitate station identification. The method used in assigning these code numbers is as follows: The State was first divided into major hydrographic areas and each of these areas was assigned an alphabetic letter which is the first of the six-digit code. The second digit was obtained by dividing the major hydrographic areas into stream basins of primary importance and assigning to each basin a number, 0-8, with 0 generally being assigned to the valley floor. The third digit indicates the stream. The remaining three digits designate the relative number of the station on the stream system.

Where a stream crosses the valley floor the code designation changes to the extent that the first, second, and third digits are used to indicate the major hydrographic area, the valley floor designation, and the stream basin from which the stream originates. The fourth digit is then used to designate the stream. The two remaining digits indicate the relative station number. A number nine appearing in the fourth digit from the left indicates a gravity diversion station in all cases. Station numbers increase numerically proceeding upstream. When a minor tributary enters the stream system, the station numbers progress up the minor tributary and then up the main stem.

The first two symbols of this code number are shown in large red print on Plate 4. They signify the following hydrographic areas and units:

Hydrographic Area B

BO - San Joaquin Valley Floor B6 - Fresno-Chowchilla Rivers

B3 - Stanislaus River B7 - San Joaquin River

B4 - Tuolumne River B8 - San Joaquin Valley on West Side

B5 - Merced River B9 - Sacramento-San Joaquin Delta

Hydrographic Area C

CO - Tulare Lake Valley Floor C4 - Green Horn Mountains

C1 - Kings River C5 - Kern River

C2 - Kaweah River C6 - Tehachapi Mountains

C3 - Tule River C7 - Tulare Lake Basin on West Side

The third, fourth, fifth, and sixth symbols of the code are shown at the recording station locations on Plate 4. All six symbols are indicated on the hydrographic area index, and on the table for each individual gaging station.

The identification code number for water quality sampling stations has two additional digits. If the seventh and eighth digits are .00 it indicates that the sampling is done at a gaging station. If these digits are .02 it indicates the sampling is done within one mile upstream from a gaging station and if .98 it indicates the sampling is done within one mile downstream. If the sampling is done in excess of one mile from a gaging station, this point is numbered with a six-digit number as if it were at a gaging station, followed in the seventh and eighth digits by .50. All eight digits are indicated on the table for each individual sampling point.

Examples

Station: North Fork Merced River near Coulterville

Number: B 5 2 6 0 0

Hydrographic Area B

River Basin 5

River Main Branch 2

Relative Number 6 0 0

Station: Merced River at Cressey

Number: B 0 5 1 5 5

Hydrographic Area B

Valley Floor 0

River Basin 5

River Main Branch 1

Relative Number 5 5

Station: San Joaquin River at Maze Road Bridge

Number: B 0 7 0 4 0

Hydrographic Area B

Valley Floor 0

River Basin 7

River Main Branch 0

Relative Number 4 0

Station: San Joaquin River at Maze Road Bridge

Number: B 0 7 0 4 0 .00

Hydrographic Area B

Valley Floor 0

River Basin 7

River Main Branch 0

Relative Number 4 0

1020010

Sampling Station

Explanation of Tables

The tabular data presented in this appendix are divided into general categories of runoff comparisons, lakes and reservoirs, imported and exported water, daily mean discharge, daily mean gage heights, and diversions.

.00

The area to which these data pertain is shown as Area IV on page iii and on Plate 4.

Runoff Comparisons

Runoff conditions from year to year for a particular stream are compared to the mean runoff for that stream over a long period of time. The mean runoff is a base or normal used to compare runoff with any other year. Flow conditions on all major streams entering the valley are affected by man-made impairments such as reservoirs and diversions; therefore, the runoff comparisons are made with computed natural runoff which allows for effects of impairments. These computed natural or unimpaired runoffs are considered to be the flows that would occur if no impairments were above the points of measurement. Runoff normals are computed for the 50-year period October 1910 through September 1960.

The annual unimpaired runoff in percent of average for the 50-year normal for the period 1910 through 1960 on major streams in the San Joaquin District area is shown in Table B-1. The monthly unimpaired runoff for 1965 in percent of average based on the same 50-year period is shown for the same streams in Table B-2.

Lakes and Reservoirs

There are 59 principal reservoirs in the State, 25 of which are located in the San Joaquin District. These 25 have a storage capacity of 4,727,530 acre-feet. The storage capacity, water in storage on October 1, 1964, and storage on October 1, 1965, in these major San Joaquin Valley reservoirs are shown in Table B-3.

Gaging Station Additions and Discontinuations

Presented in Table B-4 are gaging stations added to or discontinued from the network.

Daily Mean Discharge

Presented in Table B-5 are daily mean discharge records, gaging station locations, period of record, maximum flow of record, maximum and minimum flow for the season, and total flow in acre-feet for the 1965 water year.

The streamflow tables are arranged, for each stream or stream system, in downstream order. Stations entering between two main stem stations are listed between those stations, and in downstream order on that tributary. A stream gaging station is named after the stream and the nearest post office (Merced River at Cressey) or well-known landmark (San Joaquin River at Fremont Ford Bridge).

Streamflow Measurements at Miscellaneous Locations

Presented in Table B-6 are tabulations of streamflow measurements on various streams at locations other than those where continuous recorders are maintained.

Diversions

Presented in Table B-7 are the amounts of water diverted for irrigation during the period October 1, 1964, through September 30, 1965. The amounts of water diverted by pumping were determined by rating the capacity of each diversion pumping plant and collecting data on hours of operation. The amounts of water diverted by gravity (indicated by "Gravity" in column headed "number and size of pump") were determined either by calibrating suitable measuring devices or by rating canals in a manner similar to that used to rate streamflow stations. The monthly and annual diversion values are reported in acre-feet.

Table B-8 shows the amount of water diverted by eastside canals and the several eastside irrigation districts that divert water from the San Joaquin, Merced, Tuolumne, and Stanislaus Rivers.

Table B-9 shows the deliveries from the Central Valley Project canals. The data presented in Tables B-8 and B-9 are supplied by other agencies and are published as received. They are not necessarily rounded to significant figures which are used for data computed by the Department of Water Resources.

Imported and Exported Water

Water is imported to the San Joaquin Valley from the Sacramento-San Joaquin Delta via the Delta-Mendota Canal. The amount of water imported is shown in Table B-10.

Water is exported from the San Joaquin Valley via the Hetch-Hetchy Aqueduct from the Tuolumne River to the City and County of San Francisco. Table B-10 shows the amount of that export.

Daily Mean Gage Heights

Presented in Table B-11 are records of daily mean gage heights for key stations on major streams in the San Joaquin Valley for the 1964-65 water year.

At the bottom of this table are shown the major river crests occurring during the water year. The table also shows the location of the station, maximum gage height of record, period of record, and gage datum. The elevation of water surface at the gaging station is obtained by adding the gage height reading to the elevation of the gage datum presented in each table.

			Daily Mean
		Daily	Gage Height
		Mean Discharge	and Crest Stages
			Crest Stages
	Bear Creek below Bear Reservoir	73 72	
	Big Creek Diversion near Fish Camp	59	
	Buena Vista Creek near Taft	112	
	Burns Creek below Burns Reservoir	75 74	
	Campbell-Moreland Ditch above Porterville	101	
	Campbell-Moreland Ditch above Porterville		129
	East Fork near Ahwahnee	63 65	
	West Fork near Mariposa	64	
	Cross Creek below Lakeland Canal #2	95	
	Delta-Mendota Canal near Tracy	56 57	
	Deer Creek at Terra Bella Irrigation District	110	
	Dry Creek near Modesto	87	144
	Eastside Bypass near El Nido	67 96	
	Elk Bayou near Tulare	60	
	Friant-Kern Canal Delivery to Porter Slough	97	
	to Tule River	98	
	nupps-miner bitten at roiterville	107	
	Kern River near Bakersfield	94	
	Mariposa Bypass near Crane Ranch	70	
	That i post of ock hear cacheys variety	68	
	below Mariposa Reservoir Maxwell Creek at Coulterville	69 79	
		81	134
	below Snelling near Livingston North Zork near Coulterville	80	133
	near Livingston	78	135
		61	
	Millerton Lake Daily Inflow	54	
	Daily Content Orestimba Creek near Crows Landing	154	
	Orestimba Creek near Crows Landing	82	
	Owens Creek below Owens Reservoir Panoche Drain near Dos Palos	71 77	
	Poplar Ditch near Porterville	106	
		102	
	near Porterville Porter Slough Ditch at Porterville	104	
	Rhodes-Fine Ditch near Porterville	108	
	San Joaquin River at Crows Landing Bridge		137
	near Dos Palos	62	
	at Fremont Ford Bridge	55	132
	at Grayson	83	139
	at Hetch Hetchy Aqueduct Crossing	89	
	at Maze Road Bridge	58	147
	near Mendota	58	136
	at Patterson Bridge		138
	above Sand Slough near El Nido		130
	near Stevinson	76 93	131 153
	at West Stanislaus Irrigation District Intake	23	140
	Stanislaus River at Koetitz Ranch	92	151
	near Mouth	90	152 148
	at Orange Blossom Bridge	90	148
		91	149
	Striped Rock Creek near Raymond	66	
	Tulare Lake	100	127
	North Fork at Springville	99	
		86	143
	at ha drange bringe	84	141
	at Modesto	85	145 142
	at Tholumne City	88	146
	Vandalla Dicch hear Porterville	105	
	Woods-Central Ditch near Porterville	109	
			Page
DIVE	RSIONS		
	Deliveries from Central Valley Project Canals		124
	Dry Creek		120
	East Side Canals and Irrigation Districts		
	Merced River		121
	Vernalis to Fremont Ford Bridge		114
	Fremont Ford Bridge to Gravelly Ford		116
			118
	Tuolumne River		119

ALPHABETICAL INDEX TO TABLES

Pac	e
GAGING STATION ADDITIONS AND DISCONTINUATIONS	53
IMPORTS AND EXPORTS	26
Millerton Lake, Daily Content	54
Tulare Lake, Daily Mean Gage Height	27 52
REVISIONS TO PREVIOUSLY PUBLISHED REPORTS	55
STREAMFLOW MEASUREMENTS AT MISCELLANEOUS LOCATIONS	13
	50
DRAINAGE BASIN INDEX TO DAILY MEAN DISCHARGE TABLES	
SAN JOAQUIN RIVER BASIN	
San Joaquin River	
Daily Inflow Millerton Lake	54 54
San Joaquin River below Friant	55
Delta-Mendota Canal near Tracy Delta-Mendota Canal to Mendota Pool	56
San Juaquin River hear menduta	58
Fresno River	5 9
Lewis Fork Fresno River near Oakhurst	5 9 6 0
Miami Creek near Oakhurst	61
	62
Chowchilla River East Fork Chowchilla River near Ahwahnee	63
west fork chowchilla kivel hear mariposa	64 65
Striped Rock Creek near Raymond	66
Eastside Bypass near El Nido	67
Mariposa Creek Mariposa Creek near Catheys Valley Mariposa Creek below Mariposa Reservoir	68
Mariposa Creek below Mariposa Reservoir	6 9
Mariposa bypass hear crane kanch	70 71
Bear Creek	
	72 73
Burna Creek	
Burns Creek at Hornitos	74 75
Burns Creek below Burns Reservoir	75 76
Panoche Drain near Dos Palos	77
Merced River North Fork Merced River near Coulterville	76
Maxwell Creek at Coulterville	
Merced River below Snelling	80
	82
San Joaquin River at Grayson	83
Tuolumne River Tuolumne River at La Grange Bridge	84
Tholumne River at Roberts Ferry Bridge	85
Tuolumne River at Hickman Bridge	86 87
Tuolumne River at Tuolumne City	88
San Joaquin River at Hetch Hetchy Aqueduct Crossing	89
	90
Stanielane River at Riverhank	91
Stanislaus River at Koetitz Ranch	92
San Joaquin River near Vernalis	
TULARE LAKE BASIN	
Vince Piver	
South Fork Kinga River below Empire Weir #2	94
Kaweah River	95
	96
	97
Delivery to Folder Slough	98
Tule River	99
	00
Tule River Diversions	
Campbell Moreland Ditto above Forterville	02
Porter Slough Ditch at Porterville	03
Porter Slough near Porterville	04 05
Poplar Ditch mar Porterville	
Poplar Ditch near Porterville	07
Whode-Fatral Ditch near Porterville	09
Deer Creek at Terra Bella Irrigation District	10
BUENA VISTA LAKE BASIN	
	11
The state of the s	12

Water Year	Stanislaus River below Melones P. H.	Tuolumne River near La Grange	Merced River at Exchequer	San Joaquin River below Friant	San Joaquin River near Vernalis (b)	Kings River Inflow to Pine Flat	Kaweah River Inflow to Terminus (c)	Tule River Inflow to Success	Kern River Inflow to Isabella
Average Annual Runoff (a)	1090	1776	927	1670	5463	1570	385	127	617
1924-25	112	109	98	86	101	82	85		
1925-26	56	63	66	70	64	66	57		
1926-27	125	115	117	120	119	126	126		
1927-28	87	86	79	69	80	62	53		
1928-29	47	55	52	52	52	54	58		
1929-30	67	65	55	51	60	55	57		54
1930-31	29	34	28	29	30	30	30	19	30
1931-32	124	119	120	123	121	133	135	109	113
1932-33	56	63	56	67	60	75	74	63	69
1933-34	39	46	39	41	41	42	34	16	37
1934-35	111	119	126	115	118	103	93	70	74
1935-36 1936-37	121	122 113	124 131	111	120 120	120 149	126	134	121
1936-37	102	193	224	221	206	209	176 226	241 279	180 209
1937-38	48	55	51	55	52	62	64	65	73
1939-40	128	125	118	113	121	114	133	166	113
1940-41	123	141	157	159	145	162	167	186	202
1941-42	136	134	139	135	136	128	127	107	122
1942-43	144	134	139	123	135	129	174	287	163
1943-44	62	74	74	76	72	74	82	80	94
1944-45	117	118	118	128	120	131	143	160	131
1945-46	108	106	102	104	105	103	93	74	105
1946-47	58	62	61	67	62	71	69	41	69
1947-48	82	80	74	73	77	63	68	50	54
1948-49	68	70	69	70	69	61	57	38	48
1949-50	99	87	78	78	86	82	78	49	70
1950-51	155	140	132	111	134	102	109	122	86
1951-52	176	168	169	170	171	182	214	252	226
1952-53	89	86	68	73	79	74	80	78	88
1953-54	82	81	72	79	78	83	79	70	81
1954-55	62	64	58	70	64	71	72	51	58
1955-56	173	178	181	177	177	162	188	165	141
1956-57 1957-58	82	80	70	79	78	79	77	51	71
1957-58	154 54	149 56	152 49	158 57	153 54	157 51	166 40	176 25	171
1959-60	54	59	52	50	54	45	40	38	44
1960-61	37	41	34	39	38	36	30	15	28
1961-62	91	100	100	115	102	117	103	68	106
1962-63	116	116	106	117	114	119	130	94	120
1963-64	60	64	49	55	58	54	60	47	51
1964-65	163	155	144	136	149	123	127	107	111

a Average unimpaired runoff in thousands of acre-feet computed from the 50-year period October 1910 through September 1960.
b Figures were computed from summations of unimpaired runoff at foothill stations on major tributaries only and do not include runoff from minor tributaries or from valley floor.
c Formerly Kaweah River near Three Rivers.

TABLE B-2 MONTHLY UNIMPAIRED RUNOFF

In percent of avarage (a)

Month		Stanislaue River below Melones P. H.	Tuolumne River below La Grange	Merced River at Exchequer	San Joaquin River below Friant	San Joaquin River near Vernalis (b)	Kinge Rivar Inflow to Pine Flat	Kaweeh River Inflow to Terminue (c)	Tule River Inflow to Success	Kern River Inflow to Isabell:
October	Percent	33	50	46	53	48	47	54	75	60
	Average	8	15	7	19	49	19	4	1	14
Novamber	Percent	94	140	124	125	124	125	121	112	78
	Average	22	37	17	27	102	25	9	8	18
December	Percent	896	708	567	382	639	321	257	216	188
	Average	44	73	38	53	209	45	16	8	23
January	Percent	390	298	339	288	321	253	231	197	172
oonaar,	Average	59	98	54	65	276	56	19	12	25
			100							
Pebruary	Percent	119 82	106 135	79 78	126 91	108 386	100 77	99	65 18	96 30
						300	, , ,	21	10	30
March	Percent	84	80	69	95	83	91	72	41	69
	Average	120	179	99	135	533	112	39	26	47
April	Percent	128	116	111	104	114	98	104	121	83
	Average	202	284	148	241	975	215	63	24	89
May	Percent	101	102	104	101	102	96	98	95	86
	Average	296	447	244	428	1415	428	102	21	149
June	Percent	122	130	132	122	126	119	141	130	118
	Average	188	368	179	386	1121	384	75	9	125
July	Percent	178	207	183	167	182	152	181	15.2	157
	Average	52	113	50	160	375	148	23	2	59
August	Percent	343	491	335	308	354	257	285	380	211
nagaat	Average	12	19	10	45	85	42	6	0	24
C		270	202	0.3	104	211	140	107	400	354
September	Percent Average	279 5	292	93	184	211 37	149	187	400	154
1964-65 Water Year	Percent	163	155	144	136	149	123	127	107	111
	Average	1090	1776	927	1670	5463	1570	385	127	617

TABLE B-3
SUMMARY OF PRINCIPAL RESERVOIR STORAGE
IN THE SAN JOAQUIN VALLEY

(In acre-feet)

Watershed	Reservoir	Total Capacity	In Storage Oct. 1, 1964	In Storage Oct. 1, 1965
Stanislaus				
	Relief	15,560	11,530	0
	Strawberry	18,270	9,190	11,870
	Melones	112,600	10,450	14,780
	Donnells	64,500	21,800	47,896
	Beardsley Tulloch	97,500 68,400	77,313 23,670	87,177 56,279
		·		
Tuolumne	Lake Eleanor	26,100	4,650	1,040
	Lake Lloyd	268,000	25,700	143,070
	Hetch Hetchy	360,400	230,490	267,660
	Don Pedro	290,000	111,040	94,140
	Turlock Lake	49,000	17,830	31,380
Merced				
1102.004	Lake McClure	289,000	0	102,580
San Joaquin				
	Crane Valley	45,400	24,200	20,760
	Lake Thomas A. Edison	125,000	50,100	98,960
	Florence Lake	64,600	237	270
	Mammoth Pool	122,700	27,010	34,580
	Huntington Lake	89,800	49,720	85,510
	Redinger Lake	35,000 135,400	9,840 15,550	25,390 80,960
	Shaver Lake Millerton Lake	520,500	172,400	167,200
	MITIGICON DAKE	320,300	1,2,100	10,7200
Kings	Wishon	128,300	58,980	31,020
	Pine Flat	1,001,500	191,860	457,710
Varioah				
Kaweah	Terminus	150,000	7,500	9,800
m 1				
Tule	Success	80,000	9,260	6,970
V = sau				
Kern	Isabella	570,000	96,970	176,160
TOTAL		4,727,530	1,257,290	2,053,162
TOTUL		4,727,550	1,231,290	2,055,102

TABLE B-4

GAGING STATION ADDITIONS AND DISCONTINUATIONS

ADDITIONAL STATIONS

Buena Vista Creek near Taft Eastside Bypass near El Nido Panoche Drain near Dos Palos Deer Creek at Terra Bella Irrigation District

DISCONTINUED STATIONS

None

TABLE B-5

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO.	STATION NAME	
1965	871121	MILLERTON LAKE AT FRIANT, DAILY INFLOW	

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	116	460	691	2965	3204	3198	3086	3662	6753	4197	2718	3006	1
2	466	484	734	2863	3108	3065	2994	3558	5946	4019	2727	2957	2
2	127	418	650	2965	3043	2979	2836	3521	5115	4489	2694	2956	3
4	100	363	858	3144	3119	3639	2726	3250	5793	4506	2733	2973	4
5	394	328	674	4814	3280	3329	2792	3232	7056	4714	2691	2962	5
6 7 8 9	461 411 407 492 233	336 376 421 702 1151	803 720 463 666 491	5921 6187 4010 2846 2746	3585 3333 3208 3325 3207	2823 2809 2789 2999 3113	3024 3122 3526 4261 4876	3242 3256 3253 3180 3175	7350 6735 6891 5674 5422	4718 4821 4606 4165 3841	2694 2755 2638 2652 2700	2911 3038 3009 3063 3059	6 7 8 9 10
11	88	486	568	2354	3194	3009	4417	3187	6807	3628	2646	2901	11
12	326	1441	787	2982	3055	3390	4005	3247	7149	3573	2675	3120	12
13	326	1647	825	3107	2977	3399	4177	3212	7019	3601	2737	3114	13
14	64	652	467	3048	3045	3106	3967	3260	5837	3079	2679	3033	14
15	288	620	691	2984	2790	3300	3944	3226	5499	3062	2566	3081	15
16	333	484	454	3012	3036	3126	3799	3180	4732	3489	2747	3025	16
17	303	1141	635	3083	3041	3141	3770	3400	4385	3483	2879	3021	17
18	276	521	610	3109	3082	3054	3482	3505	4106	3454	3281	2527	18
19	333	721	720	3046	3046	3014	3383	3487	3920	3586	2880	2537	19
20	303	916	1424	2956	3038	2944	3608	3497	4718	3524	2917	2397	20
21	811	650	1116	2980	3145	2956	3426	3445	5575	3571	2791	2584	21
22	585	789	1284	2966	3045	2972	3405	3438	5818	3374	2737	2404	22
23	747	833	5710	3406	3064	2850	3421	3321	5520	2921	2730	2443	23
24	701	878	6505	4143	3169	2823	3345	3259	4755	2893	2716	2413	24
25	281 a	839	4361	3437	3004	2958	3422 b	3190	4387	2795	2817	2000	25
26 27 28 29 30	570 762 770 812 841 625	816 906 839 517 714	3283 5623 3643 2616 2892 3367	3226 3246 3203 3120 2575 2530	3021 3089 3106	2958 2731 2500 3064 2952 3596	3520 3686 3700 3675 3657	3270 3363 3479 3495 3796 5912	380 2 363 3 3788 3936 3974	2860 2854 2745 2676 2678 2535	2474 2471 2502 2658 2754 2621	1566 1497 1764 1705 1587	26 27 28 29 30 31
MEAN	431	715	1753	3322	3120	3051	3568	3435	5403	3563	2719	2622	MEAN
MAX.	841	1647	6505	6187	3585	3639	4876	5912	7350	4821	3281	3120	MAX
MIN.	64.0	328	454	2354	2790	2500	2726	3175	3633	2535	2471	1497	MIN.
AC. FT.	26507	42543	107804	204246	173274	187608	212052	211236	321511	219088	167167	156006	AC.FT

E - ESTIMATED

E - ESIMATEU

R - NO RECORD

- DISCHARCE MEASUREMENT OR
OBSERVATION OF ND FLOW

H - E AND *
a - 23-HOUR DAY

b - 25-HOUR DAY

MEAN		MAXIM	U M				MINIM	U M		_
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME	DISCHARG	E GAGE HT	MO.	DAY	TIME
2803				1	l J	Ц		1 1		
				1	レン			1 . 1		

-	TOTAL
_	ACRE FEET
	2029042

- (LOCATION	ł	MA	XIMUM DISCH	ARGE	PERIOD C	F RECORD		DATU	M OF GAGE	
	LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECOR		DISCHARGE	GAGE NEIGHT	PER	IOD	ZERO	REF.
	LATITUDE	LUNGITUDE	M D.B &M.	CFS	GAGE HT	DATE	O SCHAROL	ONLY	FROM	TO	GAGE	DATUM
	37 00 00	119 42 10	SW 5 11S 21E				OCT 41-DATE		1941		0.00	USCGS

Station located near center of Friant Dam on San Joaquin River, immediately above Cottonwood Creek, 0.9 mile northeast of Friant. Usable capacity, 503,000 acre-feet between elevations 375.4 and 578.0 feet above mean sea level. Not available for release, 17,400 acre-feet. Inflow to Friant Reservoir takes into account change in storage, release, spill, precipitation, and evaporation, and is representative of the natural flow which would pass the dammite if the dam had not been constructed. Figures shown under total discharge are computed inflow to the reservoir. Period of Record for computed inflow is shown under period of record for discharge. Records furnished by U. S. Bureau of Reclamation. Drainage area is 1,633 square miles.

DAILY MEAN DISCHARGE

(IN CUBIC PEET PER SECOND)

WATER YEAR	STATION NO	STATION NAME	
1965	B07885	SAN JOAQUIN RIVER BELCH FRIANT	

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	109	83	64	3.8	46	5.8	7.8	79	8.4	132	96	99	1
3	108	8.2	64	35	4.6	5.8	7)	7.9	9.0	132	96	101	2
3	108	7.8	64	36	44	5.6	6.0	8.2	9.6	132	99	101	3
4	108	71	64	3.8	44	56 •	5.9	91	96 0	132	118	101	4
5	109	70	63	41	46	55	59	99	9.8	132	128	99	5
6	109	70	63	50	51	5.5	60	99	9.8	132	128	101	6
7	109	71	64	8.8	4.8	5.5	65	99	99	140	160	10.1	7
8	109	71	6.5	61	4.3	5.5	57	99	101	149	188	102	3
9	109	73	6.5	54	4.2	5.5	49	9.8	113	180	193	108	9
10	109	74	6.5	50	41	5 9	67	98	118	212	274	104	10
11	108	71	6.5	48	41	6.5	70	9.8	120	210	193	102	11
12	106	73	6.5	46	40	69	5.5	9.8	126	210	164	101	12
13	108	73	65	44	40	6.8	56	9.8	128	207	153	101	13
14	108	71	64	43	41	5.5	5.5	9.8	128	207	151	101	14
15	106	71	64	47	41	5 4	49	9.8	130	207	151	101	15
16	101	67	64 •	49	3.9	54	47	99	128	207	151	101	16
17	99	60	64	4.8	39	54	45	99	128	207	151 •	99	17
18	99	61	64	48	4.2	54	444	99	128	204	151	99	18
19	94	61	6.5	49	5.2	54	42	99	130	204	151	99	19
30	91	60 •	65	53	5 4	5 3	42	99 •	132	204 =	151	99	20
31	91	60	64	49 +	5.4	5.3	4.2	99	130	170	153	96	31
22	90	60	65	4.7	5.5	54	42	101	132	130	153	93 •	22
23	90 •	60	68	46	5.5	60	41	101	132	130	149	96	33
34	90	60	68	58	55 +	7 C	3.9	99	132	130	138	8.8	24
25	90	62	69	50	55	70	3 9	94	132	118	132	83	3.5
36	90	63	69	47	5.5	70	3.8	8.8	132	106	132	83	26
37	90	61	6.8	47	5 7	73	47	88	132	106	120 •	74	37
28	9.8	61	53	46	5.8	74	7.3	83 •	132	99	109	67	38
39	94	61	3.6	46 *		72	73	83	130	96 0	109	67 4	39
30	91	63 •	35	4.8		71	76	83	132 *	96	109	63	30
31	85		38 •	46		73		83		96	104		31
MEAN	100	67.4	61.9	48.3	47.3	60.7	54.6	93.9	120	155	141	94.3	MEAN
MAX.	109	83.0	69.0	88.0	58.0	74.	78.0	101	132	212	204	108	MAX.
MIN.	85.0	60.0	35.0	35.0	39.0	53.0	38.0	79.0	84.0	96.0	96.0	63.0	MIN.
AC. FT.	6160	4010	3810	2970	2630	3730	3250	5770	7110	9550	8700	5610	AC FT

E - ESTIMATED

NR - NO RECORD

- DISCHARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

R - E AND *

MEAN		MAXIMU	I M		_		MINIM	U M			1014
DISCHARGE 87.4	DISCHARGE	GAGE HT	MO.	DAY	TIME	DISCHARGE	GAGE HT	МО	DAY	TIME	ACRE F

FEET 3310

(LOCATION	4	MA	KIMUM DISCH	ARGE	PERIOD O	F RECORD		DATU	M OF GAGE	
LATITUDE	LONGITUDE	1/4 SEC. T. & R		OF RECOR)	DISCHARGE	GAGE HEIGHT	GHT PERIOD		ZERO	REF.
LATITODE	LONGITUDE	M D B &M.	CFS	GAGE HT.	OATE	0.000	OHLY	FROM	TD	GAGE	DATUM
36 59 04	119 43 24	SW 7 11S 21E	77,200	23.8	12-11-37	OCT 07-DATE		1938		294.00	USGS

Station located 1 mile downstream from Friant Dam. Flow regulated by Millerton Lake. Records furnished by U. S. Geological Survey. Drainage area is 1,675 square miles.

DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO.	STATION NAME
1965	Bc=92-	WELTA-MENUCT, THAT NOTE THACK

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	. 75	16.0	0.7		1520	2382	143.	2849		364	415	2-19	1
2	2737	716	0.0	٠.	5.75	23R	1467	3 - 3		3711	4152	251+	2
3	2522	04	7.0	7.7	683	6522	868	285		477.	4-2=	2455	3
4		642	^ . L		72^	253	86P	2449	3006	3762	4221	2456	4
5		442	0.00	^ •	721	2551	860	29 9	2027	3 75 0	4408	2458	5
6	2523	536	1.0		722	2591	868	3064	3353	3885	4408	2459	6
7	2655	537		^.	721	2273	869	3061	3378	4220	4289	2169	7
8	2993	537	0.0		850	2238	6.7	3125	2377	4322	4201	19-6	8
9	2414	539	^ ·		939	2243	726	3123	3377	4256	4224	1846	9
10	2419	536	7.	7.	1 181	2208	5 `6	3136	3.263	4343	4157	1535	10
11	2379	536	0.0		1/36	2247	422	3123	3300	4344	4065	1400	11
12	2302	535	0.0	~ · ·	1227	2271	4.52	3069	3391	÷3∩5	3867	1498	12
13	2281	536	7.0		12 1	2134	4.52	3448	3455	4364	3 7 1 1	1503	13
14	2304	716	1.1		12.6	1812	433	3569	3401	4235	3626	5.42	14
15	2046	715	0.0	^ •	1223	1814	578	3573	3491	4237	2630	1728	15
16	2043	715	1.0		1369	1813	577	3568	3713	4301	3635	1735	16
17	1992	533	1.0	^ •	1466	2343	723	35 5	3777	4196	3506	1010	17
18	2058	525	1.0	1	1677	2342	723	3376	3765	4286	35 27	1927	18
19	2055	566	7.0	7	1669	2127	7.87	3378	3 9 5 8	4285	35 13	1812	19
20	1990	558	2.0	• •	1739	1946	1141	3372	3057	4425	3506	1811	20
21	1930	717	n.dl	/	1952	1946	1518	3064	3956	4418	3001	1847	21
22	1729	716	0.0	*	2727	1948	1720	3043	2767	4422	2060	1775	22
23	1737	701	0.0	1	2300	1943	12 1	2975	3767	4430	3845	1777	23
24	1737	716	1.0		2626	1944	1667	29 4	3761	4426	3-45	1779	24
25	1634 a	775	2.41	* -	2736	2269	1671 b	260-	3763	4426	3-20	1770	25
26	1666	789	^ • .	0.0	2846	2249	1672	2764	3764	4414	3156	1813	26
27	1664	786	0.1	0.2	2784	2199	1742	2771	3027	4426	3135	1864	27
28	1661	571	0.0	114	2384	1873	2248	2771	3835	4358	3725	1943	28
29	1661	570	0.0	1700		1874	2535	2918	3774	4108	2278	1086	29
30	1659	499		1733		1813	2601	2924	3646	4157	2894	2017	30
31	17∠3	}		1738		1820		2931		4151	c 315		31
MEAN	2145	655	0.1	170	1500	2150	1136	109	3578	4220	3725	1943	MEAN
MAX	2993	1560	0.0	1738	2846	2591	26 1	3573	3958	4435	4408	2809	MAX.
MIN	1659	499	^.0	100	575	1812	432	269	3073	3647	2815	1498	MIN.
AC. FT.	132050	38999		10483	83294	132188	67468	190024	212934	259488	,29061	115613	AC.FT

E -- ESTIMATEO

NR -- NO RECORO

* -- DISCHARGE MEASUREMENT OR

085ERVATION OF ND FLOW

- E AND * a - 25-HOUR DAY b - 23-HOUR DAY

MAXIMUM

DISCHARGE GAGE HT. MO DAY TIME MINIMUM

DISCHARGE GAGE HT MO DAY TIME MEAN DISCHARGE 2033

TOTAL ACRE FEET

	LOCATION	1	MA	XIMUM DISCH	ARGE	PERIOD 0	F RECORD			ATUM OF GAGE	
LATITUDE	LONGITUDE	1:4 SEC. T. & R	OF RECORD		0	DISCHARGE	GAGE HEIGHT	PERIOD		ZERO	REF.
LATITUDE	LONGITODE	M D B.&M	CFS	GAGE HT.	DATE	DISCHARGE	OHLY	FRDM	FRDM TD		DATUM
37 47 45	121 35 05	SW 31 1S 4E				JUN 51-DATE		1951		0.00	USGS

Station located at Tracy Pumping Plant at intake to canal, 6 miles southeast of Byron, 10 miles northwest of Tracy. Discharge computed from records of operation of pumps. Water is diverted from Sacramento-San Joaquin Delta by way of Old River and a dredged channel to the Tracy Pumping Plant where it is lifted about 200 feet into canal. Records furnished by U. S. Bureau of Reclamation.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO STATION NAME DELTA-MENE TA ANAL TO MEND TA P JE 80077

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG	SEPT.	DAY
1	1675	610	131	0.0	741	1795	1258	2215	2102	236"	ZAAT	2159	1
2	1655	491	254	2.0	392	1795	938	2354	225	2372	2693	1994	2
3	1662	496	298	0.1	561	1754	6 3	2329	2228	236	2694	1837	2
4	1665	518	215	0.0	510	1798	630	2356	2263	2388	2572	1785	1
5	1670	444	213	0.0	487	18 3	615	2401	2263	25	2572	1771	5
6	1646	472	213	0.40	462	1774	64	2481	2216	2533	2651	1792	6
7	1651	402	213		447	1564	550	2392	225 /	2549	2628	1659	. 7
В	2076	401	448	P . "	508	1548	6 10	236	223A	2735	2637	1477	- 8
9	1390	379	90		622	1511	490	2352	240	2747	2678	1396	9
10	1401	358	9.0	0.4	7 96	148	30-	2305	4250	2774	2-85	11+8	10
11	1340	360	8.0	3.0	824	147 '	3	2334	.247	2787	2534	+83	11
12	1356	412	4.0	1.0	1033	144.	3 1	2331	2225	2836	2384	1044	12
12	1339	400	8.0	0.0	1028	1407		2271	25.3	2824	2410	1049	12
14	1268	474	8.0	0.00	1000	11 2	317	2484	HPCC	2716	2351	1041	1 14
15	1050	500	5 4	1.0	1019	1163	3.5	2482	275	2 8 1 3	2372	1125	15
16	1076	513	4.0	0.	972	1233	156	2496	2354	2753	2371	1219	16
17	1107	370	4.0	2.0	1164	1646	5	446	249	2769	2389	1446	17
16	1108	372	4.0	1.1	1214	1636	5	2253	1487	2783	2319	1416	16
19	1122	369	4.0	^	1212	1499	633	2227	1711	2744	2364	1331	19
20	1145	350	4.C		1532	128	938	. 299	1725	2786	394	1404	20
21	1125	481	0.0	1.6	1566	1271	141	. 33	2687	2765	2649	1506	. 23
22	864	481	0.0	100	1581	1322	1364	1955	. 526	271A	2661	1395	22
23	682	453	2.0	0.0	1856	1336	1 3	-09	454	2731	2690	1419	22
24	856 a	454			1999	1347	1467 b	201	619	755	2540	1417	24
25	892	470	0.0		2 76	1644	1 +8	1813	1497	2774	2497	1400	25
26	843	470	0.0	0.0	2196	15 73	1522	1811	25 4	279^	2323	1389	26
27	752	292	0.0	1.1	2157	1537	1822	1796	457	. 7 6	2132	1385	27
28	670	291	0.0	C.	1817	1243	1953	.852	500	_P4:	181	1422	26
29	660	291	0.0			1316	2138	1879	7647	2713	2115	1451	29
30	658	207	0.0	0.		13 3	2 * 2 2	19 -	2464	6669	2 35	1432	30
31	659		0.0	97.1		1 2 1		. C 4		2688	c 5 7		21
MEAN	1202	419	70.5	31.4	1174	481	924	2 0	3 3	2693	465	1441	MEAN
MAX	2076	610	448	972	2196	18	6226	.446	6 . 5	2841	2693	2-50	MAX.
MIN	658	207	0.0	1	392			.740		1360	115	83	MIN
AC. FT.	73985	24914	4336	1948	66491	91-43	64-63	. 24244	[4,4,1	15514	. 1540	26765	AC FT

E — ESTIMATED

NR — ND RECORD

• DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW

= E AND *

a = 25-HOUR DAY

b = 23-HOUR DAY

MEAN		_MAXIMU	M.,				MINIM	U M		
DISCHARGE 1374	DISCHARGE	GAGE HT	мо	DAY	TIME	DISCHARGE	GAGE HT	MO	DAY	TIME

TOTAL ACRE FEET

ĺ		LOCATION	4	ма	XIMUM DISCH	ARGE	PERIOD (F RECORD		DATU	M OF GAGE	
ı	LATITUDE	LATITUDE LONGITUDE	1 4 SEC T & R	OF RECORD			DISCHARGE	GAGE HEIGHT	PERIOO			REF
ı	CATITUDE		M D B &M	CFS	GAGE HT	DATE		ONLY	FROM	TO	GAGE	DATUM
ı	36 47 11	120 23 05	NW 19 13S 15E									

Station located approximately 2 miles north of Meniota, where Delta-Mend to Canal crosses the Outside Canal, which is 0.8 mile northwest of Bass Avenue crossing (check No. 21). Flow measured by three Sparling leters located at siphon outlet. Records furnished by U. S. Bureau of Recla action.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO.	STATION NAME	
1965	807710	SAN JOAQUIN RIVER NEAR MENDOTA	

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	238	37	55	17	3.0	278	202	396	401	397	411	337	1
2	248	36	47	17	4.0	209	191	381	418	424	450	311	2
3	238	36	39	16	5.0	241	142	336	421	428	469	276	3
4	226	36	38	16	7.0	288	109	314	424	434	441	236	4
5	209	36	3.8	16	9.0	288	96	366	426	436	416	229	5
6	182	3.8	3.8	15	11	294	157	386	424	444	378	264	6
7	148	3.8	4.5	14	13	298	278	396	424	474	384	328	7
6	111	3.8	54	12	14	258	224	381	414	474	394	318	8
9	9.8	37	5.5	10	16	217	142	384	401	444	401	276	9
10	87	34	5 3	10	17	191	98	391	391	431	401	256	10
11	86	33	5.2	9.0	18	189	96	398	384	431	396	209	11
12	86	30	53	8.0	19	193	93	388	384	426	396	182	12
13	98	31	51	7 • 0	22	196	9.2	361	386	428	398	219	13
14	118	3.2	50	5.0	24	202	98	361	396	454	411	254	14
15	103	36	4.5	61	100	189	116	361	406	461	411	271	15
16	74	41	36	96	158	196	131	366	401	472	416	286	16
17	90	3.5	19	60	158	226	134	354	404	485	418	258	17
18	108	37	18	41	173	238	156	314	416	496	418	238	16
19	103	53	18	27	207	219	169	294	426	469	426	236	19
20	100	68	18	19	221	186	189	321	434	431	428	236	20
21	96	78	18	15	219	177	212	354	438	418	426	254	21
22	92	78	17	14	234	205	200	324	436	408	421	278	22
23	95	65	17	12	258	241	226	308	431	396	401	296	23
24	103	55	17	12	306	248	268	294	416	408	401	301	24
25	101	54	17	11	364	231	288	288	388	418	396	298	25
26	88	55	17	10	346	184	288	276	386	411	391	288	26
27	66	58	17	9.0	328	175	291	276	388	401	404	271	27
28	82	60	17	8.0	318	180	394	301	391	398	411	256	28
29	93	59	17	7.0		169	464	301	394	394	414	261	29
30	8.8	5 R	17	6.0		177	411	301	394	401	384	231	30
31	62		17	4.0		209		334		401	348		31
MEAN	120	46.0	33.0	19.0	128	219	198	342	408	432	408	265	MEAN
MAX.	248	78.0	55.0	96 • 0	364	298	464	398	438	496	469	337	MAX.
MIN.	62.0	30.0	17.0	4.0	3.0	169	92.0	276	384	394	348	182	MIN.
AC. FT.	7370	2740	2000	1160	7090	13470	11810	21040	24280	26570	25110	15780	AC.FT.

E -- ESTIMATEO
NR -- NO RECORD

-- DISCMARGE MEASUREMENT OR
085ERVATION OF NO FLOW

--B AND --

MEAN		MAXIML	M					MINIM	J M		
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME	1	DISCHARGE	GAGE HT.	MO.	DAY	TIME
219											
			1		レン	•				1	

TOTAL ACRE FEET 158420

<u> </u>	LOCATIO	N	AM.	XIMUM DISCH	ARGE	PERIOD D	F RECORD		DATU	M OF GAGE	1
LATITUDI	LONGITUDE	NGITUDE 1/4 SEC. T. & R.		OF RECOR	D	DISCHARGE	GAGE HEIGHT	PER	HOD	ZERO	REF.
LAIIIO	LONGITUOL	M D.8 &M.	CFS	GAGE HT.	DATE	OISCHARGE	OHLY	FROM	то	GAGE	DATUM
36 48 3	7 120 22 35	SW 7 13S 15E	8840		6-1-52	OCT 39-DATE		1939		142.53	USBR

Station located 2.5 miles below Mendota Dam, 4 miles north of Mendota. Records furnished by U. S. Bureau of Reclamation. Drainage area is 4,310 square miles. This station is equipped with DWR radio telemeter.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO	STATION NAME	
1965	267921	BIG CHEEK OLVE TO N NEAT F H CAMP	

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	1.5	7.5	7.8	13 F	19	19	24	5.0	56	25	9.2	4.0	1
2	1.7*	5 • 2	9.5	13 E	10	19	3.3	46	47 .	25	9.1	4.1	2
3	1.6	3.9	8.10	16 E	19	19	3.2	4,4	49 0	24	8.3	4.00	
4	1.4	3.4*	7.1	18 E	1.6	19 •	3.3	43	5 4	23	8 . 2 .	3.7	A
5	1.3	3 • 3	6.9	19 E	19	18	3 4	42	54	21	7.7	9.8	5
6	1.2	3.1	6.6	20	19	18	3.2	42 +	54	20 •	7.5	4.0	6
7	1.5	2.9	6.4	19	19	18	29 •	43	53	18	7.2	5 . 2	7
8	1.7	3.7	6.5	21	19	1.6	2.5	42	52	17	6.8	5.0	8
9	1 • 6	9 • 6	7.1	17	18 +	18	24	4.2	51	17	6.6	4 . 4	9
10	1.6	6 . 8	7.3	17	18	18	26	42	51	16	6 • 5	4.0	10
11	1 • 4	8.8	14	18	18	19	33	43	51	16	8.8	4.0	13
12	1.4	18	12	18 *	19	18	23	44	50	16	8.0	3 • 9	12
13	1.6	11	7.1	19	18	19	21	4.5	49	15	7.7	4.0	12
14	1.6	8.2	8.5	19	18	19	23	do do	47	14	7.2	3.9	14
15	1.5	7.0	7.7	19	18	19	27	44	4-8	14	649	3.6	15
16	1.6	5 •3	6.9	19	19	19	29	46	47	14	6 . 4	3.9	16
17	1.6	5 . 3	6 • 1	19	19	19	29	46	46	1.4	6.1	3.8	3.7
3.8	1.4	5.3	6.6	19	19	19	3.3	47	6 4	14	5.9	4.1	1.8
19	1.2	5,3	7.6	19	19	19	3.8	46	4.3	13	5 . 8	4.3	19
20	1.3	5 • 3	13	18	19	20	3.6	4.5	40	13	5 • 6	4.0	20
21	1.4	5+3	14	19	19	29	39	45	40	13	5.5	3.8	21
22	1.4	5 + 3	20	19	19	31	41	4.4	39	12	5 • 2	3.7	22
23	1.4	5 • 3 *	17	20	19	45	42	42	37	12	5 • 2	3.6	22
24	1.3	6.3	14	20	19	44	44	42	36	12	5 • 1	3.4	24
25	1.2	7.3	11	21	J o	37	47	42	34	11	5 • 1	3 • 4	25
26	1.1	8,4	12	19	19	36	4.8	42	33	11	4.7	3 • 4	26
27	1.4	7.3	11	19	19	36	5.0	4.8	3.0	10	4 • 2	3.9	27
28	3 • 2	6.8	10	18	19	33	5.2	5.6	30	9.9	4 • 3	4 . 2	28
29	13	7.0	11	18		32	5.2	57	2.8	9.4	4.4	2.9	29
30	5.0	7.3	13	19		34	5.3	5.7	27	9.4	4.1	3.7	30
31	3.8		18	19		3.5		57		9.7	4.0		21
MEAN	2 • 1	6.5	10.1	18.4	18.7	24.4	35.5	45.7	44.0	15.1	6.4	3.9	MEAN
MAX.	13.0	18.0	20.0	21.0	19.0	45.0	53.0	57.0	56.0	25.0	9.2	5.2	MAX.
MIN	1.1	2.9	6.1	13.0E	18.0	18.0	21.0	42.0	27.0	9.4	4.0	2.9	MIN
AC. FT.	127	387	622	1133	1039	1500	2110	2813	2618	929	291	233	AC.FT

E — ESTIMATED

NR — NO RECORD

• — DISCNARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

R — E AND *

MEAN		MAXIMU	м		_
ISCHARGE	DISCHARGE	GAGE HT.	MO	DAY	TIME
19.2	58.0	1.87	6	1	0000

MINIMUM
DISCHARGE GAGE MT MO DAY TIME
0 29 1750

TOTAL ACRE FEET 13900

	LOCATION	4	МА	XIMUM DISCH	ARGE	PERIOD O	F RECORD		DATU	JM OF GAGE	
4 . 7 . 7 . 7 . 7	ATITUDE LONGITUDE 1.4 SEC. T. &		OF RECORD			DISCHARGE	GAGE NEIGHT	PERIOO		ZERO	REF
LATITUDE	LONGITUDE	M D B &M.	CFS	GAGE HT	DATE	3.50.	ONLY	FROM	TO	GAGE	DATUM
37 28 10	119 36 52	NE25 5S 21E		3.58	1-30-63	DEC 58-DATE		1958		0.00	LOCAL

Station located 195 feet above road culvert pipe, 1.4 miles southeast of Fish Camp. This is regulated diversion from Big Creek to Lewis Fork, Fresno River. Stage-discharge relationship at times affected by ice and extreme high flows affected by 36-inch culvert pipe below station. Altitude of gage is approximately 5,400 feet (from topographic map).

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME LEWIS FORK FRESNO RIVER NEAR OAKHURST 1965 B67325

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1 2 3 4 5	1.7 1.1* 0.6 1.9 2.5	17 17 12 10 * 9•5	16 26 24 * 22 21	56 53 71 83 173	59 57 58 57 78	53 73 75 75 74 *	125 133 111 107 110	87 87 83 82 80	93 90 81 * 85	42 39 39 36	15 14 13 13 *	6 • 8 7 • 2 6 • 8* 6 • 8 7 • 6	1 2 3 4 5
6 7 8 9	2.5 1.8 2.3 2.9 1.9	9.0 8.3 11 32 49	20 19 19 20 20	480 300 145 114 99	110 77 68 * 63 61	77 76 73 71 70	128 * 130 140 136 118	82 * 83 82 81 79	83 82 83 79 77	35 * 33 32 31 30	14 13 13 12 12	8.3 10 11 11 8.6	6 7 8 9
11 12 13 14 15	2.6 2.5 1.9 2.7 2.6	28 127 * 57 25 22	20 33 23 22 19	92 83 * 77 74 72	59 56 55 61 54	71 93 91 81 78	127 121 152 147 151	77 77 79 77 74	75 73 73 72 76	32 30 29 28 30 *	14 15 14 13	9.0 8.4 8.7 8.4 6.5	11 12 13 14 15
16 17 18 19 20	2 • 5 2 • 8 2 • 7 2 • 5 2 • 1	19 22 16 16	18 17 19 35 48	71 76 77 79 79	54 53 52 50 51	76 77 74 71 70	154 153 160 182 156	74 75 73 71 73	74 70 66 67 64	29 29 29 28 28	11 10 10 10	7.0 7.3 7.6 8.2 8.3	16 17 18 19 20
21 22 23 24 25	1.9 2.2 3.0 4.4 4.9	12 11 12 13 14	4? 109 620 # 478 141	72 67 79 147 88	50 50 49 47 47	71 74 66 67 83	135 133 122 120 121	81 72 71 70 70	66 65 64 64	27 24 23 * 22 21	11 11 11 11	7.6 7.6 7.4 6.9 6.0	21 22 23 24 25
26 27 28 29 30 31	542 548 12 44 * 19	20 18 16 16 16	135 196 116 74 67	77 73 70 67 67	47 56 52	80 130 101 93 88 97	115 110 104 100 98	70 84 93 92 90 91	61 59 54 52 52	21 21 22 20 20 20	10 9•1 7•9 7•4 7•5 7•0	5.6 7.1 8.4 8.0 5.9	26 27 28 29 30 31
MEAN MAX. MIN AC. FT.	5 • 1 44 • 0 0 • 6 315	22.2 127 8.3 1323	81.0 620 F 16.0 4979	104 480 53•0 6397	58.3 110 47.0 3235	79.0 130 53.0 4858	130 182 98•0 7734	79.4 93.0 70.0 4879	71.6 93.0 52.0 4259	28.8 +3.0 20.0 1773	11.5 15.0 7.0 708	7.8 11.0 5.6 464	MEAN MAX MIN. AC. FT

E — ESTIMATED

NR — NO RECORD

* — DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW

— E AND *

MEAN		MAXIMU	M.		_
DISCHARGE	DISCHARGE	GAGE HT	MO	DAY	TIME
56.5	1380 E	4.10	12	23	0020

	MINIM	J M		
DISCHARGE	GAGE HT.	MQ.	DAY	TIME
0+1	0.77	10	3	1400
		1		,

TOTAL
ACRE FEET
40920

Ì		LOCATION	4	MA	XIMUM DISCH	IARGE	PERIOD C	F RECORD		DATU	M OF GAGE	
	LATITUDE	LOHGITUDE	1 4 SEC. T & R.		OF RECOR	D	DISCHARGE	GAGE HEIGHT	PE	001	Z ERO OH	REF
j	LATITODE	LONGITUDE	M D B &M	CFS	GAGE HT.	DATE	DISCHARGE	ONLY	FROM	то	GAGE	OATUM
I	37 20 44	119 38 20	SE 2 7S 21E	2930E	4.93	2-1-63	SEP 61-DATE		1961	DATE	0.00	LOCAL

Station located 1.6 miles north of Oakhurst on Highway 41, 500 feet downstream from White Oaks Motel. Station located on left bank above concrete weir. Drainage area is 32.5 square miles. Altitude of gage is approximately 2,520 feet (from topographic map).

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO.	STATION NAME	
1955	2/31	VIAN REEK NEAR INF I F	

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	. 4	7.4	2.9	13	16	12	18	44	8.7	>.5	10.	4.1	1
2	0.34	2.8	3,6+	13	16	11	23	21	9.2	5.5	200	1.1	2
3	0.3	3.1	4.6	14	15	11	2.1	2	9.40	202	4 + 0	1 - / *	3
4	7 • 3	1.30	4.0	18	15	10 *	10	4 8	400	5.0	6010	1.0	4
5	• 2	1.1	3 • 7	40	2.1	1 ^	1.8	18	8 • 8	4 + 8	601	1.6	5
6	3	1.0	3.3	193 E	27	10	e 2	18 +	6.0	4 + 8 9	2.10	0	6
7	1.2	1.00	3 - 1	89 *	20	11	23 0	1.7	8	6 = 6	2.0	200	7
8	• 3	1.0	2.9	3.8	17 *	10	22	1.7	F.5	4 + 3	. + 5	1.1	8
9	1.2	5.1	0	28	16	10	21	19	8.1	4 + 2	6.0	40	9
10	1.0	9.5	2 • 9	24	15	10	19	1.7	8 • ₹	na a fa	. • 5	4.40	10
11	1.4	5.7	4 . 3	22	14	10	19	16	1.7	4.62	6	1.9	3.1
12	1.3	29	6.3	20	14	1.2	18	15	7.3	→ • 1	1 • 0	1.0	12
13	.3	11	4 • 2	19	13	13	20	16	1 . 4	4 . 6	• 0		13
14	.3	4 . 8	3.5	1.8	1.3	1.2	24	14	7.1	3.7	0	1.0	14
15	^.4	3 . 8	3 • 2	1.7	12	1.3	27	14	1.3	3 + 4	. • 6	1.1	15
16	.3	3.4	3 • 1	17	1.2	13	3.2	14	7.4	3+6	4		16
17	.4	2.1	2.9	18	12	13	3.2	1.3	100	3 . 7	£ 8 %	1.1	17
18	3.4	7 . 7	2 . 7	19	11	1.3	35	1.3	7 + 4	3 + 6	£ = 50	2 4 1	1.0
19	0,2	2.6	5 g B	20	1.2	1.2	37	12	6.7	3 + 5	6 . 3	1.1	19
2D	^+3	2 . 3	9.4	21	12	1.2	36	12	6	3 + 4	206	1.	20
21	1.3	2.2	8.7	19	12	12	34	13	6./	3 + 4		1.0	21
22	7.3	7.1	2.7	18	1.2	11	3.3	4.3	0 . 0	506	206	lab	22
23	1.3	. 1	237 #	21	1.2	11	3 C	12	6.:	3+2	< + L	1 . /	22
24	r • 3	2 • 1	176 E	4.3	11	11	3^	1.2	tex	3 • 0		4 . /	24
25	^ . 4	2 + 3	46	24	11	11	3	10	6.4	3	۷۰۰	1 .	25
26	• 5	3.1	39	20	. 1	11	3	7.4	6.4	2 0 4	404		26
27	0.5	3.3	69	19	15	21	28	1	6+5	3 • 0	606	1 + 5	27
28	1.7	3.	34	17	1.4	17	21	901	5.4.7	5 + 4	6+1	4.0	28
29	6.4	3 - 1	2.3	1.5		15	25	0.5	70 a	2 + 0	۷+۵	< · 1	29
30	2 • •	2.9	19	16		14	23	9	0.00	604	. • 8	1.4	3D
31	1.3		1.7	16		14		6.8		3.1	. • 5		31
MEAN	^.7	4 - 1	25.	29.7	14.3	12.1	۷. ۱	14.	(.)	1 . 7	6.819	4.0	MEAN
MAX.	6.44	22.1	237 €	193 6	27.1	21.0	3/	660	7.6	5	3+1	401	MAX
MIN.	1.2	1.	2 . 7	13.7	11.7	14	18	0.0	1.0	4.9	1 + 5	1.0	MIN
AC. FT.	44	244	1537	1/65	795	140	1531	811	43/	234	150	100	AC FT

E - ESTIMATED

NR - NO RECORD

DISCHARGE MEASUREMENT OR
OBSERVATION DF NO FLOW

- E AND *

MEAN		MAXIML	J M				MINIMI	J M		
DISCHARGE	DISCHARGE	GAGE HT	MO	DAY	TIME	DISCHARGE	GAGE HT	MO	DAY	TIME
11.7	-37 €	0 - 5	112	2:1	30-3	* .	2.40	L		1710

TOTAL ACRE FEET

	LOCATION	٧	MA	XIMUM DISCH	ARGE	PERIOD C	F RECORD		DATU	OF GAGE	
	LOUGITUOE	1 4 SEC T & R		OF RECOR	D	DISCHARGE	GAGE HEIGHT	PER	RIOD	ZERO	REF
LATITUDE	LONGITUDE	м D В &м	CFS	GAGE HT	DATE	DISCHARGE	OHLY	FROM	то	GAGE	DATUM
37 23 38	119 39 10	SE22 6S 21E	1140E	9.08	2-1-63	DEC 59-DATE		1959	DATE	0.00	

Station located 150 feet below bridge, 4.5 miles north of Oakhurst. Tributary to Fresno River. Stage-discharge relationship at times affected by ice. Drainage area is 10.6 square miles. Recorder installed December 15, 1959. Maximum discharge of record from rating curve extended above 202 cfs. Altitude of gage is approximately 3,500 feet (from topographic map).

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME 807610 SAN JOAQUIN RIVER NEAR DOS PALOS

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.0	0.0	12	1
2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	12	0.0	8.0	2
3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	12	0.0	0.0	3
4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	12	0.0	0.0	4
s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0	9.0	0.0	S
,	0.0	0.0	0.0										
6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.0	0.0	12	9 • 0	6
7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	8.0	12	0.0	4.0	3.0	7
8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	7.0	12	0.0	0.0	0.0	6
9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.0	4.0	0.0	0.0	0.0	9
10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10
1,	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	7.0	0.0	111
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	8.0	8.0	0.0	12
12	8.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	12	12	0.0	13
13	12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	12	4.0	0.0	14
14	12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	7.0	0.0	0.0	15
15	12	0.0	0.0	0.0	0.0			0.0					1
16	4 . 0	0.0	0.0	8.0	0.0	0.0	0.0	3.0	0.0	0.0	0.0	0.0	16
17	0.0	0.0	0.0	6.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	17
18	0.0	0.0	0.0	57	0.0	0.0	0.0	0.0	0.0	0.0	9.0	0.0	16
19	0.0	0.0	0.0	39	0.0	0.0	0.0	5.0	0.0	8.0	12	0.0	19
20	0.0	0.0	0.0	27	0.0	0.0	0.0	12	0.0	12	4.0	0.0	20
21	0.0	0.0	0.0	16	0.0	0.0	0.0	10	8.0	12	0.0	0.0	21
22	0.0	0.0	0.0	9.0	0.0	0.0	0.0	4.0	12	7.0	0.0	0.0	22
23	0.0	0.0	0.0	3.0	0.0	0.0	0.0	0.0	7.0	0.0	0.0	0.0	23
24	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24
25	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	25
26	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	26
27	8.0	0.0	0.0	0.0	0.0	0.0	0.0	8.0	0.0	0.0	0.0	0.0	27
28	12	0.0	0.0	0.0	0.0	0.0	0.0	12	0.0	8.0	0.0	9.0	28
28	4.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0	0.0	12	0.0	4.0	29
30	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	12	0.0	0.0	30
31	0.0	0.0	0.0	0.0		0.0		0.0		4.0	9.0		31
MEAN				7.4	0.0	0.0	0.0	2.5	2.1	5.1	2.9	1.5	MEAN
MAX.	1.9	0.0	0.0		0.0	0.0	0.0	12.0	12.0	12.0	12.0	12.0	MAX.
	12.0	0.0	0.0	68.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	MIN.
MIN.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	155	127	315	179	89	AC FT.
AC. FT.	119			452				155	127	373	179	89	

E - ESTIMATEO
NR - NO RECORD

- OISCHARGE MEASUREMENT OR
OBSERVATION OF NO FLOW

- E AND -

MEAN			MAX	IM.	I.M.		_			MINIM	J M		
DISCHARGE		DISCHARGE	GAGE	HT.	MO.	DAY	TIME	Ì	DISCHARGE	GAGE HT.	MO	DAY	TIME
2.0	Ц								(

TOTAL ACRE FEET 1436

1		LOCATION	1	МА	XIMUM DISCH	IARGE	PERIOD O	F RECORD		DATU	M OF GAGE	
l	LATITUDE	LONGITUDE	1/4 SEC. T & R		OF RECOR	0	DISCHARGE	GAGE HEIGHT	PER	10D	ZERO	REF.
I	LATITUDE	LONGITUDE	M D B &M	CFS	GAGE HT	DATE	DISCHARGE	ONLY	FROM	TO	GAGE	DATUM
1	36 59 38	120 30 02		8200		6-5-52	OCT 40-DATE		1940		116.5	USED

Station located 800 feet below the head of Temple Slough, 6.5 miles east of Dos Palos. Records furnished by U. S. Bureau of Reclamation. Drainage area is approximately 5,630 square miles.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO	STATION NAME	
1/65	1.44	FAST I HK TOM HI LA RIV TEN ATMHTEE	

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	2.2	4.9	9.7	114	56	18	8 :	18	44	14	4		1
2	1 . P	7.40	9 • 1	101	54	36	99	7.7	31	14	3 . 4	106	2
3	^.^	5.8	1.2	204	55	3.5	8.2	7.3	3	13	6.90	4.3	3
4	· · · ·	4 + 3	11	204	56	3.3	70	6.8	1.8	12	6.0	1 - 1	4
5	0.0	3 • 5	9.2	290 •	72 •	3.2	6.7	65	4.0	10	۷ • 6	1.	5
6	0.0	3.1	7.8	947	111	3.3	113	63	25	8.7	۷٠5		6
7	1.0	2.9	8 • 1 *	452	81	36	136	61 +	24 0	1 . 7	6.04	1 + 4 0	7
8	0.0	2 . 8	8 • 2	229	7.1	41	192 *	56	25	6.50	1.9	6.0	
9	0.0	13	8.7	177	6.7	36	196	54	26	7.2	1 + 9	6.1	9
10	0.0	9.2	9.0	150	61	36 *	274	51	24	1.2	1.49	1.6	10
11	0.0	60	10	135	5.9	34	200	5 1	21	/.0	2.1	1.04	11
12	100	219 *	21	122	5.5	61	175	46	19	6.7	4+3	1.04	12
13	2.5	95	15	109	53	8.2	244	46 .	19	0.5	201	106	13
14	0.0	3.5	13	100	5.2	59	226	44	19	0 . 5	4+7	1+6	14
15	0.0	22	13	94	51	51	202	42	19	5.5	2.1	1.4	15
16	0.0	19	13	90	49	45	183	4	20	4.9	1.9	1.2	16
17	0.0	15	13	8.8	46	4.3	163	41	20	4.6	1.6	1.5	17
18	0.0	13	13	86	46	4.3	154	39	18	4.9	1.5	1.5	18
19	0.0	13	59	89	44	4.1	153	3.7	1.7	4.6	1 + 4	1 = 4	19
20	^.^	11	67	97	4.2	3.8	150	3 /	16	4.5	1 = 4	4 . 7	20
21	0.0	11	43	84	42	36	135	40	10	4.1	1.2	1.0	21
22	0 • 0	10	73	7.8	4.1	3.3	1.26	4.1	16	4 + 1	1 • 2	1.8	22
23	0.0	9.8	1130 #	79	39	34	115	4.1	15	4.0	1.6	1.6	23
24	0.0	9.6	746	194	3.7	34	110	3.8	15	3 . 8	1+6	1.5	24
25	^ • O	9.3	201	105	3.7	3.3	105	3 5	15	3.7	1 • 6	1 + 4	25
26	0+1	10	223	89	36	3.3	9.9	3.3	15	3.5	4 • 6	1.0	26
27	0.1	13	526	8.2	4.7	106	92	3.1	15	4 - 1	1.4	1.9	27
28	0.2	10	3.28	7.2	44	75	86	29	15	4.1	L = 4s	6.3	28
29	15	9.4	180	62		54	8.2	24	15	3 . /	1 + 1	3.0	29
20	12	8 • 6	151	61		46	/8	28	1 4	3.8	1.04	4.7	30
31	5.6		146	59		51		2.7		4 • 0	1 • 0		21
MEAN	1.1	24.5	132	156	53.7	44.8	140	46.5	20.2	0.4	۷٠٥	1.0	MEAN
MAX	15.0	219	1130 E	947	111	106	274	18.0	31.0	14.0	4 + 1	3	MAX.
MIN	0.0	2.8	7.8	59.17	36.0	32.0	67.3	27.0	14.0	3.5	1 • 0	1.0	MIN
AC FT.	65	1457	8086	9606	2983	2753	8311	2856	1604	3 7 4	1 < 1	94	AC FT

E — ESTIMATED

NR — NO RECORD

• DISCHARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

— E AND *

MEAN		MAXIMU	M	_			MINIM	ĵ
DISCHARGE 52.4	DISCHARGE 3190 €	9 . 85	MO. 12		TIME 0630	0 + 0		

ACRE PEET

	LOCATION	1	MA	XIMUM DISCH	ARGE	PERIOD 0	F RECORD		DATU	OF GAGE	
	LOUGITURE	1/4 SEC. T & R		OF RECOR		DISCHARGE	GAGE HEIGHT	PER	100	ZERO	REF
LATITUDE	LONGITUDE	м О В &м.	CFS	GAGE HT	DATE	O D D D D D D D D D D D D D D D D D D D	ONLY	FROM	TO	GAGE	DATUM
37 20 09	119 48 59	SE 7 7S 20E	3710E	10.34	1-31-63	NOV S7-DATE		1957	DATE	0.00	LOCAL

Station located 1.1 miles above mouth, 5.5 miles west of Ahwahnee. Drainage area 57.8 square miles. Maximum diacharge of record from rating curve extended above 1,789 cfs. Altitude of gage 980 feet (from topographic map).

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR ST	ATION NO.	STATION NAME	
1907 3	c43.	/E T FERK CHONCHILLA RIVER NEAR KARIFUSA	

7	DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
2			- 41	^ . 7	7,	_,	1.8	59		1.7			ر در	1
3						26	16							2
\$ \cdot \tau \cdot \tau \cdot \tau \tau \tau \tau \tau \tau \tau \ta					123	24	14							3
5					15+	23	14	45						4
6		*			185 *	42 #	1.3	44	26	5+3	2.6	0+0	U+1]	5
## 1	,	0.	2.2	8	922	39	14							6
10					543									
10				1.8	156	25								
10		1.2		. 2	120	24	15		۷1					9
11				~ . ¤	99	21	14 *	247	۷.	5.0	0.3	- • -	1. 4	10
19		ò	21	1.0	86	21	14	2) 9					0 •	11
13					75	2.0	3.2					U + 0	3.4	12
18				1		19	43	202					. • 1	13
15					59	19	2.5	165		4				14
16					5.5	18	2.2	140	16	4 + 3	3 • 2	• (3		15
1			7.2	1.0	50	17	20	128	15	4.4	0.2			16
1					47	12	15	113			. • 2			17
10 1.			1.2				16	98	13	3.6	- 9 4			18
20					44	1.7	1.9	8.6	12	3 . 3	2	_ • 0	2.5	19
21								79	12	2.1	Ū+.	. • 5	0.43	20
22			, ,	5.2	39	16	16	7.2	14	4.7	0.1		200	21
10 10 10 10 10 10 10 10								67	14	4	1	C+0	1.00	22
24								60	14	8.8		0	13 + 3	23
25								5.6	1.2	2.0	1	6.3	0.7	
20											0.0	1+0	15.43	
77			- 0	1.7/	4.2	14	16	49	10	1.9	0.3		3.0	26
## 1			• 7									5.0	0.0	27
## Company Com													0.0	
#EAN 0.0 0.9 0.1 0.0						2.0							ل و د	
MEAN 0.0 9.9 81.6 113 21.5 23.4 98.9 17.0 4.3 0.3 0.0 0.0 MAX 11 12 823 42.0 90.2 247 3:.0 8.4 1.0 0.0 MAX 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0												2.0	0 • 1	
MAX 1 127 823 922 42.0 90.0 247 30.0 8.4 1.0 0.0 MAIN. 0.0 0.0 0.0 14.5 13 35.5 7.2 1.1 0.0 0			• •								0 • 1	0.0		31
MAX1 1=7 823 922 42.0 90.0 247 37.0 8.4 1.0 0.0 .0 MIN. 0.1 0.0 0.0 14.5 13 35 7.2 1.1 0.0 .0	MEAN	0.0	0.0	81.6	113	21.3	23.4	98.7	17.0	4.3	0.3		(+)	MEAN
MAN. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.										8 • 4	1.0	0.0		MAX
minu (*) (*) (*) (*) (*) (*) (*) (*								35+3		1.1	L • 0	. + 3	7.0	MIN.
	AC. FT.		530	5015	6940	1184	1436	5883	1046	256	17			AC FT

E — ESTIMATEO
NR — NO RECORO
* — DISCHARGE MEASUREMENT OR
OBSERVATION OF NO FLOW
— E AHD *

MEAN		MAXIMU	M			
DISCHARGE	DISCHARGE	GAGE HT.	MO	DAY	TIME	DISCHAF
30.8	2260	7.7	12	23	0630	
			1		レノ	

TOTAL ACRE FEET 22310

1		LOCATIO	٧	MA	XIMUM DISCHA	RGE	PERIOD 0	F RECORD	DATUM OF GAGE			
			1,45EC T & R		OF RECORD		DISCHARGE	GAGE HEIGHT	PER	100	ZERO	REF.
ļ	LATITUDE	LDNGITUOE	м О В &м	CFS	GAGE NT.	DATE	OISCHARGE	ONLY	FROM	то	GAGE	DATUM
ı	37 25 14	119 52 25	SE10 6S 19E	3590E	8.67	4-3-58	NOV 57-DATE		1957		0.00	LOCAL

Station located 15 feet below Indian Peak Road Bridge, 6.7 miles southeast of Mariposa. Drainage area is 33.6 square miles. Maximum discharge of record from rating curve extended above 1,829 cfs. Altitude of gage is 1,680 feet (from topographic map).

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO.	STATION NAME	
1965	46431	MI LE F RK THOW HI LA RIV MEAR MIPTIMANAGE	

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT	DAY
1	0	0.1	1.0	47	14	8.9	23	15	5	4.1	4	U . i	,
2	0.00	7.14	1.1	35	13	8.6	22	15	5.0	1.9	6.66	0 - 4	2
3	5.0	0.1	1.5	80	1.3	7.7	1.8	15	5.1	1.9	0.4.	7.1	3
4	0.0	2.2	2.	102	12	7 - 0	14	1.4	2	1.8	0.4	5+1	4
5	0.08	1.0	1.4	127 •	17 +	7.4	15	. 4	44	1.7	6 - 2	0.1	5
6	1.0	h	1.3	371	23	7	39	14	6 . 4	5	U + 2		6
7	.0	0.0	1.10	193	15	7.6	55	13 .	4 4 4 5	1 + 4	Col	. 0 6	0 7
8	0.0	7.	3 . 7	73	13	10	19 0	13	4.4	1.20	5+1	Use	
9	n.m	1.3	1.7	54	13	8. "	76	1.2	5 . 2	1.3	J.1	. 1	9
10	0.0	8 • 5	1.	4.9	12	8.1.	99	11	4.0	1.4	0 - 1	- 1	10
11	8.0	7.5	1.4	42	11	7.0	4.9	1	4.1	1.4	J 0 4	5 + 1	11
12	00.00	84 4	2."	34	11	14	61	7	3.5	1	-06	- 1	12
12	0.0	19	1.8	29	11	24	1 5	5.70	6.5	U + B	UeZ	0 • 1	13
14	C .	5.9	1.4	2 7	11	1.4	99	5.6	3.5	. 8	-04	0.1	14
15	`•	4.1	1.3	2.5	10	11	7.0	8.1	3 • 6	5.7	0 . 2	0 + 1	15
16	^ •	3.6	1.2	23	9.5	9.7	50	7.7	3 . 3	0.0	0.1	0 = 4	16
17	^ • **	2.7	1.1	21	9.7	9.2	41	7.4	3.6	5	0	1	17
18		2 • 2	1.1	19	9.9	8.8	36	7.6	3.5	0.5	0.1	106	1.8
19	^ = ^	1.8	8.9	20	9 • 2	8.8	3.2	6.7	3	0.0	0 . 1	. 4	19
20	0.	1.5	12	2.2	9-1	8.6	3/1	7 . 2	3.0	0.5		• 4	20
21	C	1.3	6 • 0	19	8.9	8 . 5	28	7.5	۵ و ک	0.4	0+1	0 + 4	21
22	0.0	1 • 2	20	1.7	8 + 9	8	2.7	8.0	6.1	8.99	0 - 1	. 1	22
23	0.08	1.2	409 *	19	8.5	7.8	25	7 . 7	2 • 8	- + 3	J • 1	1	22
24	0.0	1.1	277	70	8 • 2	8.	24	7.	2 • 6	0.3	0.1	0.1	2A
25	^.0	1 - 1	56	27	9 - 1	9 • 2	2.3	6.3	2.6	0 = 4	0+1	0 + 4	25
26	r	1.3	69	22	7.5	7 . 0	21	6.3	4	0.4	0.2		26
27	0.0	1.3	205	19	1.1	35	2 1	6	201	2 + 3	C - 1		27
28	^ • 1	1.3	115	1 8	1.1	2.2	19	206	4.5	3	0 - 1	0 + 4	28
29	1.7	1.1	54	1.7		14	1.8	5 . 3	6 4 4	0.3	0 • 1	0 • 4	29
30	0+1	1.0	5.2	16		1.2	16	5.5	c + 1	C + 3	0 • 1		30
31	0.0		51	15		1.3		5.5		0.4	J • 1		31
MEAN	^.0	5 • 2	43.8	53.D	11.4	11.0	41.0	9.3	3.0	. 9	=.1	• 1	MEAN
MAX.	1.2	84.0	409	371	23.1	35.0	105	15.	6 . 7	2 • 1	0 + 4	1.6	MAX
MIN.	0.0	0.0	1.7	15.0	7.5	7 . 2	1~.0	5.0	6.1	0.00	0 0 1	7.1	MIN
AC. FT.	3	308	2690	3260	632	578	2487	571	216	24	9	E	AC FT

E — ESTIMATED

NR — NO RECORO

DISCHARGE MEASUREMENT OR
OBSERVATION OF NO FLOW

— E AND *

MEAN		MAXIMU	М			١.		MINIM	UM		
DISCHARGE	DISCHARGE	GAGE HT	MO.	DAY	TIME	11	DISCHARGE	GAGE HT	MO	DAY	TIME
15.1	1016	d.00	1	2.5	î.		. • *		1-	1	

TOTAL ACRE FEET 1092

	LOCATION	4	MA	XIMUM DISCH	ARGE	PERIOD C	F RECORD		DATU	M OF GAGE	
LATITUDE	LONGITUDE	1 4 SEC. T. & R		DF RECOR)	DISCHARGE	GAGE HEIGHT	PER	IIQD	ZERO	REF
LAITIONE	LUNGITUDE	M.D.B.&M	CFS	GAGE HT	DATE	DISCHARGE	DNLY	FROM	ŤD	GAGE	DATUM
37 22 56	119 50 11	NE 25 6S 19E	1280	10.10	2-1-63	MAR 58-DATE		1958	DATE	0.00	LOCAL

Station located 6 miles west of Nipinnawasee, 10 miles southeast of Mariposa. Tributary to East Fork Chowchilla River. Drainage area is 12.3 square miles. Altitude of gage is 1,520 feet (from topographic map).

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO.	STATION NAME	
1965	B64260	STRIPED ROCK CREEK NEAR RAYMOND	

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1 2 3 4 5	0.0 0.0 0.0 0.0 0.0	0.0 0.0* 0.0 0.0	0 • 2 0 • 3 0 • 5 0 • 3 0 • 3	27 19 44 42 28 *	11 11 11 11 11	7.3 7.0 6.7 6.3 6.3	13 11 11 9•5 9•5	6.9 6.7 6.6 6.5 6.0	1.0 1.1 0.9 0.8 0.7	0 • 1 0 • 1 0 • 1 0 • 1 0 • 0	0 • 0 0 • 0 0 • 0 * 0 • 0	0 • 0 0 • 0 0 • 0 0 • 0 0 • 0	1 2 3 4 5
6 7 8 9	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.9	0+3 0+3+ 0+3 0+2 0+2	121 166 50 34 28	16 13 12 11	5 • 9 5 • 8 5 • 7 5 • 4 5 • 4*	19 22 32 * 43 174	5 • 6 5 • 2 * 4 • 7 4 • 2 4 • 2	0.6 0.6* 0.7 0.7 0.7	0.0 0.1 0.0* 0.0 0.0	0 • 0 0 • 0 0 • 0 0 • 0	0 • 1 0 • 4 * 0 • 1 0 • 1	6 7 8 9 10
11 12 13 14 15	0.0 0.0 0.0 0.0 0.0	3 • 4 40 * 9 • 7 2 • 2 0 • 9	0.4 0.4 0.3 0.3	24 20 18 17 16	10 9.5 9.6 10 9.8	5 • 4 10 14 9 • 0 7 • 7	72 37 45 29 23	4•1 3•7 3•4 3•5 3•4	0 • 5 0 • 4 0 • 4 0 • 4	0.1 0.0 0.0 0.1 0.0	0 • 0 0 • 1 0 • 0 0 • 0 0 • 0	0 • 1 0 • 1 0 • 1 0 • 1 0 • 1	11 12 13 14 15
16 17 18 19 20	0.0 0.0 0.0 0.0 0.0	0.5 0.3 0.3 0.2 0.2	0 • 3 0 • 3 0 • 2 2 • 3 1 • 8	14 13 13 14	9.4 9.3 8.9 8.6 9.6	6 • 8 5 • 7 5 • 9 5 • 6 5 • 6	19 18 16 16	3 • 0 3 • 2 2 • 8 2 • 4 2 • 6	0 • 4 0 • 3 0 • 3 0 • 2 0 • 2	0.0 0.0 0.1 0.0 0.0	0 • 0 0 • 0 0 • 0 0 • 0	0 • 2 0 • 1 0 • 2 0 • 2 0 • 3	16 17 18 19 20
21 22 23 24 25	0.0 0.0 0.0 * 0.0 0.0	0 • 2 0 • 2 0 • 2 0 • 2 0 • 2 0 • 2	1•1 2•4 217 # 183 34	12 12 15 35 16	9.3 8.9 8.7 7.5 7.7	6 • 0 6 • 0 5 • 6 6 • 0 5 • 9	14 13 12 12	3 • 2 3 • 2 2 • 6 2 • 2 2 • 0	0.1 0.1 0.1 0.1 0.2	0.0 0.0 0.0 0.0	0 • 0 0 • 0 0 • 0 0 • 0	0 • 2 0 • 2 0 • 2 0 • 2 0 • 2	21 22 23 24 25
26 27 28 29 30 31	0.0 0.0 0.0 0.0 0.0	0 • 4 0 • 3 0 • 2 0 • 2 0 • 2	98 113 111 43 41 48	14 13 13 13 12	7•3 9•8 7•9	5.8 21 12 9.1 8.3 9.0	10 9.5 9.1 8.7 7.6	1.8 1.6 1.5 1.2 1.0	0 • 1 0 • 1 0 • 1 0 • 1 0 • 1	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.2 0.2 0.1 0.1	26 27 28 29 30 31
MEAN MAX. MIN. AC. FT.	0 • 0 n • 0 n • n	2 • 2 40 • 0 0 • 0 130	29•1 217 E 9•2 1787	28.7 166 12.0 1763	10.2 18.0 7.3 567	7.5 21.0 5.4 461	24.7 174 7.6 1470	3.5 6.9 0.9 218	0 • 4 1 • 1 0 • 1 25	0.0 0.1 0.0 2	0 • 0 0 • 1 0 • 0	0 • 1 0 • 4 0 • 0 8	MEAN MAX. MIN. AC.FT.

E — ESTIMATED

NR — NO RECORD

* — DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW

— E AND *

MEAN		MAXIMU	м	_	
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME
8.9	655 E	6.98	12	23	0600

	MINIM	U M		
DISCHARGE	GAGE HT	MO.	DAY	TIME
0.0		10	1	0000
$\overline{}$			L	$\overline{}$

1	TOTAL
Г	ACRE FEET
	6430

	LOCATION	4	МА	XIMUM DISCH	ARGE	PERIOD D	DATUM OF GAGE				
LATITUDE LONGITUDE 1/		1/4 SEC T. & R	OF RECORD			DISCHARGE	GAGE HEIGHT	PERIOD		ZERO	REF
LATITUDE	LONGITUDE	M D B.&M.	CFS	GAGE HT.	DATE	DISCHARGE	ONLY	FROM	TO	GAGE	DATUM
37 20 27	119 53 35	NE 9 7S 19E	1180E	8,87	4-3-58	NOV 57-DATE		1957		0.00	LOCAL

Station located 8.7 miles north of Raymond, 11 miles southeast of Mariposa. Tributary to Chowchilla River. Drainage area is 17.1 square miles. Maximum discharge of record from rating curve extended above 351 cfs. Altitude of gage is approximately 1,090 feet (from U. S. Geological Survey topographic map).

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO.	STATION NAME	
1965	800435	EASTSIDE BYRASS NEAR EL NIDO	

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	NR	NR.	NR	430	69	0.0	0.0	16	0.0	0.00	2+0	0.0	1
2	NΒ	NR.	NR	398	63	0.0	0.0	4.1	0.0	0.0	0 • 0	0.0	2
3	NR	NR :	NR	288	57	0.00	0.0	0.0	0.00	0.0	0.0	0.0	2
4	N.D	NR	NR	241	5.2	0.0	3.8	0.00	0.0	0.0	0.0	0.0	4
5	N/R	NΩ	MR	4 A 5	46	0.0	66 •	0.0	0.0	0.0	0 • 0	0.0	5
6	41.0	NR	NR	645 .	4.3	0.0	57	0.0	0.0	0.0	0.0.	0.0	6
7	NR	NR	NR	1270 *	38	0.0	3.6	0.0	0.0	0.0	0.0	0.0	7
8	ND	NR	NR	1620 •	80 •	0.0	6.7	0.0	0.0	0.0	0.0	0.0	
9	N'R	NR	NR	967	121	0.0	272	0.0	0.0	0.0	0.0	0.0	9
10	NR	NR	NR	749	76	0.0	492	0.0	0.0	0.0	0.0	0 • 0	10
11	N.R	NR	NR	570	73	0.0	937	0.0	0.0	0.0	0.0	0.0	11
12	N/P	NR	NR	429	5.2	0.0	1000 •	0.0	0.0	0.0	0.0	0.0	12
13	NR	NR	NR	?96	50	0.0	693 •	0.0	0.0	0.0	0.0	0.0	13
14	N.D.	NB	NR	100	42	0.0	597	1.0	0.0	0.0	0.0	0.0	14
15	NR	NR	NR	174	27	0.0	571	0.0	0.0	0.0	0.0	0.0	15
16	MR	NR	NS.	167	2.2	0.0	546	0.0	0.0	0.0	0.0	0.0	16
17	HR	NR	NR	134	18 *	0.00	457	0.0	0.0	0.0	0.00	0.0	17
18	MR	NR	NB	130	8.9	0.04	3 n 9	0.0	0.0	0.0	0.0	0.0	18
19	AI D	NR	NR	115	0.5	0.0	218	0.0	0.0	0.0	0.0	0.0	19
20	ΝÞ	NR	NR	103	0.0	0.0	167 •	0.0	0.0	0.0	0.0	0.0	30
21	NP	NR	NR	97	0.0	0.0	137	0.0	0 • 0	0.0	0 • 0	0 + 0	21
22	ND	NR	NR	102	0.0	0.0	111 *	0.0	0.0	0.0	0.0	0.0	22
23	NB	ЧR	0.0*	89	0.0	0.0	85	0.0	0.0	0+0	0.0	0 • 0	23
24	NR	NR	167	91	0.0	0.0	74	n.n	0.0	0.0	0.0	0 • 0	2A
25	NR	MB	714 E	84	0.0	0.0	71	0.0	0.0	0.0	0.0	0.0	25
26	A/D	NB	841 E	712	0.0	0.0	54	2:8	0.0	8:8	8:8	8:8	26
27	NR	No		160 .	0.0	0.0	62 4		0.8				27
28	NR	NR	976 •	138	0.0	0.0	56	0.0	0.0	0.0	0.0	0.0	28
29	NR	NR	1100 *	103		0.0	4.3	0.0	0.0	0.0	0.0	0.0	29
30	NR	NR	873	R 7		0.0	34	0.0	0.0	0.0	0.0	0.0	30
31	NR		591	75		0.0		0.0		0.0	0.0		31
MEAN	NR	NR	NR	345	33.5	0 • 0	242	0.6	0.0	0.0	0.0	0.40	
MAX.	AID	NB	NR	1620	121	0.0	1000	16.0	0+0	0.0	0.0	0.0	MAX
MIN.	NR	NR	NR	75.0	0.0	0.0	0 + 0	0.0	0.0	0.0	0 • 0	0.0	
AC. FT.	NR	ND	NR	21180	1861		14400	40					AC FT

E - ESTIMATEO
NR - NO RECORD

- OISCHARGE MEASUREMENT OR
OBSERVATION OF NO FLOW

N - E AND *

MEAN		MAXIMU	М				MINIM	U M		
DISCHARGE	DISCHARGE	GAGE HT	MO	DAY	TIME	RISCHARGE	GAGE HT	MO	RAY	TIME
NP	1740	11.79	1	8	0710	0.0		1.2	23	

TOTAL	_
ACRE PEET	Т
NR	

	LOCATION	1	AM	XIMUM DISCH	ARGE	PERIOD O	DATUM OF GAGE				
		1/4 SEC. T. & R	OF RECORD			DISCHARGE	GAGE HEIGHT	PERIOO		ZERO	REF
LATITUDE	LONGITUDE	м О В &м.	CFS	GAGE NT	DATE	DISCHARGE	OHLY	FROM	TO	GAGE	DATUM
37 08 52	120 36 17	SE13 9S 12E	1740	11.79	1-8-65	DEC 64-DATE		1964	DATE	90.00	USGS

Station located on left bank 2.8 miles below San Joaquin River and 6.4 miles west of El Nido. This station is equipped with a radio telemeter. Recorder installed 12-23-64.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

(WATER YEAR	STATION NO.	STATION NAME	
	1965	552400	MAPIPOSA CREEK NEAR C-THEYS VHY	

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1 2 3 4 5	· · · · · · · · · · · · · · · · · · ·	0.0 0.0 0.0 0.0	3 • 1 3 • 4 3 • 7 3 • 4 2 • J	2^7 139 257 315 273 *	30 28 27 25 44 *	17 16 14 13	25 28 30 26 23	22 20 40 16 17	5.3 5.7 2.4 1.2 4.9	0.7 6.6 0.5 0.4 0.3	0 • 0 0 • 0 0 • 0 0 • 0 0 • 0	0.0 0.0 0.0 0.0	1 2 3 4 5
6 7 8 9	7 7.1 7 7	1.2	2 • 8 2 • 7 2 • 4 2 • 6 2 • 6	1437 1090 311 186 139	55 39 32 31 28	13 13 13 13 12 *	56 90 242 347 *, 725	16 15 * 14 14 14	4.5 4.4 4.3* 4.7 4.4	0 • 2 0 • 2 0 • 2 0 • 2 0 • 2	U+0 0+0 0+0 0+0 0+0	0 • 0 0 • 0 0 • 0	6 7 8 9 10
11 12 13 14 15		76 3 11 * 114 26 11	3 • 0 3 • 6 2 • 3 3 • 0 2 • 8	111 90 76 64 58	25 24 24 24 22	11 16 27 17 15	213 317 323 248 168	14 13 13 * 12 12	3.9 :.2 2.9 2.9 2.7	0.2 5.1 0.1 0.1 0.1	0+0 0+0 0+0 0+0 0+0	0 • 0 0 • 0 0 • 0 0 • 0 0 • 0	13
16 17 18 19 20	· · · · · · · · · · · · · · · · · · ·	7.0 5.7 4.6 4.0 3.8	2.8 2.7 2.5 9.4	51 45 40 41 41	21 20 19 18 19	13 13 12 12 11	124 98 79 69 61	11 11 9.5 9.5 9.2	2.8 2.5 4.5 4.7 2.1	0 • 1 0 • 1 2 • 1 2 • 1 . • 1	0 • 0 0 • 0 2 • 0* 0 • 0 U • 0	0 • 0 0 • 0 0 • 0 0 • 0	17 18
21 22 23 24 25	7.0 2.3*	3.6 3.5 2.2 3.1	8.7 33 E 1540 # 1170 189	35 32 38 116 60	17 17 16 15	11 11 11 11	55 48 42 39 36	10 11 10 9 •2 9 •2	1.6 1.0 1.4 1.3	0.1 6.0 0.0 0.0 0.0	0 • 0 0 • 0 0 • 0	0 e/s 2 e/s 0 e/s 0 e/s 0 e/s	23
26 27 28 29 30 31		3 • 6 3 • 5 3 • 1 2 • 8 2 • 6	367 577 533 251 287 414	49 44 42 39 35 33	14 22 20	11 62 46 27 22 22	33 30 27 24 23	8 •1 7 •1 6 •6 5 •9 5 •3 5 •3	1.1 1.1 1.0 0.3	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0	28
MEAN MAX MIN AC. FT.	1.0 1.0	21.8 201 2.0 1300	179 1540 2•6 11010	177 1430 32•0 10880	24.7 55.0 14.0 1373	17.1 62.0 11.0 10.9	132 725 23•0 7653	12 •0 22 • 5 5 • 3 738	3.0 5.7 0.8 177	0.2 / 0.0 10	0 • 0 3 • 3 u • 3	0.0 2.F 0.0	MEAN MAX. MIN AC FT

E — ESTIMATEO
NR — NO RECORD

- DISCHARGE MEASUREMENT OR
OBSERVATION OF NO FLOW

— E AND *

MEAN		MAXIMI	J M				MINIM	U M		-
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME	DISCHARGE	GAGE HT	MO	DAY	TIME
47.5	5201	10.81	12	23	0510	0.0		10	1	0100
					1 /					1 /

ACRE FEET 34390

		LOCATION	٧	МА	XIMUM DISCH	ARGE	PERIOD O	F RECORD		DATU	M OF GAGE	
Ī	LATITUDE	LONGITUDE	1/4 SEC. T. & R		OF RECOR	D	DISCHARGE	GAGE HEIGHT	PER	IOD	ZERO	REF.
l	LATITODE	LONGITUDE	M.D.B.&M.	CFS	GAGE HT	DATE	JIGUITARGE	ONLY	FROM	TO	GAGE	DATUM
ı	37 23 55	120 00 10	NE 21 65 18E	7180E	11.62	4-3-58	NOV 57-DATE		1957		0.00	LOCAL

Station located at county road bridge, 5.6 miles east of Catheys Valley School. Tributary to San Joaquin River via Eastside Bypass. Drainage area is 66.0 square miles. Maximum discharge of record from rating curve extended above 4,705 cfs. Altitude of gage is 1,100 feet (from topographic map).

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO STATION NAME MARIPO A --- EK EL # PARI .

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	0.0	0.0	3.0	532	42	1.0	26	4	1.5	.4	2.0	F.1	1
2	0.0	11.0	3.0	408	39	22	3.7	. 3	3.4	0.1	7.0	10.10	2
2	0.0	1.0	3.0	263	3.7	21	31	14	1.		0.0	1.0	3
4	0.0	.0	3 • 0	310	29	19	29	24	3	5.00	0.0	8.0	4
5	0.0	0.0	3 • 0	345	38	18	26	7.2	4.	• 0	0.0	0.0	5
6	0.0	W.0	3.0	502	67	18	26		1.	0.0		0.0	6
7	0.0	0.0	4.0	804	60	1.8	76		. 9		0.0	n.n	7
8	0.0	0.0	3.	742	40	1.8	137		1.1			2.1	
9	0.0	0.0	3.0	714	4.3	17	325			. n	- 6	- ^	9
10	0.	P.0	3 • 1	623	39	17	444	19				0.0	10
11	0.1	U.O	3.0	518	35	16	570	1.8			• 0	0.1	11
12	0.0	38	3 • 0	308	3.4	19	555	17		0.0	0	.00	12
13	0.0	162	3.0	161	3.2	29	491	16		• 2	0.0	0.0	12
14	0.0	54	3.0	112	31	32	410	15			0.0	n.n	14
15	0.0	22	4.0	85	30	23	125	14	140		1.0		15
16	0.00	14	4.0	80	29	26	217	1 3	10			0.0	16
17	0.0	10	4.0	62	2.8	19	144	1.2		• 0	0.0	-0.0	17
18	0.0	8.0	6.0	60	26	18	114	11	1.0	0.0	D.		18
19	0.0	7.0	5.01	5.8	25	17	8.8			• ^	7	2.	19
20	0.41	6.0	6.	6	75	16	75	9		0	-11	-0.0	20
21	0.0	5.0	19	94	23	16	64		, A	7.40		7.0	21
22	7.0	4.0	17	46	23	15	4.3	9.4	T . d		7.0	0.1	22
23	0.0	4.0	445	42	22	14	44	11		0.0	9.1	0.0	23
24	0.0	4.0	740	98	21	14	3.7	1.1	1.1	10.00	2.0		24
25	0.0	3.0	756	124	21	14	3.4	9.4	4.7	* 1	7.1	0.0	25
26	0.0	3.0	445	72	20	14	3.2	8				0.0	26
27	0.0	2 * U	672	5.2	21	10	31	0.44	4.5				27
28	0.0	٦.0	700	5.8	25	69	2.8	h . '	+6			0.40	2 R
29	0.0	٦.0	AFR	5.4		46	27	2.		.0	7.5	17.0	29
30	0.0	3.0	616	48		3.0	25	4 . *	1,4				30
31	0.0		591	44		25		4 6					31
MEAN	0.0	12.0	192	242	32.0	22.1	151	14.			+2	. (MEAN
MAX.	0.0	1.62	756	974	60.0	69.0	571	- 40 0	• 0	- 10		17.0	MAX.
AC. FT.	0.1	706	3.0	43.0 14876	20.0 1801	14.0	25.11	974	1.4	0.1	•=	0.0	MIN AC FT

E — ESTIMATED

NR — NO RECORD

• — DISCHARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

R — E AND *

MEAN		MAXIMI	ML				MINIM	U M		
DISCHARGE	DISCHARGE	GAGE HT	MO	DAY	TIME	DISCHARGE	DAGE HT	MO	DAY	TIME
56.	878		1	7		111.5		1 *	1	

ACRE PEET

C		LOCATION	4	MA	XIMUM DISCH	IARGE	PERIOD C	F RECORD		DATU	M OF GAGE	
Γ,	LATITUDE LONGITUDE		1 4 SEC T & R	OF RECORO			DISCHARGE	GAGE HEIGHT	PERIOD		ZERO	REF
L.	ATTIONE	CONCITODE	M D B &M	CFS	GAGE HT.	DATE	DISCHARGE	ONLY	FROM	TO	GAGE	DATUM
1 3	7 16 52	120 09 45	NE 36 75 16E	6020		12-24-55	NOV 52-DATE		1952		337 63	tiscas

Station located 1.5 miles below Mariposa Dam. Tributary to San Joaquin River via Eastside Bypass. Flow regulated by Mariposa Reservoir. Records furnished by U. S. Corps of Engineers. Drainage area is 108 square miles.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO.	STATION NAME	
1965	B00420	MARIPOSA BYPASS NEAR CRANE RANCH	

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1 2 3 4 5													1 2 3 4 5
6 7 8 9 10				1615 **									6 7 8 9 10
11 12 13 14 15							532 **						11 12 13 14 15
16 17 18 19 20													16 17 18 19 20
21 22 23 24 25					INSU	FFICIENT D	ATA TO PUB	LISH					21 22 23 24 25
26 27 28 29 30 31			1196 **										26 27 28 29 30 31
MEAN MAX. MIN. AC. FT.													MEAN MAX. MIN. AC.FT

E - ESTIMATED
NR - NO RECORD

* - DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW

- E AND *

** - RESULT OF DISCHARGE MEASUREMENT

MEAN	4		MAXIM	UM			4		м	NI	м	JM			7	TOTAL
DISCHARGE		DISCHARGE	GAGE HT.	MC	DAY	TIME		DISCHARGE	G/	GE	HT.	MO.	DAY	TIME		ACRE FEET

(LOCATION		MA	XIMUM DISCH	ARGE	PERIOD C	F RECORD		DATU	M OF GAGE	
LATITUDE	LONGITUDE	1/4 SEC T & R		OF RECOR	D	DISCHARGE	GAGE HEIGHT	PER	HOD	ZERO	REF
EATITODE	Editorione	M.D.B.&M	CFS	GAGE HT	DATE	O S C S A S A S A S A S A S A S A S A S A	OHLY	FROM	TO	GAGE	DATUM
37 12 00	130 41 50	NW 31 8S 11E						1962		0.00	USCGS

This station was installed in January 1962, for the Lower San Joaquin Flood Control Project for the purpose of recording flows diverted into Mariposa Bypass by float-activated electrically operated gates. No continuous water stage recorder is installed to date. Miscellaneous measurements of instantaneous discharge will be presented when appropriate.

DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND)

WATER YEAR		STATION NAME	
1965	411	WEN WEEK IN A	

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	0.0	0.0	0.4	8.8	А.	4.	٦,	3.4	• 8	0.0	8.01	0.1	1
2	0.0	2.0	7.4	61	6.		3.	3.2					2
3	1.0	0.1	0.4	30	6.	3.	3.	3.1	.6	C.3	1.0		2
4	12.0	1.1	C+4	3.5	5 .	3	3.	2 . 2	7.6	0.6	0.0		4
S	0.0	0.1	0.4	3.3	9.	3.6	٦.	7 + 4	4.6	2			S
6	0.0	0.1	0.4	5.8	1.2	3.0	2.0	2.0		1.1		0.0	6
7	0.1	0.0	C + 4	116	8 .	3 •		2.4	+ 5	70 + 1	0.5	0.1	7
В	0.0	0.0	0.4	116	6	3.	21	2	0.6	0.0	1.C	0	
9	0.0	3.0	0.4	107	6 +1	3 .	24		1.6				19
10	0.0	0.5	r.4	94	6.0	Э.	71	١.9	4.1	0.0		0.	10
11	0.1	0.5	r.4	68	5.0	1.	103	. 6	6				11
12	0.0	0.5	0.4	31	5 • /	7.	66	1 + 6					12
12	U.0	- 4	1.4	28	5 .1	7.	3	1.5	. 5	0.6	0.01	0.	12
14	0.0	0.4	0.4	26	5 .	4 .	21	1 . 4	- • *		1.	C •	14
15	0.0	0.4	0.4	25	4.0	3 •	14	1 + 4	5	1.1	٠.	1.	15
16	0.0	0.4	0.4	23	4 .1	3.	11	1.4	. 5	1.0	1.0	^.~	16
17	0.0	0.4	0.4	21	4.4	3.	9.5	1.3	0.5	0.0	.)	0.0	17
18	0.0	0 - 4	0.4	18	4 .	3.	7.9	1.1	. 5		1	1.70	18
19	0.0	0.4	0.5	20	6 .	3.	6 . 8	1.	5		•00		19
20	0.0	0.4	0.4	22	40 a 17	2.1	5 + 6	1 •	4.5			1.0	20
21	0.0	0.4	0.4	18	4.0	2.1	6.3	1	5	0.1	.0	^.^	21
22	0.0	0.4	0.5	14	٦.^	2 . 1	5.6	1 4/	. 5	-	7.01	F .	22
23	0.0	0.4	8.7	14	3.1	2.1	4 . 8	1.1	4	. 0	1.		22
24	J.0	0.4	112	31	3 .	1.	4.6	1.2	0.44	17.1		- 62	24
25	0.1	0.44	9.8	24	3 •	2.	4.4	1 - 1	4	0.0	0.01	C •	25
26	1.0	0.4	3 7	2 1	3.0	2 . 1	4.4	1."	4	^.1	1.7		26
27	0.0	0.4	9.9	18	4.0	7 . 1	4.2	. 8	- + 4	1.0	-	1.	27
28	0.0	7.4	104	17	4.	6.	4.0	. 8	4 40	0.0	=.7	0.0	28
29	0.0	0.4	102	14		3.1	3 . 8	• 8	2 • 3	7.1	4.	1.	29
30	0.0	0.4	8.6	12		3 . 1	3.3	- 7	.3	0.	E.0	100	30
21	0.0		114	11		3 •		. • 6		7.7	1.0		31
MEAN	0.0	r.4	27.0	39.	5 . 1	3.3	15.0	1.6	3.5	C.1	△.	0.7	MEAN
MAX.	0.0	0.5	114	116	12.0	7 . 1	103	3 + 4	. 9	. 3	1.0	1.	MAX
MIN	0.0	0.0	^ . 4	11.	7 - 2	3.	3.0	•6	• 3	0.E	0	0.0	MIN
AC. FT.		23	1680	2426	2.8.2	201	916	97	30	3			AC FT

E — ESTIMATED

NR — NO RECORO

- DISCHARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

— E AND **

MEAN		MAXIMI	J.M.				MINIM	U M		$\overline{}$
DISCHARGE	DISCHARGE	GAGE HT	MO	DAY	TIME	DISCHARGE	GAGE HT	MO	DAY	TIME
7.8	127		1	7		0.1		12	1	
			\perp		-		L		1	$\overline{}$

TOTAL ACRE FEET 5660

	LOCATION	1	MA	KIMUM DISCH	ARGE	PERIOD C	F RECORD		DATU	M OF GAGE	
LATITUDE	LONGITUDE	1/4 SEC. T & R	OF RECORD			OISCHARGE	GAGE NEIGHT	PERIOD		ZERD	REF
LATITODE	LONGITUDE	M D 8 &M	CFS	GAGE NT.	DATE		ONLY	FROM	то	GAGE	DATUM
37 18 28	120 11 35	SW 23 7S 16E	590		12-24-55	FEB 50-DATE		1950		338.22	USCGS

Station located 0.25 mile below Owens Dam. Tributary to San Joaquin River via Eastside Bypass. Flow regulated by Owens Reservoir. Records furnished by U. S. Corps of Engineers. Drainage area is 25.6 square miles.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO.	STATION NAME
1965	B55400	BEAR CREEK NEAR CATHEYS VALLEY

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1 2 3 4 5	0.0 0.0 0.0 0.0 0.0	0.0 0.0* 0.0 0.0	0.7 0.8 1.0 1.1 0.9	134 71 232 166 122 *	5.9 5.3 4.7 4.3 7.9	2.5 2.1 1.9 1.8 1.6	9•2 29 29 16 13	4.3 4.0 3.7 3.6 3.3	0 • 3 0 • 3 0 • 3 0 • 3 0 • 3	0 • 1 0 • 1 0 • 0 0 • 0 0 • 0	0 • 0 0 • 0 0 • 0 * 0 • 0	0 • 0 0 • 0 0 • 0 0 • 0	1 2 3 4 5
6 7 8 9	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 2.4	0.8 0.8* 0.7 0.7 0.7	922 E 918 E 140 63 39	25 12 9.6 8.3 7.1	1.7 1.6 1.8 1.6 1.6	65 99 288 312 * 660	2 • 9 2 • 7 * 2 • 4 2 • 2 1 • 9	0 • 3 0 • 2 0 • 2 * 0 • 2 0 • 2	0.0 0.0 0.0* 0.0	0 • 0 0 • 0 0 • 0 0 • 0	0.0* 0.0* 0.0 0.0	6 7 8 9
11 12 13 14 15	0.0 0.0 0.0 0.0	36 189 * 104 19 9•4	0.8 1.0 1.0 0.9	27 20 16 13	5.4 5.8 5.3 5.3 4.7	1.6 2.1 6.4 4.3 3.2	299 144 182 113 67	1.7 1.5 1.3* 1.3 1.2	0.2 0.2 0.1 0.1 0.1	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	11 12 13 14
16 17 18 19 20	0 • 0 0 • 0 0 • 0 0 • 0	5.4 3.3 7.4 1.9 1.5	0.9 0.9 0.9 3.3 6.8	9.1 7.7 6.8 7.0 7.1	4.2 3.8 3.5 3.1 3.0	2.7 2.6 2.4 2.1 2.1	45 31 22 18 14	1 • 1 0 • 8 0 • 7 0 • 7 0 • 8	0 • 2 0 • 1 0 • 1 0 • 1 0 • 1	0.0 0.0 0.0 0.0 0.0	0.0 0.0 9.0* 0.0	0.0 0.0 0.0 0.0 0.0	16 17 18 19 20
21 22 23 24 25	0.0 0.0 0.0* 0.0	1.2 1.0 0.9 0.9	6.9 52 1058 # 971 F 120	6.0 5.4 5.6 39	2 • 9 2 • 7 2 • 4 2 • 2 2 • 0	2 • 0 1 • 8 1 • 8 1 • 7 1 • 6	13 11 9•2 8•3 7•6	0.9 1.1 1.0 0.8 0.7	0 • 1 0 • 1 0 • 1 0 • 1	0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0* 0.0	21 22 23 24 25
26 27 28 29 30 31	0.0 0.0 0.0 0.0 0.0	1.0 0.9 0.9 0.8 0.7	364 E 359 326 136 190 420	12 10 8.9 7.9 7.0 6.4	2.0 3.4 3.7	1.6 21 17 8.8 6.3 5.8	6.9 6.4 5.8 5.2 4.8	0 • 7 0 • 5 0 • 5 0 • 4 0 • 3 0 • 3	0.1 0.1 0.1 0.1 0.1	0.0 0.0 0.0 0.0 0.0 0.0	0 • 0 0 • 0 0 • 0 0 • 0 0 • 0	0.0 0.0 0.0 0.0	26 27 28 29 30 31
MEAN MAX MIN- AC. FT.	0.0	12.8 189 0.0 760	130 1058 E 0.7 7990	98.6 922 E 5.4 6063	5.6 25.0 2.0 310	3.8 21.0 1.6 232	84.4 660 4.8 5025	1.6 4.3 0.3 98	0.2 0.3 0.1 10	0.0 0.1 0.0	0.0	0.0 0.0 0.0	MEAN MAX. MIN. AC.FT

E — ESTIMATED

NR — NO RECORO

- OISCHARGE MEASUREMENT OR
OBSERVATION OF NO FLOW

- E AND *

MEAN			MAXIMU	M		_	MINIMUM							
DISCHARGE	П	DISCHARGE	GAGE HT.	MO	DAY	TIME	K	DISCHARGE	GAGE HT.	MO	DAY	TIME		
28.3	Ц	4166 E	9.97	1	7	0110		0.0		10	1	0000		

TOTAL ACRE FEET 20488

	LOCATION	4	MA	XIMUM DISCH	ARGE	PERIOD 0	F RECORD		DATU	M DF GAGE	
LATITUDE	LONGITUDE	1/4 SEC. T. & R		OF RECOR	0	DISCHARGE	GAGE NEIGHT	PERIOO		ZERO	REF.
EXTITUDE	LONGITUDE	M D B.&M	CFS	GAGE HT.	OATE	O S C I A I C I	ONLY	FROM	TO	GAGE	DATUM
37 28 38	120 06 43	SW 21 5S 17E	4166E 9.97 1-7-6			DEC 57-DATE		1957		0.00	LOCAL

Station located at county road bridge, 3.7 miles north of Catheys Valley School. Tributary to San Joaquin River via Eastside Bypass. Drainage area is 24.6 square miles. Altitude of gage is approximately 1,210 feet (from topographic map),

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO STATION NAME	_	1
		-
1		

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG	SEPT.	DAY
1	1.0		4.1			0.0							1
2	0.0		2.7	14!									2
3	2.0	0.0	.0	114									2
4	0.0	1	4.0										4
5			7.00	167	1 6								S
6			4.	484	4 7			. 4	. 1				6
7			1.	1654	16		11						7
8	7.	7.0	3.	5.5									8
9				166	9		A .						9
10	7-0-	٠.٣	1.1				. 5 .						10
31		0.		7 9		1.	. 1						111
12	.0	ñ 4	1.	6 ~				1.0					12
13	• 20	149		47		U a	1						12
14	4.0	5.2		46			6	7.					14
15		18		74		1			^.				1.5
16	0.0	1 0	1.	2.6									16
17	7.	7.0		2.6	1.9		64	= ,				1	17
18	• 0	6.		2.4	1.4			4.6					18
19	. 1	A .	۹.	24	1.3		l.	4 .					19
20	• 1	4.	• 7	24				14.6				1,0	20
21	0.00	2.	9.			1.							21
22	1.0	3.00					16						22
23		2.	688					10.0			-		23
24		* *	9 8	54			4	li e					24
25		3	553	67		1.		40 0					25
26		3.	170					4.					26
27	1.0	2.0	6 0										27
28		2.1	448	24									28
29	9.8	1.0	27A	2.2			1						29
30	1.0	11.0	221	2		1191	18						30
21	U		652	2		1.1		11.					31
MEAN	1.1	11.0	148	145				1.					MEAN
XAM	0.0	149	318	1284	48.	2 H .	661	1.			14.5		MAX
MIN	11.0	0.0	2.0	18.	1.0	1.0	1.		F .				MIN
AC. FT.		657	3776	0 5 8	964	716	66:"	.00	, 40				AC FT

E - ESTIMATED

NR - NO RECORD

- OISCMARGE MEASUREMENT OR
OBSERVATION OF NO FLOW

B - E AND *

MEAN		MAXIMA	J-M				MINIM	U M		
DISCHARGE	DISCHARGE	GAGE HT	мо	DAY	TIME	DISCHARGE	GAGE HT	MQ	DAY	TIME
18+2	1 44		- 1							

	LOCATION	1	MA	KIMUM DISCH	IARGE	PERIOD O	DATUM OF GAGE				
LATITUDE	LONGITUDE	1 4 SEC T & R	OF RECORD			DISCHARGE	GAGE HEIGHT	PERIOD		ZERO	REF
LATITUDE	LUNGITUDE	M D B &M	CFS	GAGE HT.	DATE	O SCHAROL	ONLY	FROM	TO	GAGE	DATUM
37 21 27	120 14 05	NE 5 7S 16E	4460		12-24-5.	JAN 5-DATE		1950		3 200.	SCGS

Station located approximately 0.75 mile below Bear Dam. Tributary to San Joaq in River via Eastside Bypass. Flow regulated by Bear Reservoir. Records furnished by U. S. Corps of Engineera. Drainage area is 72 square miles.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO.	STATION NAME	
1965	856400	BURNS CREEK AT HORNITOS	

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	0.0	0.0	0.4	44	5.0	2 • 4	1.9	1.7	0 - /	0+2	0.0	0.0	1
2	0.0	0.0	0.4	24	4.3	2.2	2 • 1	1.8	0.7	0 • 1	0 • 0	0.0	2
3	0.0	0.0	0.5	82	4.5	2.0	2 • 2	1.7	0.6	0 • 2	0.0*	0.0	3
4	0.0	0.0	0.5	31	4 . 4	1.8	1.6	1.6	0.5	0.1	0.0	0.0	4
5	0.0*	0.0	0 • 4	20 *	22 *	1 . 7	1.3	1.7	0 • 4	0.1	0 • 0	0 • 0	5
6	0.0	0.0	0.3	571 E	16	1.8	2.6	1.7	0.4	0.1	0.0	0.0	6
7	0.0	0.0	0.3*	730 E	6.6	1.8	5 • 3	1.5*	0.3	0 • 1	0.0	0.0	7
8	0.0	0.0	0+3	62	5 • 2	1.6	60 *	1.3	0.4*	0 • 1 *	0.0	0.0	8
9	0.0	0 • 2	0.3	35	4.9	1.5	7.4	1.2	C • 4	0.1	0.0	0.0	9
10	0.0	15	0.3	24	4 • 3	1 • 4 *	300 E	1.0	0 • 4	0.1	0.0	0.0	10
1,,	0.0	13	0.4	18	4 • 2	1.5	90	0.8	0 • 4	0.1	0.0	0.0	11
12	0.0	41 *	0.3	14	3 • 8	2.2	27	0./	0 • 3	0.1	0.0	0.0	12
13	0.0	44	0.3	11	3 • 7	3 • 1	91	0.6	0 • 4	0 • 1	0.0	0.0	13
14	0.0	5.8	0.3	8.9	3.7	1.7	30	0./	0 • 4	0.1	0.0	0.0	14
15	C • O	3 • 1	0 • 4	7.6	3 • 4	1.4	15	0.7	0 • 3	0.1	0.0	C • O	15
16	0.0	2 • 1	0.3	6.5	3 • 1	1.3	10	0.6	0.3	0 • 1	0.0	0 • 0	16
17	0.0	1+6	0.4	5 . 8	2 • 9	1 • 3	7.5	0.6	0.3	0.0	0.0	0.0	17
18	0.0	1 • 3	0 • 4	5.4	2.5	1.4	5 • 6	0.6	0 • 3	0.1	0.0	0.0	18
19	0.0	1.0	0.9	6.4	2.5	1.3	5 • 2	0.7	0 • 3	0.1	0.0	0.0	19
20	0.0	0 • 9	0.8	6.6	2 • 5	1 • 3	4 • 4	0.8	0.3	0.0	C • O	0.0	20
21	0.0	0.8	0.9	5 • 4	2.6	1.0	4 • 3	1.0	0 • 2	0.0	0+0	0.0	21
22	0.0	0 • 7	3.7	4 • 8	2 • 2	1 • 1	3 • 5	1.1	C • 2	0.0	0.0	0.0	22
23	0.0*	0 • 6	332 #	24	2 • 1	1 • 2	3 • 1	1.2	0.3	0.0	0.0	0.0	23
24	0.0	0.6	585 €	34	2 • 0	1 • 1	2 • 9	1.0	0.3	0.0	0 • 0	0.0	24
25	0.0	0.6	49	9.8	1.8	1 • 1	2 • 8	1.2	0 • 3	0.0	0.0	0.0	25
26	0.0	0 • 8	228 Ë	7.9	1.9	1.1	2.5	1.0	0.2	0.0	0.0	0.0	26
27	0.0	0.6	132	6.7	3.9	9.8	2.4	1.1	0 • 2	0.0	0.0	0.0	27
28	0.0	0.5	188	6.2	2.9	3 . 8	2 • 2	0.9	0 • 2	0.0	0.0	0.0	28
29	0.0	0.4	64	6.2		2.0	2.0	0.9	0 + 2	0.0	0.0	0.1	29
30	0.0	0.4	80	5.5		1.8	1.8	0.8	0 • 2	0.0	0.0	0.1	30
31	0 • 0		234 E	5 • 2		1 . 8		0.8		0.0	C • O		31
MEAN	0.0	4.5	61.4	59.0	4.6	1 • 9	25.5	1.1	0.3	0 • 1	0.0	0.0	MEAN
MAX.	0.0	44.0	585 E	730 E	22.0	9 . 8	300 E	1.8	0 • 7	0 • 2	0 • 0	0 • 1	MAX.
MIN.	0+0	0.0	0 + 3	4.8	1.8	1.0	1.3	0.6	0 • 2	0.0	0.0	0.0	MIN.
AC. FT.		268	3780	3630	256	120	1520	65	21	4			AC.FT.

E — ESTIMATEO
NR — NO RECORD
* — DISCHARGE MEASUREMENT OR
OBSERVATION OF NO FLOW
— E AND *

MEAN.		MAXIMU	м			MINIMUM					
DISCHARGE 13•3	DISCHARGE 5900 E	GAGE HT. 9 • 37	MO.	DAY 7	0010	DISCHARGE 0 • 0	GAGE HT.	MO. 10	DAY 1	TIME 0000	

10	TAL
ACRE	
	9660

	LOCATIO	٧	МА	XIMUM DISCH	ARGE	PERIOD (OF RECORD		DATU	M OF GAGE	
LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECORD)	OISCHARGE	GAGE HEIGHT	PER	RIOD	ZERO	REF.
LATITUDE	LONGITUDE	M O B &M	CFS	GAGE HT.	DATE	OISCHARGE	OHLY	FROM	TO	GAGE	DATUM
37 29 42	120 14 17	SE17 5S 16E	9200E	10.66	2-15-62	DEC 58-DATE		1958		0.00	LOCAL

Station located 130 feet south of Stockton-Mariposa road, 0.2 mile southwest of Hornitos. Tributary of San Joaquin River via Bear Creek. Drainage area is 26.7 square miles. Maximum discharge of record from rating curve extended above 398 cfs. by slope-area measurement of peak flow. Previously reported as 4,340 cfs. Altitude of gage is approximately 780 feet (from U. S. Geological Survey topographic map).

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO	STATION NAME
1965	8564 1	BIRNS CREFY BEL W BIRN RESERVEIR

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	0.0	0.0	0.0	157	14	7.0	E .)	6.	0.0	0	0.0	r.	1
3	0.0	0.0	0.0	100	14	6.0	5.1	5.0	0.0	0.0	0.0	0.1	2
3	0.0	0.0	0.0	138	13	6+0	5.0	5.	0.0	0.0	1.0	0.0	3
4	0.0	0.0	0.0	124	11	5.0	5.0	5	0.1	C . f	0.0	0.	4
5	0.0	0.0	0.0	78	24	5.0	5.0	4.	0.0	0.	1.0	r.5	S
6	0.0	0.0	0.0	412	5 3	5.0	5.0	3.6	0.	0.0	0.1	0.0	6
7	0.0	0.0	0.0	1529	3.0	5.0	5.0	2 . 8	0.0	1.0	0.0	0.0	7
8	0.0	0.0	0.0	465	19	5	13	2.6	0.0	0.0	0.0	0.0	
9	0.0	0.0	0.0	125	14	5.0	81	3	9.00	0.0	0.0	Cou	9
10	0.0	18	0.0	96	13	4 a U	232	2 . 2	0.0	7.0	.0	0.0	10
11	0.0	14	0 • 0	84	11	4 a Ü	275	1.7	0.0	0.0	0.0	0.40	11
12	0.0	3.5	0.0	60	10	5	9.2	1.5	0 .1	0.0	0.7	0.0	12
13	0.0	19	0.0	55	9.0	6.0	123	1.4	0.0	0.0	0.0	0.0	13
14	0.0	5 • 0	0.0	46	9.0	6.0	120	1 + 2	0.7	0.0	0.0	0.0	14
15	0.0	3.0	0.0	40	9.0	5.0	5.2	1.	0.0	0.0	^.0	0.0	15
16	0.0	2.0	0.0	35	8.7	5.∪	36	. 7	0.	0.		0.0	16
17	0.0	1.5	0.0	3.0	8.0	5.0	24	0 4	0.0	0.0	0.0	0.0	17
18	0.0	1 • 2	0 • 1	26	8.0	4.0	17	0 + 2	0.0	0.0	0.0	0.0	18
19	0.0	1.0	0.2	26	8.0	4.0	14	•1	0.0	0.0	0.0	0.0	19
30	0.0	0.8	0 • 1	30	7.0	4.0	11	0.0	0.0	0.0	0.0	0.0	20
31	0.0	0.5	0.1	25	7.0	3.5	9	0.0	0.0	0.0	0.0	0.0	21
22	0.0	0.4	0.2	20	6.0	3.5	9.7	0.40	Uali	U.C.	0.0	0.5	33
23	0.0	0.3	303	19	6.0	3.5	9.0	0 a f	0.	(1.1)	0.0	0.0	33
34	0.0	0.2	761	98	5.0	3.0	10	0.0	3.0	0.0	0.0	0.0	34
25	0.0	0.2	164	46	5.0	3.0	11	0.0	0.0	C+0	^•0	٥.٠	25
26	0.0	0.1	253	2.8	5.1	3 • U	13	2.0	0.0	0.0	0.0	0.0	26
27	0.0	0.1	434	22	6.0	5.0	1.2	L.O	0.0	0.10	0.0	0.0	37
38	0.0	0.0	494	21	8.0	8.1	10	v.:	0.0	0.7	0.0	0.,	28
29	0.0	0.0	237	19		8.0	9.0	0.E	0.0	0.40	0.0	0.0	29
30	0.0	0.0	198	16		6.0	9.0	0.0	0.0	0.0	0.01	0.0	30
31	0.0		452	15		5.0		0.0		0.0	0.0		31
MEAN	0.0	2.4	106	129	12.0	4.9	40.0	1.6	:.0	0.0	0.0	0.0	
XAM	0.0	35.0	761	1529	53.0	8.0	275	6	9.0	0.1	7.0	0.0	MAX.
MIN.	0.0	0.0	0.0	15.0	5 • 0	3.0	5.0	Uel	3.0	0.0	0.0	0.0	
AC FT.		203	6540	7904	674	302	2410	96					AC.FT

E — ESTIMATED

NR — NO RECORD

• DISCHARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

H - E AND •

MEAN		MAXIMU	I AA				MINIM	Ú M		
DISCHARGE	DISCHARGE	GAGE HT.		DAY	TIME	DISCHARGE	GAGE HT		VAO	TUME
25.0	1672		1	7		0.0		10	1	

TOTAL ACRE FEET 18130

	LOCATION	1	MA	XIMUM DISCH	ARGE	PERIOD 0	F RECORD		DATU	M DF GAGE	GE	
LATITUDE	LONGITUDE	14 SEC T & R		OF RECOR	D	DISCHARGE	GAGE HEIGHT	PER	100	ZERO	REF	
LAITIUDE	LONGITODE	M D B &M	CF5	GAGE HT	DATE	51561141152	ONLY	FROM	TO	GAGE	DATUM	
37 22 27	120 16 35	NE 36 6S 15E	2590		12-24-55	APR 50-DATE		1950		260.60	USCGS	

Station located 0.5 mile below Burns Dam. Tributary to San Joaquin River via Bear Creek. Flow regulated by Burns Reservoir. Records furnished by U. S. Corps of Engineers. Drainage area is 73.8 square miles.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

CHIATER VEAR	STATION NO	STATION NAME	
WATER TEAR	STATION NO.	STATION NAME	
1965	807400	SAN JOAQUIN F	RIVER REAR FIEVIAL '

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	33	20	9.8	2670	315	75	95	160	118	144	45	127	1
2	27	21	8.7	2510	292 *	80	88	146	137	107	50	143	2
3	26	19	8.1*	2040	263	69	95	155	183	83	55	138	3
4	28	17	8.2	1670	242	46	95	161	186 *	74	55 *	123	4
5	31 *	14 *	7.9	1480	231	41	83	151	204	76	53	117	5
6	30	10	7.9	1580	221	39	70	144 '	185	88 *	51	118	6
7	2.8	9.7	7.7	2020	223	4.0	56	140	230	92	53	128 *	7
8	27	9.4	7.4	3930 #	252	40	132	127	213	86	53	131	8
9	27	9.9	7.0	4910 *	241	43 *	277	123	197	78	57	135	9
10	27	10	7.4	4350	258	44	825	118	237	71	55	203	10
11	26	8.4	8.0	3410	258	47	1150	114	232	63	55	189	- 11
12	25	9.3	7.6	2530	235	53	1820	102	215	6.0	53	173	12
13	21	8 . 8	7.6	1900	200	59	2140	89	190	60	58	170	13
14	19	17	7.8	1370	173	90	2150 *	78	175		69	160	14
15	17	87	7.8	1030	163	118	2070	76	196	54	71	166	15
16	15	65	8.3	837	153	111	1850	77	172	54	75	184	16
17	15	30	8 • 6	732	141	81	1610	85	167	46	86	192	17
18	17	33	9.0	635	123	60	1420	96	155	46	94	198	18
19	15	33	11	574	90	53	1150	104	137	42	96	195	19
20	15	30	9.9	535	68	57	884	99	124	40	94	191	20
21	15	26	9.1 E	488	60	5.2	728	83	121	38	93	179	21
22	15	23	9.6 E	461	54	58	580	90	89	4.7	94	151	22
23	14	2.2	11 E	442	52	61	521	100	78	49	91	134	23
24	16	21	70 E	410	52	66	474	110	98	58	8.8	141	24
25	16	19	469 E	424	50	66	347	124	99	61	101	149	25
26	12	17	975 E	458	53	62	343	127	115	50	110	143	26
27	10	15	1550 E	503	54	56	451	116	125	48	111	133	27
28	1.0	12	2240 #	523	62	5.5	366	105	137	46	119	129	28
29	16	12	2720 *	469		80	258	105	157	41	115	118	29
30	35	9.7	3150	397		143	196	115	159	40	109	111	3D
31	31		2920	352		124		116		47	110		31
MEAN	21.3	21.3	461	1472	164	66.7	744	114	161	62.6	78.0	152	MEAN
MAX.	35.0	87.0	3150	4910	315	143	2150	161	237	144	119	203	MAX.
MIN	10.0	8 . 4	7.0	352	50.0	39.0	56.0	76.0	78.0	38.7	45.0	111	MIN.
AC. FT.	1307	1266	28340 E	90530	9082	4104	44280	7014	9582	3852	4798	9062	AC FT

E — ESTIMATED

NR — NO RECORD

* — DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW

— E AND *

MEAN		MAXIMU	м				MINIMI	J M		
DISCHARGE	DISCHARGE	GAGE HT	MO.	DAY	TIME	DISCHARGE	GAGE HT.	мо	DAY	TIME
294	5020	72.20	1	9	1340	6.8	60.38	12	9	1500

TO	TAL
ACRE	FEET
21	3200

	LOCATION	(АМ	XIMUM DISCH	ARGE	PERIOD C	F RECORD		DATU	M OF GAGE	
LATITUDE	LONGITUDE	1'4 SEC. T & R		OF RECORD)	DISCHARGE	GAGE HEIGHT	PER	100	ZERO	REF
EXITIOUE	LONGITUDE	м D В &м	CFS	GAGE HT	DATE	OISCITATOE	OHLY	FROM	TO	GAGE	DATUM
37 17 42	120 51 00	26 7S 10E	6060	73.04	2-17-62	OCT 61-DATE	MAY 61-SEP 61	1961		0.00	USCGS

Station located on bridge 2.3 miles south of Stevinson on Lander Avenue.

DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND)

	STATION NO		
1965	RDD975	PANOCHE ORAIN NEAR DO PALI	

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	1.8	12	27 0	16	13	5.8	3.7	20	45	5 .	60	An	
2	20	12 +	23	15	15	5.5	3.8	21	45	59 0	60	59	
3	19	11	21	17	14	53 •	41	23	42 0	56	58	56	2
4	19	12	20	14	17	52	40	24 0	42	52	59	52	1
5	19	14	15	16	17	52	34 =	24	46	48	58	47	5
6	18	12	15	19	17	49	29	25	45	4.5	5.8	4.8	6
7	18	13	23	19	18	47	29	39	4.3	46	58	50	7
8	1.7	14	26	17	19	47	25	42	44	46	56	1	
9	16	17	2.2	15	19	47	2.5	3 R	46	49	58	1	9
10	17	28	33	13	50	47	2.5	34	4.3	5 D	63		10
11	19	18	24	13	17	47	25	39	42	51	66	54	11
12	18	19	21	13 .	20	49	23	43	42	5.5	67	52	12
13	1.8	15	18	15	21	54	23	43	42	57	67	51	12
14	16	12	17	15	21	46	22	4.3	44	57	68	4.8	14
15	16 *	11	18	14	25	47	23	46	47	57	68	46	1.5
16	18	13	17	17	25	46	24	46	49	56	68	44	16
17	16	14 E	20	14	32 *	4.5	25	47	51	54	68	43	1.7
18	1.5	19 E	28	13	4.0	47	26	43	53	51	67	43	1.8
19	17	15 #	23	13	4.0	4.5	23	4.1	56	50	65 .	43	19
20	1.8	13	21	13 E	41	44	2.7	Co Eo	61	49	63	3.2	20
21	20	11	20 +	13	44	42	23	46	6.3	46	63	26	21
22	17	15	20	13	66 6	47	21	4 A	67 6	49 8	63	26	22
23	17	24	72	13	44	49	20	4.8	52	49	6.3	25	22
24	13	2.2	19	13	51	46	20	49	50	49	64	26	24
25	15	21	14	13	51	40	19	4.8	5.0	4.8	65	26	25
26	16	21	18	13	53	39	21	48	48	49	67	30	26
27	17	20	2.2	13	55	42	2.2	5.2	47	49	68	3.0	27
28	20	20	18	14	58	37	21	46	49	52	6.8	25	28
29	45	23	18	13		36	21	6 6	6.3	5.8	66	24	29
3D	20	23	16	12		3.6	22	47	54	5.8	51	24	30
31	13		18	12		40		49		59	5 R		21
MEAN	18.2	16.5	20.5	14.3	30.4	46.7	25.6	40.43	48.3	51.8	63.3	47	MEAN
MAX	45.	28.0	33.0	1940	58.0	58.0	41.0	52 • 1	63.0	51.0	68 • D	61.0	MAX.
MIN	13.0	11.0	14.0	12.0	13.0	36.0	19.0	20.	4 . 7	45.0	56 • 0	24.0	MIN
AC. FT	1121	980	1263	879	1688	2838	1525	2479	2874	3185	3890	24/9	AC FT

E — ESTIMATED

NR — NO RECORD

- DISCHARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

— E AND **

MEAN		MAXIMU	I M				MINIM	U M		
DISCHARGE	DISCHARGE	GAGE HT	MO	DAY	TIME	DISCHARGE	GAGE HT	MO	DAY	TIME
34.8	69.0	8.73	8	16	1040	3,4	. 36	11	21	1410

TOTAL ACRE FEET 25200

	LOCATIO	Н	MA	XIMUM DISCH	ARGE	PERIOD O	F RECORD		DATU	M OF GAGE	
		1 4 SEC. T & R	OF RECORD			DISCHARGE	GAGE NEIGHT	PERIOD		ZERD	REF
LATITUDE	LONGITUDE	M 0 8 6 M	CFS	GAGE HT	DATE	DISCHARGE	DHLT	FROM	TO	GAGE	DATUM
36 55 2 5	120 41 19	NW 5 12S 12E	1,9.0	3.71	=-14-6_	FEB 59-SEP 62	OCT 62-JLL + 3	1959	DATE	-2.0	LOCAL

Station located midway between Outside and Main Canals of mile sout of Main Canal levee road, 5.6 les southwest of Dos Palos. This is drainage returned to San Joaquin River. Station is perat in der a cooperative a recent between the Department of Water Resources and the Pano he Drainage District. Altitude of age is a proximately 140 feet (from U. S. Geological Survey topographic ap).

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME 1965 852600 NORTH FORK MERCED RIVER NEAR COULTERVILLE

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	0.4	1.7	1.4	33	6.6	12	19	18	7.9	2.7	1.2	1.3	1
2	0.5	0.8*	2.3	23	4.4	11	23	19	7.3	3.2	1.0	1.0	2
3	0.5	0.3	2.6	54	2.2	9.7	25	18	7.0	2.5	1.2*	0.7	3
4	0.5	0.6	2 • 1	87 *	1.8	9.7	22	18	6 • 5	2 • 1	1.0	0.8	4
5	0.3	1.2	2 • 1	251 E	24 *	9.7	21	17	7.1	1.9	1.1	8 • 0	5
6	0.2	0.6	2 • 1	1380 E	32	11	27	17	6.7	1.9	1.0	1.2	6
7	0 • 2 *	1.5	2 • 2 *	656 E	16	12	33	15 *	6.2*	2.1	0 • 8	1.4*	7
8	0.2	2 • 6	2+1	203	12	11	60 *	14	6.6	2 • 8	0 • 8	1.3	8
9	0.1	5.8	2.5	126	11	10	93	14	6.6	2.5	0.7	1.1	10
10	0.3	8.0	2.6	96	8.7	10 *	84	13	6.3	2.1	0.8	1.0	'0
3.1	0.5	8.6	5.7	82	8 • 2	12	68	13	5.9	2 • 1	1 • 1	1.3	31
12	0.2	39 *	5.9	73	8 • 2	16	67	12	5 . 8	1.9	1.6	1.7	12
13	0.1	15	5 • 1	65	8.0	18	96	12	5 . 8	1.9	1 • 4	1.5	13
14	0.2	6.9	4.8	57	9.3	16	126	11	5 • 4	1.9	1.3	1.5	14
15	0.2	4 , 4	4.4	51	8.5	14	124	11	5 • 1	1.9	0.9	1.2	15
16	0.2	3.1	4 . 8	44	8.3	14	105	10	4.9	1.8	0.8	0.8	16
17	0.2	2.7	4 . 4	38	8 • 6	13	82	11	4.6	1.4	1.1	1.1	17
18	0.1	2.5	4 . 2	32	9.1	11	6.8	10	4 • 8	1.4	0.9	1.3	18
19	0.1	1.7	27	30	8.7	11	5.8	10	4.9	1.0	0.8	1.2	19
20	0 • 2	1.6	32	26 *	8 • 8	11	51	10	4.7	1.2	0.6	1.8	20
21	0.4	1.7	23 *	18	11	11	4.5	10	4.9	1.1*	0.5	1.4	21
22	0.4	1.5	227 E	12	11	11	3.8	10	5.0	0.9	0 • 6	1.0	22
23	0.7	1.4	865 #	28	11	11	34	9.9	4 • 6	0.9	0.6	1.2	23
24	0.9	1.1	739 E	85	9.7	11	32	9.5	5.1	1.0	0.5	0.9	24
25	0.9	1.1	150	54	9,9*	11	29	8.7	4.5	1.3	0 • 4	1.1	25
26	1.0	2.1	142	38	9.7	11	25	8.3	4 • 8	1.4	0 • 4	1.4	26
27	1.1	1.6	425	29	16	40	22	8 • 4	4 . 4	1.3	0.5	1.3	27
28	2 . 5	1.5	228	21	13	32	21	8.1	3 . 8	1.2	0.5	1.6	28
29	3 • 1	1.5	106	15		23	20	7.8	3.3	1.6	0.5	2.1	29
30	0.6	1.5	70	12		19	19	8 • 2	3 • 2	1.5	0.6	2.5	30
31	0.6		56	9 • 2		18		7 • 8		1.5	0 • 5		31
MEAN	0.6	4 • 1	102	120	10.6	14.2	51.2	11.9	5.5	1.7	0.8	1.3	MEAN
MAX.	3.1	39.0	865 F	1380 E	32.0	40.0	126	19.0	7.9	3.2	1.6	2.5	MAX.
MIN	0.1	0.3	1.4	9.2	1.8	9.7	19.0	7.8	3.2	0.9	0.4	0.7	MIN.
AC. FT.	35	245	6251E	7395	587	873	3049	733	325	107	51	76	AC.FT

E — ESTIMATED

NR — NO RECORO

- DISCHARGE MEASUREMENT OR
OBSERVATION OF ND FLOW

— E AND *

MEAN		MAXIMU	M		$\overline{}$. 4		MINIMI	J M		
DISCHARGE	DISCHARGE	GAGE HT	MO.	DAY	TIME	П	DISCHARGE	GAGE HT	MO	DAY	TIME
27.2	1860 €	6.67	1	6	0740	Ц	0.0		10	4	1920

TOTAL
ACRE FEET
19730

(LOCATIO	М	MA	XIMUM DISCH	ARGE	PERIOD C	F RECORD		DATU	M OF GAGE	
LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECOR		DISCHARGE	GAGE HEIGHT	PER	001	ZERO	REF.
EXIIIODE	EGRGITODE	M.D.B &M	CFS	GAGE HT.	DATE	Discitator	OHLY	FROM	TO	GAGE	DATUM
37 44 51	120 02 12	NW 19 2S 18E	3440E	7.83	1-31-63	DEC 58-DATE		1958		0.00	LOCAL

Station located 40 feet above Greeley Hill Road Bridge, 9 miles northeast of Coulterville. Drainage area is 30.3 square miles. Altitude of gage is 2,360 feet (from U. S. Geological Survey topographic map).

DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO STATION NAME

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	1.0	-1	7.4	44					3		, . 1	. 1	1
2	1.	.24	5.7	9.1	9.0	6 4 7	26	5.4	1.1				2
3		• 1	5 . 4	65	4 4	1.5	21		1 . 7	• 0			2
4		1 + 1	2 . 2	63 0	406	3.47	1.2	4.7	1.7			0.0	4
5	0.0	• 1	1.5	16	/ 4 0	• 5	2 *	4.1	1 • 0	. 0	U 4 A	- •	3
6	٠.	0 + 1	1 + 1	650 E	4.4	1.0		4.1	1.1	6.5	Ual		6
7	0.00	1.1	1.20	355 €	14.	4.1	24	4.10	1	4.7	1.1		
8	7.0	1 + 1	1.2	7.7	0 + 1	2 + 1	10 0	4.3	1 4 7	0.00			R
9	^.	, . 4	. 7	39	7.49	2 + :	13/	60 0	1.7	0.0	+1		
10	1.7	8 • 2	7.9	50	2 + 3	1.70	- 6 2	3 + 0	1.0	C + M		0.	10
11	1.0	9.3	3 . /	19	4 + 0	4.5	11/	2.1	1 . "	5.4		J.	111
12	n. 0	79 •	3 - 1	1 4	4 .	3 . 1	116	3 . 0	1.0~	(, e ~	U+4 1	U +==	12
13	n •	3.3	4 . 1	6.1	9 + 2	60	. 19	3 + 4	1.40		J + L	4	13
14	0.0	5 - 4	1.6	8.5	4.6	3 + 5	1 46	1 + 4	1+2	2 + 2	U = 1	-	14
15	1.	2.5	1 • 4	7.5	6 . 6	3 - 1	56	***	1 4 4	- • 4		7.0	15
16		1.6	1.2	6 - 1	: +8	2.8	52	300	1.3	4	5.1	7.0	16
17		1.1	1 - 1	5 • 2	5 + 6	4 . 2	3.2	2 + 7	1+3	L + C	U + Ū		17
18	^ · II	^ . 8	1.0	4.7	2 + 4	2 + 0	23	607	lec		0.40	0 1	18
19	n. 17	^ • 6	12	5	3 + 4	1.2	- 9	0	. 4.4	1.06	J • U	C	19
20	^ • `	1.5	11	5 • 0	3+2	2 • 4	1.4	2.1		U = 4	U+0	. •	20
21	0.0	1.5	10	4 • 2	3 • 2	2 = 1	11	∠ + ₫		1	. • 0		21
22	^ . 1/*	0.5	224 €	4 • 1	3 + 4	1.8	٥. ا	0	1 + 1	0	. • 0	10.4	22
23	1.0	2.4	760 #	C + 7	3 • 1	1.40	109	604	1.06	0.4	U • D	J •	23
24	^ •	. 4	578 c	23	3.0	T + D	7.4	∠ +4	400		0.0	9.00	24
25	^ · IT	n.3	57	1	۷.9	1.0	5 + 7	4.5	1.0	1	J • J		25
26	C+	1 + 2	143	8.0	4.9	1 + /	6 + L	4.44	Lead	0	3.0 [ţ.	26
27	0.0	7.7	232	7 . 2	4+2	25	2 + 5	4.3	1 - 1	1	0+1	0.0	27
28	0.0	0.5	137	7.0	3.5	1.1	5 + 2	2+1		Ces	U + 1	U +	28
29	n • -	11 . 4	60	6 + 3		0 + 4	2 + 4	6.1	0 + 7	0.1	0 + 4	0 +	29
30	0.0	* 64	50	5 . 2		4.5	2 + 2	4+4	1 + 5	0 + 1	0.1	٦.	30
21	0.0		8.9	5 • 8		4.1		2.4		C+1	0 * 4		21
MEAN	0.0	4.9	77-3	52.2	4.0	5.0	48 . /	3.5	1.44	6.3	U = 3	0.0	MEAN
MAX.	1 + 2	78.	760 E	656 E	11.0	25.0	139	5 + 4	- 0.3	U . 1		1	
MIN	1.0	1.1	0.4	60 a L	2.9	1.0	4.5	6.1	. 0	2+1	3+0	2.5	MIN
AC. FT.		293	4750	3227	254	233	2070	41.0	84	10	40	4	AC FT

E — ESTIMATED

NR — NO RECORD

• DISCHARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

- E AND *

MEAN		MAXIMU	M				MINIM	U M		
DISCHARGE	DISCHARGE	GAGE HT	MO	DAY	TIME	DISCHARGE	GAGE HT	MO	DAY	TIME
16.5	1770 E	5 • 71	1.2	23	200	• 0		10	1	6601

ACRE FEET
11970

	LOCATION	4	MA	XIMUM DISCH	IARGE	PERIOD C	F RECORD		DATU	M OF GAGE	
LATITUDE	LONGITUDE	1. 4 SEC. T & R		OF RECOR	0	DISCHARGE	GAGE HEIGHT	PER	100	ZERO	REF
LATITODE	LONGITODE	M O B &M	CFS	GAGE HT	DATE	OISCHARGE	ONLY	FROM	TO	GAGE	DATUM
37 42 58	120 11 20	SE 34 2S 16E	1770E	5.71	12-23-65	DEC 58-DATE		1958		0.00	LOCAL

Station located below Dogtown Road Bridge, 0.5 mile northeast of Coulterville. Tributary to Merced River. Drainage area is 17.0 square miles. Maximum discharge of record from rating curve extended above 698 cfs. Altitude of gage is 1,740 feet (from topographic map).

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

(WATER YEAR	STATION NO	STATION NAME
	1965	B05170	MERCEL RIVER HELOW INELLING

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1 2 3 4 5	1.3 1.4* 1.4 1.3	81 63 70 68 *	294 466 * 202 281 56	87 63 48 47 87	606 68 286 1660 *	58 4010 * 4350 3780 1810	13 * 12 11 11 741	564 2340 2490 ⇒ 2470 2430	1276 1280 * 1340 1380 1390	418 719 *** 422 398 399	106 102 * 99 97 97	66 66 * 70 66 67	1 2 3 4 5
6 7 8 9	1.7 1.5 1.5 1.7 1.7	43 35 40 52 230	34 26 21 18 16	4700 12600 * 8720 * 5990 3750	2290 2660 1010 79 46	3600 3710 3660 3440 3130	1340 1380 1770 1990 2990	2410 2390 2390 2310 2240	1420 1700 2570 3040 3210	331 229 214 216 185	104 96 88 83 79	66 67 78 92 77	6 7 8 9
11 12 13 14 15	7.7 2.1 1.8 1.8 1.8	427 532 1280 943 685	15 13 12 11	2070 * 172 943 2330 2570	39 466 2300 2310 2230	3010 1940 781 2780 2840	3420 684 109 453 3020 *	2210 1950 1040 1016 995	3250 3260 3240 3260 3250	5r 144 137 136 121	76 86 88 101 96	72 68 72 71 62	11 12 13 14 15
16 17 18 19 20	1.8 1.7 1.9 1.9	510 347 237 220 185	9.8 9.2 13 22 19	2580 2160 674 102 73	1680 1170 956 916 219	2970 2970 2180 122 130	3150 3160 2930 258 48	990 1010 1020 1030 1040	2140 621 571 610 545	121 127 131 136 122	93 97 83 82 82	59 57 52 46 43	16 17 18 19 20
21 22 23 24 25	1 • 8 1 • 8 2 • 1 3 • 6 3 • 8	256 201 178 164 176	23 71 83 158 136	57 752 2210 3110 3230	1210 1060 999 955 112	127 108 90 81 76	441 2790 2810 2580 2180	1090 1140 1180 1200 1240	475 255 234 341 1060	122 121 117 115 105	82 82 84 67 63	46 47 43 41 40	21 22 23 24 25
26 27 28 29 30 31	3.9 4.1 4.2 6.4 6.1	287 318 306 433 255	121 150 144 120 90 94	3040 1810 129 67 1720 1900	66 48 37	70 71 127 89 22 16	284 134 137 194 204	1250 1270 1270 1270 1290 1290	1390 607 221 228 236	113 112 106 112 117	75 76 71 71 71 71 67	41 35 32 52 97	26 27 28 29 30 31
MEAN MAX MIN AC. FT.	4.6 71.0 1.3 284	290 1280 35•0 17230	88.3 466 9.2 5431	2187 12600 47.0 134500	977 2660 37•0 54280	1682 4350 16•0 103400	1308 3420 11.0 77840	1543 2490 564 94850	1470 3260 221 87460	197 719 106 12110	85.3 106 63.0 5244	59•7 97•0 32•0 3552	MEAN MAX. MIN. AC.FT.

E -- ESTIMATED
NR -- NO RECORD
*- DISCMARGE MEASUREMENT OR
OBSERVATION OF NO FLOW
-- E AHD *

		MAXIMU						MINIM			
MEAN	·			_		16				_	
DISCHARGE	DISCHARGE	GAGE HT	MO	DAY	TIME	Ш	DISCHARGE	GAGE HT.	MO.	DAY	TIME
823	14500	17.10	1	7	1230	l	1.2	4.73	10	4	1650

TOTAL ACRE FEET 596200

(LOCATION	N	MA	XIMUM DISCH	ARGE	PERIOD O	F RECORD		DATU	M OF GAGE	
LATITUDE	LONGITUDE	1 4 SEC. T. & R		OF RECOR	D	DISCHARGE	GAGE HEIGHT	PER	HOD	ZERO	REF.
CATTIONE	LONGITODE	M D 8.&M	CFS	GAGE HT	DATE	Piocitalios	OHLY	FROM	TO	GAGE	DATUM
37 30 06	120 27 03	NE17 SS 14E	14500	17.10	1-7-65	NOV 58-DATE		1958		0.00	LOCAL

Station located 0.2 mile below Merced-Snelling highway bridge, 1.4 miles southwest of Snelling. Flow regulated by Exchequer powerplant and Lake McClure. Prior to November 1958, records available for a site 3.6 miles downstream. Altitude of gage is 221 feet. U.S. Geological Survey datum.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO STATION NAME 1965 805155 MERCED GIVER AT .R 5

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG	SEPT.	DAY
1	32	42	317	511	1690	194	134 .	157	1.50				1
2	30 •	57 4	389 •	285	552	1810	117	145	1000	764	136	108	. 2
2	29	83	476	229	338	3950	106	236 .	134	00	133 0	119	2
4	31	82	298	244	1080 +	4080	97	2410	1390	419	124	120	4
5	3.0	85	321	202	1910	2167 .	144	238	139	409	128	128	5
						210	144	230	139	204	128	159	,
6	25	93	144	1290	2190	294	136	2380	.400	412 0	128	132	6
7	29	94	94	11500 *	2750	3580	1600	2357	14.0	331	127	135	7
8	26	84	81	10200 •	2410	3590	1930	23 10	. 8	6.3	14	143	8
9	27	86	6.8	7400 *	703	3530	2140	2320	267	.50	138	145	9
10	23	96	58	4650	369	3190	2830	2260	291^	.08	122	147	10
11	16	225	62	3220 •	287	3077	3800	2200	2 480	178	121	137	11
12	24	514	51	1270	253	2890	2690	216	3 7		115	138	12
13	25	832	42	615	1450	900	727	1470		.43	1 10 7	145	12
14	20	1330	37	2070	2390	2136	669	1160	2950	134	152	134	14
15	15	934	34	2560	2400	2770	1990 •	1140	2971		158		
1 '3	15	734	34	2300	24:00	21711	1940 .	1140	297	116	154	152	1.5
16	26	740	33	2700	2150	2870	3390	1130	202	96	150	149	16
17	34	594	33	2690	1620	2960	3430	115	110	95	133	131	17
18	32	438	31	181~	1330	291	3410	116	" 4a	1	176	1 45	18
19	31	345	33	649	1210	1067	1940	1150	7466	11	131	139	19
20	29	298	3.3	419	873	422	477	1110	017	1 1 *	119	134	20
21	27	272	38	354	883	375	262	11 0	667	, 24	114	123	21
22	2.6	309	41	315	1340	342	1760	1241	47B	11~	125		22
23	26	272	132	1790	1260	295	2900	128^	ResE	121	125	123	23
24	28	248	1410 *	2750	123^	243	2870	13	313	119	104	121	24
25	28	221	912	3320	856	243	2530	131	0 0	126	109	1 9	25
26	29	233	392	3320	349	229	1490		1 10		111	116	26
27	29	345	849	2730	276	232	470	134			119	123	27
28	30	369	494	1190	239	252	341	1330	440	26	119	14	28
29	44	397	603	454	637	323	324	1310	292	122	123	114	28
30	51	467	368	712		242	364	132	26	12			30
31	46	407	454	2250		152	704	13.0	20	126	124	112	31
MEAN	00.0		0.0										MEAN
	28.9	340	269	2377	1228	1740	1544	1574	146"	203	128	129	
MAX	51.	1330	1410	11500	2750	4080	3800	2410	300	500	158	152	MAX.
MIN	15.0	42.0	31.0	202	239	152	97.0	357	260	1.40	104	107	MIN
(AC FT	1779	20200	16520	146200	5821C	107000	91860	9681"	c6970	12470	7872	7658	AC FT

E — ESTIMATED

NR — NO RECORD

• DISCMARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

~ E AND *

MEAN		_MAXIMI	JM			MINIMUM					
DISCHARGE	DISCHARGE	GAGE HT	MO	DAY	TIME	DISCHARGE	GAGE HT	MO	DAY	TIME	
916	14100	27,40	1	-	204	17.5	10,000	20	0.0	coor	

TOTAL ACRE FEET 663500

	LOCATIO:	4	МА	XIMUM DISCH	ARGE	PERIOD C	F RECORD		DATU	M DF GAGE	
LATITUDE	LONCITUDE	1 4 SEC T & R		OF RECORE	D	DISCHARGE	GAGE HEIGHT	PERIOD		ZERO	REF
CATITOOE	TTUDE LONGITUDE MD 8 8M		CF5	GAGE HT	DATE		ONLY	FROM	TO	GAGE	DATUM
37 25 28	120 39 47	SW 9 6S 12E	34400 22.67 12-4-50			JUL 41-DATE	APR 41-JUL 41	195		96.24	SCIES

Station located 150 feet below McSwain Bridge, immediately north of Cressey. Prior to May 20, 196. station located 250 feet upstream. Altitude of gage is approximately 85 feet. U. S. Coast and Geodetic Surrey datum.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME 808720 ORESTIMBA CREEK NEAR CROWS LANDING

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1 2 3 4 5	2 • 2 2 • 9 3 • 0 5 • 1 13 *	47 43 48 49 *	0 • 2 0 • 1 0 • 0 0 • 0 0 • 0	6.0 2.5 0.3 73 40 *	0.0 * 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 * 3.7	89 29 7•4 32 85	14 4 • 8 2 • 2 2 • 3 1 • 5 *	7.9 11 * 22 30 10	12 26 13 13	29 24 7•9 8•2*	43 23 12 39 21	1 2 3 4 5
6 7 8 9	15 17 18 8•9 4•7	33 22 18 17 17	0.0 0.0 0.4 1.4 0.6	225 335 0•0 0•0	0.0 0.0 0.0 0.0	22 12 2•3 0•4 0•4	90 58 * 84 104 86	0 48 1 48 1 45 2 40 1 47	7.0 9.7 14 18 7.7	13 * 13 13 10 13	14 15 14 11 7•9	19 21 * 8.8 7.6	6 7 8 9 10
11 12 13 14 15	4.9 3.5 2.9 1.3 1.1	18 17 19 23	0.7 1.7 1.5 2.0 1.0	0 • 0 0 • 0 0 • 0 0 • 0 0 • 0	0.0 0.2 1.9 1.2 0.0*	1.0 3.1 3.4 1.5 0.7	157 75 59 49 23	2.4 3.7 2.9 2.6 5.0	5.9 5.4 6.0 5.2	16 36 57 17 20	7.3 9.3 19 67 44	8.9 8.6 36 43 14	11 12 13 14 15
16 17 18 19 2D	0.8 0.1 0.0 0.8 2.5	16 13 12 8.0 4.7	0.9 0.5 0.3 1.1	0.0 0.0 0.0* 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.7 1.0* 0.2 0.3 0.4	25 41 52 44 17	14 6.8 5.8 6.4 6.9	19 15 31 21 37	20 19 20 33 18	20 * 29 15 14 8•9	16 14 * 19 6.7 5.8	16 17 18 19 20
21 22 23 24 25	3.0 1.7 0.7 0.1 0.0	3 • 8 2 • 8 3 • 3 3 • 5 3 • 7	0 • 3 * 0 • 3 0 • 2 0 • 3 0 • 1	0 • 0 0 • 0 0 • 0 0 • 0	0.5 0.3 0.3 1.3 1.0	1 • 8 2 • 4 3 • 4 3 • 2 5 • 0	42 65 49 19 2•4	5 • 3 5 • 9 8 • 6 21 20	15 7.6 7.7 8.2	20 17 16 13 15	22 12 18 8•2 7•8	0 • 1 0 • 6 2 • 9 41 5 • 1	21 22 23 24 25
26 27 28 29 30 31	0.0 10 21 28 53 64	4.0 3.9 3.5 1.8 0.6	0.1 0.0 0.1 0.1 0.1	0.0 0.0 0.0 0.0 0.0	0.0	3.7 6.5 2.6 7.6 4.0	2.1 2.6 5.6 4.9 5.4	42 32 27 9•9 10	21 16 15 13	27 13 12 14 17	8.6 26 27 10 9.4 17	0.3 13 0.6 0.6 17	26 27 28 29 30 31
MEAN MAX. MIN. AC. FT.	9.3 64.0 0.0 574	17.4 49.0 0.6 1033	0 • 5 2 • 0 0 • 0 2 9	22 • 0 335 0 • 0 1352	0.2 1.9 0.0 13	3 • 7 22 • 0 0 • 0 225	46.8 157 2.1 2786	9.1 42.0 0.8 559	14.1 37.0 5.2 838	18.7 57.0 10.0 1148	17.6 67.0 7.3 1080	15.3 43.0 0.1 910	MEAN MAX. MIN. AC.FT.

E — ESTIMATED

NR — NO RECORD

* — DISCHARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

- E AND *

MEAN		MAXIMU	М			1		MINIMI	J M		
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME	Г	DISCHARGE	GAGE HT.	MO.	DAY	TIME
14.6	526	5.72	1	6	1400	1	0.0		10	17	1640

TOTAL	
ACRE FEET	
10550	

1		LOCATION	1	MA	KIMUM DISCH	ARGE	PERIOD 0	F RECORD		DATU	M OF GAGE)
I	LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECOR		DISCHARGE	GAGE HEIGHT	PER	100	ZERO	REF.
į	LATITODE	CONGITODE	M.D.B.&M.	CFS	GAGE HT.	DATE	DISCHARGE	ONLY	FROM	то	GAGE	DATUM
	37 24 59	121 00 45	SW 8 6S 9E	2650E	12.08	2-1-63	DEC 57-DATE		1957		0.00	LOCAL

Station located 0.1 mile below River Road Bridge, 3.7 miles northeast of Crows Landing. This includes drainage returned to San Joaquin River. Daily flows are estimated during periods of backwater from San Joaquin River. Maximum discharge of record from rating curve extended above 1,654 cfs. Altitude of gage is approximately 50 feet (from U. S. Geological Survey topographic map).

DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO STATION NAME t 1 8 AN JUAG IN IVE AT HYL N

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	755	1080	810	4677	2916	135	141	145	1770	1 ' A	580	7.3	1
2	770	1150	810	4700	3220	1230	148	1790	1790	1030	525	7.3	2
2	820	860	780	4690	2860	128	146	1436	1770	775	500	710	3
4	880	735	780	4620	2510	2720	153	1890	1770	1090	575	640	4
3	880	720	810	4520	1950	348.	158	264	1790	108	547	71	5
6	8 75	705	750	4370	2720	3560	156	2761	1640	995	520	770	6
7	845	697	750	4400	3230	3201	163	2810	187	286	5.30	765	7
8	860	685	690	4820	3520	345	221	2861	194	1010	580	765	1
9	835	685	660	5100	3590	367	271	2910	2120	994	610	7.85	9
10	8 1 0	620	630	5310	3480	376∪	3190	2960	2680	955	625	785	10
11	780	660	660	5480	2880	3730	363	2920	3020	910	595	825	31
12	795	660	660	5470	2240	368	413	2830	319	865	770	850	12
12	825	675	660	5170	1910	3541	442	275	3290	990	835	840	13
14	845	780	630	5160	1900	332	4470	2670	3450	825	865	790	14
15	810	705	575	4890	2810	2610	4390	2180	3480	740	870	715	15
16	765	735	550	4560	3180	3140	4390	1857	3430	705	785	715	16
17	735	1400	560	4340	3180	3350	4560	1770	3450	675	715	775	17
18	705	1150	555	4210	3020	343C	4617	1710	3160	640	650	820	18
19	705	1100	555	3910	2690	3430	4620	1720	2010	625	000	835	19
20	705	1120	565	3680	2390	3100	4510	1740	1590	650	645	820	20
	705	1080	560	3150	2180	1020							
21						1820	403	1750	1530	660	520	770	21
22	720	1010	555	3380	1790	1520	351 r	1770	1370	645	670	820	22
23	705	980	590	2500	1910	1320	3320	1810	1280	595	695	775	23
24	6.75	810	1090	3590	2220	1180	3660	1910	1170	550	685	760	24
25	675	910	3260	3240	2280	1090	3790	2020	1120	580	665	730	25
26	705	880	4140	3980	2170	106	3790	1970	1130	605	685	740	26
27	705	845	4190	3830	1890	1110	3670	1870	1430	615	655	750	27
28	720	810	4360	4060	1470	1120	3170	1830	1640	605	670	820	28
29	895	845	4470	3830	}	1150	2210	1780	1470	570	655	835	29
30	910	845	4580	3260		1230	1720	1710	1190	580	715	865	30
31	1065		4640	2670		1280		1730		540	695		31
MEAN	790	864	1480	4244	25.75	2416	3178	2106	2091	779	662	776	MEAN
MAX.	1065	1400	4640	5480	3590	3760	4620	2960	3480	1090	870	865	MAX
MIN.	675	620	550	2500	1470	1060	1410	1290	1120	540	520	680	MIN
AC. FT.	48555	51431	90992	260945	143008	148562	189104	129501	124443	47891	40711	46175	

E - ESTIMATED

NR -- NO RECORD

-- DISCHARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

R -- E AND *

MEAN		MAXIML	M		_		MINIM	U M		
DISCHARGE 1825	DISCHARGE 5500	39.25	MO 1	DAY 12	TIME 0600	DISCHARGE	GAGE HT	мо	DAY	TIME
			_					_		

TOTAL ACRE FEET

1321318

	LOCATION	4	MA	XIMUM DISCH	ARGE	PERIOD (OF RECORD		DATU	OF GAGE	
LATITUOE	ATITUDE LONGITUDE 1/4 SEC. T. & F			OF RECORD	0	DISCHARGE GAGE HEIGHT PERIOD			RIOD	ZERO	REF
CATITODE	ATITUDE LONGITUDE M.D B &M.		CFS	GAGE HT	DATE		ONLY FROM		70	GAGE	DATUM
37 33 47	121 09 06	NW 25 4S 7E	23900	45.15	3-8-41	JUL 28-DATE		1960 1960	1959	0.00 0.00 3.81	USED USCGS USED

Station located at Laird Slough Bridge, 5 miles above the Tuolumne River. High flows bypaasing this station through old channel of San Joaquin River are included in figures shown. Records furnished by City of San Francisco.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME 804175 TUOLUMNE RIVER AT LAGRANGE BRIDGE

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	7.6	586	1140 *	7140	2920	2780	642	526	531	1030	23	23	1
2	7.0*	621	921	7010	2880	2800	1990	514	1180	424	38 *	25 26 *	2 3
3	7.2	609	993	6900	2890 *	2310 *	2460	517	1100 *	353 356	22 46	26 * 148	3
4	18	615	1050	6820 6920	3110 3870	1730 1620	2560 2090	653 1250	1100 * 920	355	115	2,6	5
5	7.9	641	764	6920	3870	1020	2090	1250	920	320	115	2.0	,
6	13	742	723	7940	4450	1650	1820 *	1230 *	523	352 *	67	0.2	6
7	7.2	610	1030	7530 *	4470	2150	1870	1180	510	351	23	0.6	7
8	2.4	595	1000	7020	4410	2470	1870	1110	558	351	23	^•I	8
9	2.5	694	978	7250	4450	2080	2800	1110	738	351	77	0.1	9
10	0.4	804 *	1020	7540	3980	693	3360	737	541	351	96	0.1	10
111	0.4	825	1060	7700	3680	336	3890	471	683	613	24	0 • 1	11
12	1.6	886	895	7610	3700	32	4540	477	1890	962	22	0.1	12
13	5.8	1200	759	7120	3700	27	5050	471	2290	388	21	0.1	13
14	10	1620	1310	3520	3660	37	5770	470	1350	392	21	19	14
15	9.6	1190	1310	2380	3160	132	6330	478	1150	375	21	13	15
16	9,5	906	1240	2380	2860	60	5040	460	2290	96	36	1.2	16
17	20	1080	1220	2330	2870	131	3720	794	1650	24	61	9.9	17
18	22	2000	1330	2230	2880	130	3590	1130	841	23	25	11	18
19	20	2050	1220	2250	2870	77	3440	1050	524	22	21	18	19
20	14	1940	1060	2300	2850	35	2860	1140	504	22	21	379	20
21	14	1890	1450	2380	2780	23	2880	1220	1260	92	20	497	21
22	15	1750	1870 E	2320	3100	22	2910	1550	2260	163	23	532	22
23	21	1530	3060 E	2310	3650	20	2890	2030	2070	25	26	537	23
24	19	1190	6360 E	2270	3720	315	2730	1850	2080	24	26	683	24
25	77	946	6030	3030	3510	318	2630	1210	1840	2.3	26	737	25
26	5 24	835	6170	3940	2910	333	2640	786	2060	23	25	711	26
27	653	860	6140	3480	2860	25	2160	704	2150	24	24	725	27
28	618	862	6700 *	3180	2780	21	1710	651	2140	23	24	890	28
29	577	860	6880	3170		315	1030	462	1570	23	24	1140	29
30	619	967	6850	3150		322	542	467	1390	3.2	23	1220	30
31	615		7090	3080		642		465		22	22		31
MEAN	127	1064	2569	4652	3392	763	2927	876	1316	247	34.4	279	MEAN
MAX.	653	2050	7090	7940	4470	2800	6330	2030	2290	1030	115	1220	MAX.
MIN.	0.4	586	723	2230	2780	20.0	542	460	504	22.0	20.0	0.1	MIN.
AC. FT.	7793	63280	157900	286000	188400	46880	174200	53880	78330	15180	2114	16580	AC FT.

E — ESTIMATED

NR — NO RECORD

• — DISCHARGE MEASUREMENT OR

085ERVATION OF NO FLOW

— E AND •

MEAN		MAXIMU	M					MIN	LMI	U M		
DISCHARGE	DISCHARGE	GAGE HT.	MQ.	DAY	TIME	ľ	DISCHARGE	GAGE	HT.	MO	DAY	TIME
1506	9190	76.49	1	7	0340	}	0.0			9	6	1830

TOTAL ACRE FEET 1091000

1		LOCATION	1	MA:	XIMUM DISCH	ARGE	PERIOD 0	F RECORD		DATU	M OF GAGE	
Ì		LOUGITURE	1/4 SEC. T. & R.		OF RECORD)	DISCHARGE	GAGE HEIGHT	PER		ZERO	REF.
	LATITUDE	LONGITUDE	M.D B &M	CF5	GAGE HT	DATE		OHLY	FROM	TO	GAGE	DATUM
۱	37 3 9 59	120 27 40	NW 20 3S 14E	48200	188.0	12-8-50	OCT 36-SEP 60		1937		0.00	USGS

Station located at highway bridge, immediately north of La Grange. Flow regulated by reservoirs and powerplants. Drainage area is 1,540 square miles. Altitude of gage is approximately 175 feet (from U. S. Geological Survey topographic map).

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO	STATION NAME
1965	804165	TUTT JANE RIVER AT ROBERT FERRY BHIDGE

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	29	708	1100 •	7450	2950	2880	562	516	423	1430	52	10	1
2	33 .	731	951	7280	2860	2900	1770	481	1 5	451	49 0	1.2	2
3	3.8	734	944	7220	2860 •	2630 •	2390	456	1 90	402	53	46	0 3
4	40	730	1030	7150	2910	2010	2530	499	111. •	367	54	9	4
5	37	727	862	7150	3620	1800	2290	1190	1060	365	75	116	S
6	48	772	682	8040	4330	1820	1910 •	1220 *	516	364 .	146	4	6
7	45	866	786	7900 •	4390	2040	1940	1190	467	364	105	35	7
8	50	705	968	7230	4340	2500	1880	112 ~	528	368	60	33	8
9	46	721	938	7560	4380	2420	2547	11 0	707	365	54	36	9
10	43	885 +	968	7650	4130	114 ^	3230	871	528	367	96	3 3	01
11	45	977	998	7940	3630	649	3570	441	526	434	123	31	11
12	4.0	1070	949	7790	3620	167	4180	430	1320	10-0	64	29	12
13	38	1270	764	7530	3660	114	4810	425	2361	580	57	29	13
14	36	1950	1000	4510	3620	97	5170	478	3590	418	52	26	14
15	44	1590	1280	2710	3360	163	5950	416	1150	438	50	3	1.5
16	51	121	1250	2660	2920	152	5250	419	192-	20	4 A	43	16
17	50	947	1190	2620	29110	176	3650	582	1910	126	55	36	17
18	55	2170	1300	2500	2910	194	3460	1090	1130	56	87	3.7	1.8
19	5 3	2300	1290	2500	2930	156	3440	1040	550	52	55	36	19
30	5.2	2330	1150	2530	2920	115	2800	1120	50	53	48	176	20
31	54	2200	1250	2590	2860	84	278	1200	839	55	4,4,	499	21
23	5.2	2n 30	1800	2550	2960	72	2780	1310	1990	225	43	46	22
23	53	1830	3670	2500	3590	68	2770	1970	2 /	86	42	-49	23
24	59	1337	7120	2470	3710	206	2650	1810	2040	5.7	3.9	640	3A
25	59	1190	6710	2840	3660	388	2510	1447	2 2	48	45	763	25
26	415	925	6680	3940	3010	471	2500	841	182	49	4.9	749	26
37	943	860	6760	3710	2980	263	2250	574	2121	51	66.66	7.6	27
28	A 2 2	A71	7070	3240	2900	84	1760	623	211	54	6.4	87	28
39	789	R53	7360	3220		210	1310	435	1840	54	45	119_	29
30	765	R72	7200 +	3180		390	570	⇒23	1330	55	40	134	30
31	759		7330	3110		670		423		56	34		31
MEAN	179	1212	2689	4879	3390	870	2840	843	1286	291	59.7	297	MEAN
MAX	841	2330	7960	8040	4390	2900	5950	1900	2360	1430	146	1340	MAX
MIN	29•1	705	582	247	2860	68.n	562	416	423	48.0	34.0	1 26	MIN
AC FT.	10990	72090	165300	300000	188300	53470	169000	51850	76530	17920	3671	1-6.	AC FT

E — ESTIMATEO

NR — NO RECORD

• DISCHARGE MEASUREMENT OR

DBSERVATION OF NO FLOW

— E AND **

MEAN		MAXIMU	M		
ISCHARGE	DISCHARGE	GAGE HT	MO	DAY	T
1556	8761	17.07	1	6	17

DISCHARGE GAGE HT MO DAY TIME

TOTAL ACRE FEET

	LOCATION	4	HA:	XIMUM DISCH	ARGE	PERIOD 0	F RECORD		DAT	UM OF GAGE	
	LATITUDE LONGITUDE 1/4 SEC T & R OF RECORD					DISCHARGE	GAGE NEIGHT	PERIOD		ZERO	REF
LATITUDE	LUNGITUUE	M.D 8 &M	CFS	GAGE HT	DATE	DISCHARGE	ONLY	FROM	10	GAGE	OATUM
37 38 08	120 37 03	NW35 3S 12E	49800	128.2	12-8-50	JUL 28-OCT 36 JAN 37-FEB 38 JUN 38-DATE		1930 1940	194	106.20	USCGS USCGS

Station located at highway bridge, 7.5 miles east of Waterford. Flow regulated by reservoirs and powerplants. Altitude of gage is approximately 110 feet (from U. S. Geological Survey topographic map).

DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME 1965 804150 TUOLUMNE RIVER AT HICKMAN BRIDGE

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1 2 2 4 5	89 94 * 97 102 97	633 644 675 674 683	1070 1080 946 * 1010 959	7700 7530 7440 7320 7270	3100 2960 2930 * 2960 3650	2950 2980 2770 * 2050 1780	817 1840 2730 2940 2750	597 568 549 518 1070 *	517 1010 1130 1150 *	1670 565 523 463 458	129 128 127 * 132 142	120 121 124 * 125 225	1 2 3 4 5
6 7 8 9	102 103 107 110 108	704 796 675 688 819 *	773 788 1000 975 967	8020 8030 * 7140 7480 7510	4340 4420 4390 4380 4230	1800 1960 2550 2530 1300	2240 * 2290 2240 2830 3750	1220 1210 1120 1120 990	660 561 605 752 655	455 455 * 468 458 467	217 188 149 132 161	140 132 116 115 113	6 7 8 9
11 12 13 14 15	111 107 107 121 185	890 945 1040 1630 1490	1000 1010 855 907 1270	7840 7680 7460 5110 2820 *	3680 3700 3720 3670 3470	710 * 302 251 160 170 *	4030 4650 5430 * 5800 6790 *	529 508 501 499 488	606 1140 2560 1750 1170	471 1080 746 500 517	213 200 149 134 131	110 115 113 110 109	11 12 13 14 15
16 17 18 19 20	141 136 132 128 128	1150 868 1820 2130 2170 *	1280 1200 1240 1290 1190	2730 2660 2550 2540 2530	2950 2950 2960 2950 2940	238 200 257 236 208	6280 4480 4220 4180 3490	501 572 1110 1070 1140	1860 2160 1310 660 604	381 222 143 127 125	130 132 161 152 133	125 122 122 124 143	16 17 18 19 20
21 22 23 24 25	130 133 133 144 148	2100 1990 1890 1410 *	1160 1620 3120 7260 6930	2600 2590 2580 2490 2790	2890 2960 3600 3780 3760	163 147 140 167 436	3370 3330 3320 3100 2850	1230 1260 1960 1930 1680	719 2060 2130 2160 2200	132 258 187 128 117	125 122 123 125 122	571 659 670 724 875	21 22 23 24 25
26 27 28 29 30	247 642 643 665 613	1040 931 947 923 932	6750 * 6990 7240 7740 * 7530 7580	4010 3860 3330 3290 3260 3210	3130 3040 2970	451 433 175 182 447 650	2830 2650 1970 1590 684	928 770 722 556 520 507	1890 2250 2260 2060 1400	120 124 130 131 132 137	129 125 125 125 120 114	873 879 941 1230 1440	26 27 28 29 30 31
MEAN MAX. MIN. AC. FT.	208 665 89•0 12800	1152 2170 633 68540	2733 7740 773 168100	4947 8030 2490 304200	3446 4420 2890 191400	929 2980 140 57110	3316 6790 684 197300	901 1960 488 55420	1371 2560 517 81580	384 1670 117 23580	142 217 114 8717	380 1440 109 22580	MEAN MAX. MIN. AC.FT.

E — ESTIMATED

NR — NO RECORD

* — DISCHARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

- E AND *

MEAN	C.	MAXIMU				(MINIM			`	í
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME	DISCHARGE	GAGE HT.	MO.	DAY	TIME	1
1645	8710	79.03	1	6	2000	86.0	71.3	10	1	0000	

TOTAL ACRE FEET 1191000

ſ	LOCATIO	н	AM.	XIMUM DISCH	ARGE	PERIOD 0	F RECORD		DATUM OF GAGE		
LATITUDE	LONGITUDE	1/4 SEC. T. & R		OF RECOR	0	DISCHARGE	GAGE HEIGHT	PE	100	ZERO	REF.
LATITUDE	LONGITUDE	M.D.B &M.	CFS	GAGE HT.	DATE	Orschange	OHLY	FROM	то	GAGE	DATUM
37 38 10	120 45 14	NW34 3S 11E	59000	96.2	12-8-50	JUL 32-OCT 36 JAN 37-MAR 37 JUL 37-FEB 38 JUL 38-DEC 38 MAR 39-DATE		1932		0.00	uscgs

Station located at Hickman-Waterford road bridge, immediately south of Waterford. Flow regulated by reservoirs and powerplants. Altitude of gage is approximately 80 feet. U.S. Coast and Geodetic Survey datum. In August 1964, this station was moved approximately one-quarter mile downstream to a point immediately upstream of the new Hickman-Waterford road bridge.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO.	STATION NAME	
1965	804130	DRY CREEK NEAR MODESTO	

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	51 +	40	18	699	43 0	25	162	8.2	69	112	130	65	
2	52	33	18	301	40	23 *	117	8.0	8.8	90	142	64	2
3	48	28	18	185	39	23	77	8.4	132	118	132 •	61 *	2
4	53	25 *	20 *	192	38	23	9.0	90 •	121 •	125	126	58	A
5	54	23	21	168 •	39	24	97 •	77	122	121	116	5.8	5
6	57	21	23	288	37	23	125	88	149	132	88	66	6
7	50	21	19	2830 0	74	23	120	89	148	140 0	46	79	7
8	58	20	19	1300	8.0	23	121	94	136	121	50	86	0
9	87	21	19	414	57	23	121	8 9	91	110	59	94	9
10	101	45	18	259	47	23	254	96	89	77	59	123	10
11	109	117	16	195	43	31	1130	92	130	55	74	119	11
12	116	94	14	159	41	43	546	94	143	58	108	123	12
13	111	97	14	137	37	1240 *	261	120	155	54	119	121	13
14	106	92	15	123	35	530	518	8.8	152	45	90	106	14
15	107	104	17	109	34	136 *	241	70	139	37	78	121	15
16	90	70	15	97	32	91	166	73	140	39	62	124	16
17	69	47	14	90	31	63	128	77	136	37	66	181	17
18	65	37	14	85	31	50	109	77	135	37	80	191	18
19	56	34	13	77	3.0	45	98	70	130	34	71	174	19
20	66	31	13	72	2.8	4.0	87	72	115	38	79	98	20
21	39	27	14	73	28	39	84	75	121	48	78	95	21
22	36	25	19	76	28	3.8	82	77	116	46	61	80	22
23	34	23	291	69	27	49	8 0	91	127	44	61	78	22
24	37	21	1880 *	66	76	53	1^6	128	131	41	65	70	24
25	39	18	2280	131	26	62	99	123	129	42	67	83	25
26	39	17	525 *	115	25	73	78	66	126	52	62	80	26
27	35	17	1220	83	25	113	52	59	163	90	62	111	27
28	35	18	956 *	67	24	148	56	5.4	157	98	66	127	28
29	96	17	893	57		119	54	6.5	132	104	69	129	29
30	108	17	449	51		110	65	66	112	104	78	102	30
31	62		357	47		100		6.5		107	65		31
MEAN	66.0	39.8	298	278	37.3	110	178	82.9	128	76.0	80.9	102	MEAN
MAX	116	117	2280	2830	80.0	1240	1130	128	163	140	142	191	MAX.
MIN	34.0	17.0	13.0	47.0	24.0	23.0	52.0	54.0	69.0	34.0	46.0	58.0	MIN
AC. FT.	4058	2370	18290	17090	2073	6756	10560	5100	7605	4673	4977	6087	AC FT

E — ESTIMATED

NR — NO RECORD

• — DISCHARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

8 — E AND •

MEAN	MAXIMUM											
DISCHARGE	DISCHARGE	GAGE HT	MO	DAY	TIME							
123	3390	84.52	12	25	0350							

MINIMUM

DISCHARGE GAGE HT MO DAY TIME
13.0 67.71 12 14 0740

89640

	LOCATION	(МА	XIMUM DISCH	ARGE	PERIOD C	OF RECORD	DATUM OF GAGE			
LATITUDE	LONGITUDE	1/4 SEC. T & R	OF RECORD			DISCHARGE	GAGE HEIGHT	PERIOD		ZERO	REF
LATITUDE	LONGITUDE	M.O.B.&M	CFS	GAGE HT.	OATE	orocit-in-	OHLY	FROM	TO	GAGE	DATUM
37 39 26	120 55 19	SE 24 3S 9E	7710	88.04	12-23-55	MAR 41-DATE		1941		0.00	uscas

Station located 0.1 mile below Claus Road Bridge, 4 miles east of Modesto. Tributary to Tuolumne River. Prior to March 1941, records available for a site 2.5 miles downstream. This is a Department of Water Resources-Modesto Irrigation District cooperative station. Drainage area is 192.3 square miles. Altitude of gage is approximately 80 feet. U. S. Coast and Geodetic Survey datum.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME TOOLUMNE PIVER AT TO CLM CITY

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	285	840	1220	8700	3660	3110	127^	1390	940	1870	460	370	1
2	485	813	1390	8793	3580	309.	149	1290	915	1810	455	380	2
3	285	790	1340	8480	3450	3 75	2490	1220	1410	1140	450	375	3
4	285	810	1280	8230	3370	283_	3070	1180	1560	1050	430	375	4
5	275	810	1340	B 40	35.80	2557	3040	1180	1591	945	430	3 2 5	5
6	290	815	1220	7850	4090	246.	301C	1660	1600	920	425	405	6
7	290	850	1750	8140	4590	2345	2760	1810	1240	870	435	415	7
8	296	920	1130	1 100	4780	2590	2840	1790	1096	86	410	400	8
9	295	860	1290	8197	4840	299-	2870	1740	1100	845	415	400	9
10	310	925	1270	830C	4840	2950	3517	1760	1220	772	300	401	10
11	3.25	1130	1290	9630	4400	2040	451	1580	1220	755	430	410	11
12	325	1240	1320	9650	4010	159	5431	1180	1230	910	510	405	12
13	330	1270	1270	9430	3950	1600	5800	1120	1950	1250	575	410	13
14	345	1 - 3	1110	8821	3950	2040	6370	1080	2860	1000	510	400	14
15	350	1950	1310	675^	397C	1070	682.	1040	2420	770	425	390	15
16	390	1820	1590	5100	3740	910	716	975	1990	745	425	405	16
17	340	1500	1580	435n	346n	905	652	1000	2580	630	410	430	17
18	295	1280	1530	4010	3390	875	5670	1100	2520	5.37	475	45	18
19	275	2100	1640	3790	3330	915	5490	1510	1780	450	390	440	19
20	255	2417	1630	3580	3200	855	531	1520	1230	410	395	435	20
21	250	2421	1530	3340	3260	740	4650	1570	1120	417	411	NP	21
22	255	2360	1640	3267	3180	690	4610	1670	1395	405	400	NR	22
23	255	2230	2120	3210	3340	665	388.	1880	2270	455	300	NR	23
24	250	2100	4310	3180	3760	660	390	2360	2440	445	380	NP	24
25	245	1700	8140	3211	387∩	680	3820	2340	2490	410	300	NP	25
26	240	1520	8640	3700	3760	855	366	202	2430	4-5	395	NR	26
27	280	1280	8730	446.	3210	925	3580	145	2380	410	390	NK	27
28	5.75	1210	8420	4560	3200	915	3040	128"	2400	430	3.8.0	1180	28
29	840	1190	856n	4210		725	249.	1180	2550	43^	3.8 C	1230	29
30	900	1180	8710	3940		735	1980	1040	2080	435	400	1470	30
31	840		8540	3750		8 9 5		970		430	375		31
MEAN	356	1391	3081	6154	3777	1589	4034	1448	1807	745	421	NR	MEAN
MAX.	900	2420	8730	10100	4840	3110	7160	2360	2860	1870	575	NR	MAX
MIN.	240	727	1050	3180	3180	660	127	970	915	475	375	NR	MIN.
AC. FT.	21917	87790	189421	378367	209772	97716	240 79	89C2R	107494	45818	25.884	NR	AC.FT

E — ESTIMATED

NR — NO RECORD

* — DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW

— E AND *

MEAN		MAXIMU	M		MINIMUM							
DISCHARGE	DISCHARGE 10500	39.50	MO. 1	B B	0300	DISCHARGE	GAGE HT	МО	DAY	TIME		

TOTAL ACRE FEET

LOCATION				MA	XIMUM DISCH	ARGE	PERIOD C	DATUM OF GAGE				
		LOHGITUDE	1 4 SEC. T. & R.		OF RECOR	D	DISCHARGE	GAGE HEIGHT	PE	RIOD	ZERO	REF.
LATITUDE	LATITUDE	CONGITUDE	M D B &M	CFS	GAGE HT	DATE	DISCHARGE	ONLY	FROM	то	GAGE	DATUM
ı	37 36 12	121 07 50	NW 7 4S 8E		46.65	12-9-50	30-DATE			1959	0.00	USED
I									1960		0.00	USCGS

Station located at highway bridge, 3.35 miles above mouth. Backwater at times, from the San Joaquin River, affects the stage-discharge relationship. Drainage area is 1,896 square miles. Records furnished by City of San Francisco.

DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO	STATION NAME
1965	7 60	AN A, 1 AT - 7 - 11 T - A,

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	N/D	40	1850	1 183	6 -		28	47	. 4	4.7	100	1	1
2	NR	NR	1927	: 77	634	4 4	326	4 1	. 49	1711	e 3		2
3	NR	Na	20 0	1 53	6180	416	483	148	78	7 ^	835	, 4	3
4	NR	40	1960	1 1371	5741	415	453	41	3/70	~4	A 7 ^	^ A -	4
5	NR	NP	1940	2911	6401	5.77	478	4.1	3250	4	9 ~	1 1 4	5
6	NA	NO	1930	945	1 4 g g ^	7	471	42	3.9	1941	g a	1 4 8	6
7	N⊇	NR	1870	9531	454°	- [3	460	434	408	1 46	15	14	7
8	NR	ND	1810	1 1 8 5 1	5947		6 8	4.3	411.	184	96	12.	8
9	V2	ND	1780	1191 ^	7170	= 4	516	451	4 5	179-	960		9
10	10	NB	1780	1211^	715	6	440	477	457	17	v7 5	1467	10
11	NR	No	1770	12310	6680	619	644	47	4810	. 7	12.		11
12	NR	NO	1780	12560	6760	487	7.76	434.	5010				12
13	NR	NA	18 0	1239"	577	4 6	867	416	. 24				13
14	NR	YR	178	1191^	5671	2.8	912	39 0		1.9	143	. 3	14
15	14	No	_7 n	1 ~ 2 3 ^	597	to .	-14	355	6141	144	faeu	, 40	15
16	VR.	NR	1770	0-5-	Ajun	1 -1 40		306	661	144	131	1.40	16
17	NR	NO.	1860	9460		u 1	947	170	546	. 1	1,2	110	17
18	NR	ND	1860	786	5270	417	Q I/	261	6.5	1 1 7 7	1 14	1 3 2 0	18
19	NR	NO	1910	7470	55-01	42	907	247	307		97	130	19
20	NR	NR	1970	708	534	La	693	246.	29	4 "		, 350	20
21	NR	NΩ	1930	647	51~	322	71. 64 PS	29	6	Q H ²	99	1.9	21
22	N. FI	N Q	1870	6.40	4910	25.8	7671	30 0	42-	QRE	1 6	125	22
23	NO	40	226 n	5960	4970	719		124	. 98	CHE	1 6	149	22
24	NR	NR	368∩	51A:	5230		727	41"		97"	107	C 40 "	24
25	NR	5560	8640	548)	552"	178	752	465 "	3170		36 =	161	25
26	*, R	221^	1194	69 1	5.5	186	7 60 60	424	3 6 10 "		99	1 40	26
27	NR	21 0	1 2690	7410	5 30	19"	71	462			ρ		27
28	NR	1989	11230	755^	6650	219	~ 6.7	2 ~ A	3,03		a	183	2.8
29	45	1900	11470	7290		2161	563	2775	3 9 J C	- 0 5		198"	29
30	No	1860	15440	6790		216	507	251	276	966	- 4 -	1,4	30
31	N 9		11110	624		238		453		14"	-11		31
MEAN	NŘ	VR.	3913	9 38	5851	3852	6738	3695	3931	484	28	1351	MEAN
MAX.	NB	No	11470	1256	7172	618		477	618	272	1637	. 14"	MAX.
MIN	NR	NR	1750	5961	465	178-	281	253"	2427	9 *	030	1000	MIN
AC FT.	NR	ND	240575	55874 -	1,4912	736866	40 919	-2"16"	1000.	1.40	63144	m - 30 -	AC FT

E — ESTIMATED

NR — NO RECORD

• OISCHARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

R — E AND **

MEAN		MAXIMI	J M				MINIM	U M		
DISCHARGE	DISCHARGE	GAGE HT	MO	DAY	TIME	DISCHARGE	GAGE HT	MO	DAY	TIME
- 1	1.2570	32.41	1:	12	16 0					

TOTAL ACRE FEET

	LOCATION	4	MA	XIMUM DISCH	ARGE	PERIOD O	F RECORD		DATU	OF GAGE	Ē
	LONGITUDE	1 4 SEC T & R		OF RECOR		DISCHARGE	GAGE HEIGHT	PEI	RIOD	ZERO	REF
LATITUDE	LUNGITUUE	M D B &M	CFS	GAGE HT	DATE	DISCHARGE	ONLY	FROM	TO	GAGE	DATUM
37 38 10	121 12 54	NE 32 3S 7E	384 €	38.43	4-2-40	MAR 33-DATE		196 196	19:9	3.51	USED USCGS · ISED

Station located 2.9 miles above the mouth of the Stanislaus River. Records furnished by City i San Francisc .

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO.	STATION NAM	E					
1965	803175	STANISLAUS	RIVER	ΑŢ	ORANGE	8L0SSOM	8R10GE	

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1 2 2 4 5	21 * 22 21 23 21	105 113 113 109 *	141 153 125 139 *	5440 4700 3460 1940 * 2150	2720 2700 * 2650 2430 2310	1740 1740 1730 * 1720 1720	1490 1670 1710 1690 1680 *	4450 4130 3420 2590 *	473 1230 1790 * 2350 4000	535 * 777 835 578 654	40 44 * 37 38 33	39 45 * 50 48 52	1 2 3 4 5
6 7 8 9	20 23 22 24 32	103 104 106 129 192	108 121 121 98 84	6340 12500 9940 6570 5680	2330 2360 2370 2370 2360	1730 1730 1720 1700 1500	1650 1550 1710 2150 2630	1850 1930 2540 2950 2910	4470 4440 4360 4310 4210	1030 887 540 292 140	36 35 37 39 40	58 52 47 38 72	6 7 8 9
11 12 13 14 15	28 25 24 29 76	126 153 168 113	68 60 71 82 74	4740 * 3780 3480 2930 2710	2320 2330 2330 2320 2290	1090 1650 2280 2050 2010	3710 3830 3960 3780 3880	2860 2850 2530 2230 1340	4130 4050 4010 3630 2900	103 69 59 52 42	36 54 44 44 40	68 69 74 93 99	11 12 13 14 15
16 17 18 19 20	88 88 87 87	101 99 98 103 106	95 367 170 132 142	2720 2720 2730 2640 2660	2060 1640 1680 1660 1650	1990 1980 1960 1940 1920	3890 3740 3430 3340 3550 *	498 129 * 87 76 75	1640 451 337 217 179	41 39 42 40 41	32 29 35 37 33	109 107 103 106 110	16 17 18 19 20
21 22 23 24 25	83 80 82 97 100	118 111 172 173 103	376 1830 * 6060 26500 * 16900	2870 4030 4620 4070 3570	1620 1600 1580 1600 1720	1800 1480 1240 917 808	3750 4300 4640 4340 4030	210 * 1940 2680 2460 2310	170 160 138 545 1500	44 38 37 44 41	45 44 42 40 37	104 57 42 38 38	21 22 22 23 24 25
26 27 28 29 30 31	95 88 85 102 100	142 133 112 94 96	8670 * 10500 10600 8420 * 6340 5870	2620 2290 2500 2720 2720 2730	1730 1750 1740	544 1130 1380 1410 1390 1410	3930 3920 4270 4480 4350	1850 868 478 251 252 216	1390 870 243 192 664	37 38 37 43 45	38 47 40 38 39 42	36 30 33 29 29	26 27 28 29 20 31
MEAN MAX. MIN. AC. FT.	60.5 120 20.0 3723	120 192 94.0 7140	3373 26500 60.0 207400	4018 12500 1940 247100	2079 2720 1580 115500	1594 2280 544 98000	3 2 35 4640 1490 192500	1771 4450 75.0 108900	1968 4470 138 117100	234 1030 37.0 14360	39.2 54.0 29.0 2410	62.5 110 29.0 3719	MEAN MAX. MIN. AC.FT.

E - ESTIMATED
NR - NO RECORO
- DISCHARGE MEASUREMENT OR
OBSERVATION OF NO FLOW
- E AND *

MEAN		MAXIMU	М	 _		MINIM	J M		_
DISCHARGE 1544	DISCHARGE 38800		MO 12	1710	DISCHARGE 19.0	1 • 35		5	TIME 2050

1118000

(LOCATIO	N	MA	XIMUM DISCH	IARGE	PERIOD O	F RECORD		DATU	M OF GAGE	
LATITUDE	TUDE LONGITUDE 1/4 SEC. T. & R OF RECORD		D	DISCHARGE	GAGE HEIGHT	PER	COI	ZERO	REF.		
LAIIIODE	LONGITODE	M.D.8.&M.	CFS	GAGE HT.	DATE	DISCHARGE	OHLY	FROM	TO	GAGE	DATUM
37 47 18	120 45 41	SW 4 2S 11E	52000	30.05	11-21-50	JUN 28-DEC 39				0.00	LOCAL

Station located at bridge, 5.0 miles east of Oakdale. Flow regulated by reservoirs and powerplants. Drainage area is 1,020 square miles. This station is equipped with radio telemeter. Altitude of gage is approximately 70 feet (from U. S. Geological Survey topographic map).

DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECONO)

WATER YEAR	STATION NO.	STATION NAME	
1965	803145	STANISLAUS RIVER AT RIVERBANK	

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	76 •	178	130	5690	2730	1770	1500	4500	491	664	100	104	1
2	72	165	206	4900	2710 •	1770	1670	4380	1100	780	104 •	108 •	2
2	68	171	194	3830	2660	1760	1720	3720	1670 +	938	108	117	2
4	66	170 €	158	5300 4	2520	1740 .	1710	2950 •	1910	764	96	122	4
5	74	169	192	2000	2330	1740	1700 +	2240	3190	685	96	124	S
6	75	167	180	4320	2340	1730	1710	2090	4140	916	92	117	6
7	76	166	148	10800	2350	1740	1590	2080	4190	975 •	93	115	7
8	74	161	182 •	10700	2370	1730	1630	2490	4140	732	92	111	8
9	74	166	174	6970	2360	1740	2060	2960	4080	523	98	104	9
10	73	256	148	5770	2360	1630	2680	2980	3980	311	102	119	10
n	73	264	131	5230 +	2320	1360	3560	2950	3910	243	103	143	11
12	75	201	111	3960	2310	1260	4050	2910	3820	196	145	140	12
12	74	241	100	3730	2290	2390	4210	2730	3750	160	138	140	12
14	106	208	132	3180	2290	2010	4000	2330	3600	144	123	148	14
15	117	161	144	2880	2270	1980	4150	1700	2980	128	126	171	15
16	144	146	140	2850	2220	1960	4080	884	2040	127	118	181	16
17	154	143	363	2830	1760	1930	4040	320 •	980	120	101	191	17
18	148	139	350	2810	1780	1920	3730	230	653	130	104	185	14
19	149	134	279	2770	1760	1900	3520	201	503	119	105	193	19
20	151	138	281	2710	1750	1880	3780 •	198	401	108	109	210	20
21	146	142	270	2800	1730	1830	3780	201 •	378	112	110	213	21
22	147	148	1220 +	3350	1710	1590	4290	1140	345	113	115	190	22
23	145	140	3830	4710	1690	1420	4930	2240	306	109	114	138	23
24	148	234	16700 #	4070	1660	1120	4640	2250	311	112	122	115	24
25	161	153	18900 E	3830	1770	1040	4360	2030	1280	114	121	120	25
26	160	173	9170 •	2820	1790	893	4140	1990	1440	117	118	120	26
27	157	384	10300	2430	1800	1050	4040	1140	1090	114	120	112	27
28	158	167	10800	2490	1780	1450	4180	788	647	117	113	108	28
29	192	149	9240 •	2750		1460	4670	508	332	114	114	115	29
30	185	129	6780	2730		1470	4460	485	602	103	112	115	30
21	169		6010	2730		1470		488		105	108		21
MEAN	119	172	3128	4030	2122	1637	3349	1874	1942	322	110	140	MEAN
MAX.	192	264	18900 F	10800	2730	2390	4930	4500	4190	975	145	213	MAX
MIN.	66.0	129	100	2000	1660	893	1500	198	306	103	92.0	104	MIN
AC. FT.	7313	10240	192300	247800	117800	100600	199300	115200	115600	19820	6783	8309	AC FT

E -- ESTIMATED

NR -- NO RECORD

-- DISCHARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

N -- E AND 6

MEAN		MAXIMUM						MINIM	J M		_
DISCHARGE	DISCHARGE	GAGE HT	MO	DAY	TIME	11	DISCHARGE	GAGE HT	MO	DAY	TIME
1576	26800 E	97.92	12	25	0000	Ш	65.0	72.63	10	4	1200

ACRE PEET 1141000

(LOCATIO	N	MA	XIMUM DISCH	ARGE	PERIOD C	F RECORD		DATU	M OF GAGE)
LATITUDE	LONGITUDE	1/4 SEC. T & R		OF RECOR	0	DISCHARGE	GAGE HEIGHT	PER	100	ZERD	REF
LATITUDE	LONGITUDE	M D 8 8.M	CFS	GAGE HT.	DATE	Discharge	ONLY	FROM	TO	GAGE	D4TUM
34 44 31	120 56 21	SW 24 2S 9E	85800	103.18	12-23-55	JUL 40-DATE		1940		0.00	USCGS

Station located at Burneyville Bridge, immediately north of Riverbank. Drainage area is 1,055 square miles.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO.	STATION NAME
1965	903115	STANISLAUS FIVER AT KOETITZ RANCH

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1 2 3 4 5	188 195 * 165 157	211 211 203 200 202	203 199 224 * 235 219	5460 5300 5000 4120 *	2700 2690 * 2670 2610 2440	1780 1780 1780 1780 1770 *	1840 1900 2070 2160 2140	. 4350 4380 4250 3660 2790 *	705 767 1340 * 1790 2300	903 822 922 1050 955	289 254 * 242 249 229	305 298 * 319 356 363	1 2 3 4 5
6 7 8 9	168 165 174 195	202 200 201 204 213	226 227 209 216 219	2680 4630 6771 6320 5700	2320 2320 2340 2340 2350	1770 1770 1760 1800 1840	2190 2190 * 2050 2240 2710	2260 2160 2230 2740 3050	3380 3990 4140 4200 4210	943 1120 * 1070 831 660	234 249 284 279 233	387 378 355 348 337	6 7 8 9
11 12 13 14	186 173 169 183 189	266 305 282 290 265	206 197 186 177 187	5350 5050 4400 3920 3350	2330 2310 2310 2300 2300	1620 1360 1960 2330 2190	3170 3880 4220 4340 4240	3010 2970 2950 2670 2380	4150 4040 4020 4010 3780	547 474 391 343 315	239 312 350 344 325	332 343 334 327 296	11 12 13 14
16 17 18 19	193 210 211 192 181	232 218 209 203 200	194 193 275 328 304	3070 3000 2950 2920 2820	2290 2050 1780 1760 1740	2120 2070 2040 2030 2020	4200 4210 4150 3910 3800	1720 1160 811 659 647	3140 2080 1200 1000 857	293 290 352 336 312	325 277 241 253 247	355 391 382 371 426	16 17 18 19 20
21 22 23 24 25	176 172 175 181 187	200 201 202 201 235	298 323 1230 3440 * 8415 F	2790 2970 3680 4320 4130	1720 1680 1660 1630 1670	2000 1900 1700 1500 1230	3930 4010 4340 4630 4570	565 637 1840 2550 2490	788 672 597 553 757	285 287 257 273 270	268 276 243 229 241	426 373 351 339 352	21 22 23 24 25
26 27 28 29 30	192 191 194 202 225	228 219 229 222 211	7070 E 6600 E 6815 E 6715 E 6300 E 5710	3630 2780 2460 2600 2730 2720	1760 1780 1780	1150 1090 1460 1600 1640	4380 * 4180 4110 4240 4410	2440 1990 1280 990 798 754	1510 1540 1260 781 621	264 253 242 261 237 261	251 243 234 263 332 306	389 419 377 384 369	26 27 28 29 30 31
MEAN MAX. MIN. AC. FT.	186 227 157 11420	222 305 200 13220	1850 8415 F 177 113700E	3880 6770 2460 238600	2130 2700 1630 118300	1758 2330 1090 108100	3480 4630 1840 207100	2167 4380 565 133300	2139 4210 553 127300	510 1120 237 31380	269 350 229 16540	359 426 296 21390	MEAN MAX. MIN. AC FT

E — ESTIMATED

NR — NO RECORD

• — OISCMARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

— E AHD *

MEAN		MAXIMI	J M				MINIM	J M		
DISCHARGE	DISCHARGE	GAGE HT	MO	DAY	TIME	DISCHARGE	GAGE HT.	MO	DAY	TIME
1575	9670 F	49.81	12	25	0710	147	27.18	10	44	0130

TOTAL 1140000

LOCATION		MAXIMUM DISCHARGE					DATU		OF GAGE	
LONGITUDE	1/4 SEC. T & R		OF RECOR	0	DISCHARGE	GAGE NEIGHT	PER	100	ZERO	REF.
LUNGITUUE	M D 8 & M	CF5	GAGE HT	DATE	DISCHARGE	ONLY	FROM	TO	GAGE	DATUM
121 10 OB	SW 2 3S 7E				OCT 62-DATE	MAR 50-SEP 62	1950 1951	1951	0.00	USED
	LONGITUDE	LONGITUDE 1/4 SEC. T & R	LONGITUDE 1/4 SEC. T & R M O 8 &M CFS	LONGITUDE 1/4 SEC. T & R DF RECOR M O 8 &M CFS GAGE HT	LONGITUDE 1/4 SEC. T & R DF RECORD M O 8 &M CFS GAGE HT DATE	LONGITUDE 1.4 SEC. T & R OF RECORD OISCHARGE LONGITUDE 1.4 SEC. T & R M O 8 &M CFS GAGE HT DATE	LONGITUDE 1.4 SEC. T & R OF RECORD OISCHARGE GAGE NEIGHT ONLY	LONGITUDE	LONGITUDE	LONGITUDE 1/4 SEC. T & R OF RECORD OISCHARGE GAGE NEIGHT PERIOD ZERO ON

Station located on left bank 9.35 miles above mouth, 0.6 mile northwest of Bacon and Gates Road junction, 3.7 miles southwest of Ripon. It is possible that backwater from San Joaquin River could affect the stage-discharge relationship. When the water stage reaches a gage height of 45 feet (approximately 6,000 cfs), and overflow condition occurs at the gage making it necessary to estimate flows above 45-foot stage. These estimates are based on flows at the Stanislaus River at Ripon gage. Altitude of gage is approximately 50 feet.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO.	STATION NAME

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	1410	2170	2130	1847	8500	594	4 9			Total Control			1
2	1480 •	2140	2210	17800	8750	574 .	467 +	6A : +	3370	6.90	1 4		2
3	1420	2050	2290 *	17300	8627 *	561	524	641	3350	36	1-6	120-	3
4	1390	1860	2140	16600	8121	6 5	6 7	6	3810 0	114	17/4	13	4
S	1410	1820	2170	15200	7731	674	64	615	461 5031	3 ° 2 3 ° 8	955	1320	5
6	1430	1790	2150	14 00	7940	7~2	639	6.8	5 (70		VA 5	154-	6
7	1450	1770	2070	14300	A720	67A I	6.2	5,89	664"	285	1 3	1540	7
8	1400	1790	1930	18100 +	9360	67.	6677	5920	6750	2861	1111	16	
9	1410	1780	2020	21800 *	975,	732	678	63.	683.	676	1 4	151-	9
10	1430	1790	2020	22 00	9871	7 (771	674	71 .	2:4-	1 8	14	01 0
11	1470	1900 •	1990	22000	9267	715	928	67H	741	2	1 #	161	11
12	1440	2050	2020	22700	9360	62	11.00	64	7677	3	134	157	12
13	1440	2080	2040	22100	7930	6.00	127	6.2	0010	23	172	1610	13
14	1500	2150	1940	20500	7730	718	130 - 4	5.96	9130	22	1920	1510	14
15	1520	2460	1840	18000 •	7970	5991	141	- 3 e	4590	y. "	175	1367	15
16	153.	3010	2061	1511	8430	545	14. 0	461	544	176	681	1360	16
17	1461	2950	23.50	1280	826	571	44	399	~64	16	2.6		1.7
18	1360	2610	7170	11500	7790	5790	4.3	364	6950	64	124	16 0	18
19	1290	2660	2220	10800	7430	5.3.2	138	3 4 4	4490	12. 0	1127	16	19
20	1187	3100	2310	1010	7100	£74	134	367"	4147	12 ^	116	1747	20
21	1140	328n	2261	922	69	486	1. *.	161	164	11.	1.4	1510	21
22	1150	324	2200	865	661^	4.6	115	374	334	1 19	1 3-	17:0	22
23	1147	3121	2780	8671	6477	3 h	1 6	454	p.7		126		23
24	1140	3,000	4950	9227	6890	329	1 801	5 8 4 1	3034	1040	116	196	24
25	1160	2750	14000	9630	7 60	292		6.25	3357	117	1140 0	1000	25
26	1200 *	2520	19800 •	10100	7180	294		614"	4371		.161	2190	26
27	1220	23nn	18700	1 400	681	291	1 6	554	479"		1210	2 90	27
28	1410	2180	20100	1 1500	£24°	327	973	452	5080 0		114	2 70	28
29	1780	2150	20900	1 (20)		343	946	392	676	11.8		24 7	29
3D	1940	2150	205 0 0	9600		342	793	362.	418	1050 0	1260	2160	30
31	2050		19200	8800		366		36		1010	121"		31
MEAN	1411	2355	6037	14381	7929	53.6	9899	5296	5457	1073	1221	1678	MEAN
MAX	217511	328 1	21910	22700	987	7.7	145	6891	Z A	372	182	2560	MAX
MIN	114	177	1840	865	6340	400	4-9	350	334	1 1	455	118	MIN
AC. FT.	86780	141210	371200	98440	4,4,021	32761	5.867*	3256.	336, ^	1213	74 6	34871	AC FT

E — ESTIMATED

NR — NO RECORD

• — DISCHARGE MEASUREMENT OR

DBSERVATION OF NO FLOW

- E AND "

MEAN		MAXIMU	M)		MINIM	U.M.		
DISCHARGE	DISCHARGE	GAGE HT	MO	DAY	TIME	DISCHARGE	GAGE HT	МО	YAG	DME
5247	. 29	3- + 27	1		1.2				1 1	

TOTAL ACRE FEET

	LOCATION	1	MA	XIMUM DISCH	ARGE	PERIOD O	F RECORD		DATU	OF GAGE	
	LONGITUDE	1 4 5EC T & R		OF RECORT)	DISCHARGE	GAGE HEIGHT	PER	100	ZERO	REF
LATITUDE	LUNGITUDE	M D B &M	CF5	GAGE HT.	OATE	BISCITANGE	OHLY	FROM	TO	GAGE	DATUM
37 40 34	121 15 51		79000	27.75	12-9-50	JUL 22-DEC 23		1931		8.4	USED
						JUN 25-OCT 28 MAY 29-DATE		1959	1959	5.06	USCGS USCGS

Station located on left bank 30 feet above the Durham Ferry Highway Bridge, 3 miles below the Stanislaus River 3.4 miles northeast of Vernalis. Drainage area is approximately 14 to 100 square miles. Natural flow of stream affected by storage reservoirs, power development, ground water withdrawal and diversions for irrigation. Low flows consist mainly of return flow from irrigation. This station is operated under the Federal-State Cooperative Program. Equipped with DWR radio telemeter. The records are furnished by the 1. S. Geological Strey.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME SOUTH FORK KINGS RIVER BELCW EMPIRE WEIR #2 1965 C01120

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	22	0.0	0.0	0.0	5.8	0.0	0.2	c.0	0.0	18	24	113	1
2	17	0.0	0.0	0.0	5.8	0.0	0.0	0.0	0.0	1.8	23	113	2
3	17	0.0	0.0	0.0	61	0.0	0.0	0.0	0 + 0	18	22	140	3
4	17	0.0	0.0	0.0	63	0.0	6.0	0.0	0.0	18	21	162	4
5	10	0.0	0.0	0.0	61	0.0	0.0	0.0	0.0	20	19	165	5
	19	0.0	0.0	0.0	61	0.0	0.0	0.0	0.0	19	19	172	6
6 7	19	0.0	0.0	0.0	22	0.0	0.0	0.0	0.0	19	66	172	7
	19	0.0	0.0	0.0	14	0.0	0.0	0.0	0.0	19	94	169	8
8	19	0.0	0.0	26	13	0.0	0.0	0.0	0.0	6.0	102	172	9
9	18	0.0	0.0	54	4.0	0.0	0.0	0.0	0.0	0.0	102	189	10
	10	0.0	0.0	54	0.0	0.0	6.0	U.0	0.0	0.0	107	220	111
11	18	0.0		52	0.0	0.0	0.0	3.0	0.0	0.0	110	220	12
12	16	0.0	0.0		0.0	0.0		0.0	0.0	0.0	110	220	13
12	6.0	0.0	0.0	19	0.0	0.0		0.0	0.0	0.0	113	234	14
14	0.0	0.0	0.0	0.0					0.0	0.0	113	234	15
15	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			13
16	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	111	213	16
17	0.0	0.0	0.0	0.0	0.0	6.0	0.0	0.0	0.0	11	113	175	17
18	0.0	0.0	0.0	0.3	0.0	0.0		1.0	0.0	18	122	159	18
19	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	2.2	128	149	19
20	0.0	0.0	0.0	0.0	0.0	0.0	21	0.0	0.0	24	110	125	20
20	(7.0)		1.0	7,0	0.0								
21	0.0	0.0	0.0	0.0	0.0	0.0	15	0.0	0.0	24	122	125	21
22	0.0	0.0	0.0	0.0	0.0	0.0	C.0	€ • 73	11	24	125	122	22
23	0.0	0.0	0.0	0.1	0.0	6.0	0.0	0.0	16	26	127	122	23
24	0.0	0.0	0.0	0.0	0.0	0.0	7.0	C • O	16	26	131	102	24
25	0.0	0.0	0.0	0.0	0.0	L • J	0.0	0.0	16	28	128	20	25
26	0.0	0.0	0.0	8.0	0.0	0.0	0.0	0.0	18	28	119	0.0	26
27	0.0	0.0	0.0	13	0.0	0.0	0.0	0.0	18	24	113	0.0	27
28	0.0	0.0	0.0	31	0.0	0.0	0.0	0.0	18	24	113	0.0	28
29	0.0	0.0	0.0	45		0.0	0.0	0.0	18	24	119	0.0	29
30	0.0	0.0	0.0	54		0.0	0.0	0.0	18	24	122	0.0	30
21	2.0		0.0	57		0.0		.0		24	110		31
MEAN	7.0	0.0	0.0	13.0	15.0	0.0	1.0	0.0	5.0	16.0	95.0	133	MEAN
MAX.	22.0	0.0	0.0	57.0	63.0	0.0	21.0	0.0	18.0	28.0	131	234	MAX.
MIN.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.0	19.0	0.0	MIN.
		0.0	0.0			0.0	71	.0.5	296	1004	5867	7948	AC FT.
AC. FT.	446			819	823	1	/ 1		296	1004	2801	1940	

E — ESTIMATED

NR — NO RECORD

• — DISCHARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

— E AND *

MEAN		M.A.X.I.M.I	J M				MINIM	JM		
DISCHARGE	DISCHARGE	GAGE HT	MO.	DAY	TIME	DISCHARGE	GAGE HT.	MO	DAY	TIME
23.9)		1				
		ł	1	1			1	ì		

TOTAL ACRE PEET 17274

	LOCATIO	4	МА	XIMUM DISCH	ARGE	PERIOD C	F RECORD		DATU	M OF GAGE	
LATITUDE	LONGITUDE	1/4 SEC. T & R		OF RECOR	0	DISCHARGE	GAGE HEIGHT	PER	ODI	ZERO	REF.
LATITODE	LONGITODE	м. D В &м.	CFS	GAGE HT.	DATE	SISCHARGE	ONLY	FROM	то	GAGE	DATUM
36 10	119 50	20S 19E									

Station located 1.0 mile southwest of Stratford. South Fork Kings River, composed of Kings River water, is a tributary to the Tulare Lake area. Records furnished by Kings River Water Association.

DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO	STATION NAME	
1965	CD2602	CROSS CREEK BELOW LAKELAND CANAL N2	

OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
												1 2
												3 4 5
												6 7
												9 1D
												11
												12 14 15
												16
												18 19 20
												21
												22 24 25
												26 27
			22 27									28
												30
			1.6 27 0.0 97									MEAN MAX. MIN AC FT
	ост.	OCT. NOV.	OCT. NOV. DEC.	22 27	22 27	22 27	22 27	22 27	22 27	22 27	22 27	22 27

E — ESTIMATED

NR — NO RECORD

• DISCHARGE MEASUREMENT OR

OBSE RYATION OF NO FLOW

R — E AND •

MEAN		MAXIMI	J M		
DISCHARGE 0.1	DISCHARGE	GAGE HT.	МО	DAY	TIME

MINIMUM
GAGE HT MO DAY DISCHARGE 0.0

TOTAL ACRE PEET 97

	LOCATION	4	MA	XIMUM DISCH	ARGE	PERIOD C	F RECORD		DATU	M DF GAGE	
LATITUDE	LONGITUDE	1.4 SEC T & R		OF RECOR	0	DISCHARGE	GAGE HEIGHT	PER	RIDD	ZERO	REF
CATTIONE	CONGITUDE	M D B &M	CFS	GAGE HT	DATE	DISCHARGE	ONLY	FROM	TD	GAGE	DATUM
36 12 42	119 34 05	NE10 20S 22E				21-DATE					

Station located below Cross Creek Weir, 4 miles east of Guernsey. Tributary to Tulare Lake area. At times the flow is a Combination of water from Kaweah River, Kings River, and Cottonwood Creek. Records furnished by the Corcoran Irrigation District.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO.	STATION NAME	
1965	C03130	ELK BAYOU NEA	TULARE

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1 2 2 4 5	*	'n	*	*		*	*	*		0.0 0.0 0.0 0.0			1 2 3 4 5
6 7 8 9					*				*	0.0 b *			6 7 8 9 10
11 12 13 14 15	N O	И	0	N O	N O	N O	N O	N O	N O				11 12 13 14 15
16 17 18 19 20	F L O W *	F L O W	F L O W	F L O W *	F L O *	F * L O W	F L O W	F L O W	E O W				16 17 18 19 20
21 22 23 24 25									*				21 22 23 24 25
26 27 28 29 30													26 27 28 29 30 21
MEAN MAX. MIN. AC FT.													MEAN MAX. MIN AC FT

E -- ESTIMATEO

NR -- NO RECORD

* -- OISCHARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

- EAHD *
a - SEE NOTE (a) BELOW
b - SEE NOTE (b) BELOW

MEAN		MAXIMU	M					MINIMU	J M		
DISCHARGE	DISCHARGE	GAGE HT	MO.	DAY	TIME	DISCH	ARGE	GAGE HT.	M.O	DAY	TIME
)						0	.0		10	1	0000

		LOCATION	1	MA	XIMUM DISCH	ARGE	PERIOD (OF RECORD		DATU	M OF GAGE)
Γ.	ATITUDE	LONGITUDE	1/4 SEC T & R		OF RECOR	0	DISCHARGE	GAGE HEIGHT	PER	IOD	ZERO	REF.
L	ATTIONE	LUNGITUUE	M D B &M	CFS	GAGE HT	DATE		ONLY	FROM	TO	GAGE	DATUM
3	6 08 37	119 19 48	SW36 20S 24E	261	2.35	2-5-63	OCT 58-DATE	MAR 57-SEP 58	1959		0.00	LOCAL

Station located 1.8 miles west of U. S. Highway 99, 5.8 miles south of Tulare. Prior to March 4, 1960, station located 700 feet west of U. S. Highway 99, 4.5 miles south of Tulare. Tributary to Tule River. Prior records, 1942 to July 1953, available at a site 1 mile east of Elk Bayou Avenue, 3.6 miles below Old Highway 99 Bridge. Recorder installed March 6, 1957. Altitude of gage is approximately 250 feet (from U. S. Geological Survey

(a) A partially opened gate in the control created a condition making it impossible to record low flows if such flow did occur.(b) Station discontinued on July 7, 1965.

DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO STATION NAME TANT-K- N ANAL F Y T

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	0.0	0.0	0.0		E,		5.3		3.1				1
2	0.0	0.0	٦. ١		2 5	1							2
2	0.0	2.1	2.0	^*	2 5		4 -			1.1	. 1		3
4	n.n	n.n	0.0	n. "	2.5				. /				4
5	`•0	0.0	0.0	^•	7 5	1		• 1			1.0	7.1	5
6	0.0	n.n	0.0	^ .	25	3.0			٠.				6
7	0.0	0.0	0.0	٦٠٦	2.6	* 1					9.0		7
8	7.1	^.7	7.0		25								- 8
9	.0	.0	0.0	- 1	1 9				6.				9
10	2.0	0.0	٦٠٠		0.0	•	1		1.			200	10
11	0.0	7.0	0.0	٠.	^.			9.4	1.	1	1.0	0.	11
12	0.0	0.0	0.0	0.0	0.		, -	15	13				12
13	0+0	n.n	0.0	٠. `	0.1			15	15	D.0 1			. 12
14	0.0	0.0	0.0	0.0	0.0			15	15	0.1			14
15	10.0	7.0	0.0	0.1	0.0	- •		15	15	1.1	1.0	1.0	15
16	0.0	0.0	0.0	1.0	^ . J		7.0	5	15	2.1	4,00		16
17	0.0	0.0	0.0	7.0	0.0	٦.	1.0	15	15	. ^	1.0	ο.	1.7
18	0.0	0.0	0.0	0.0	0.7	4.0	1.0	15	5.6			0.1	18
19	0.0	0.0	n.n	0.0	9.2			15		79.0		20.00	19
30	0.0	0.0	0.0	1+0	15	1.0		15	~ *	0.			20
21	0.0	0.0	0.0	0.0	2.2	0.0	0	15	0.0	0.0			21
22	0.0	0.0	0.0	7.0	25	0.0	T.0	15					22
23	0.0	n.n	0.0	0.0	22			15	J + 1	2.0	2.0	0.0	22
24	0.0	n.n	n.n	0.0	14	• 0	0.0	15	0. 1	0.1			2A
25	0.0	0.0	0.0	1 0	7 + 3	0.5	• :	15	0.^	142	10.00	0.0	25
26	0	0	0.0	25	5 + 6	9.3		12	0.	2.4		0.0	26
27	0	0.0	0.0	25	8+3	14	- 4	11	0.7	0.0	10.0		27
28	0.0	1.0	0.0	25	16	15	*.0	10	10.7	7.5	1.3	-0.0	28
29	0.0	0.0	0.0	25		15		10		2.1		0.0	29
30	0.0	0.0	0.0	25		14	.0	10	0.0	C.0	7.0	0.1	30
31	0.0		0.0	24		15		10		0.	0.0		31
MEAN	0.0	0.0	0.0	5.1	1340	4.5	2.2	9.1	4.1	C.2	1.1	* • *	MEAN
MAX	0.0	0.0	0.0	25.0	25.0	15.0	6.3	15.	15.	1.	^.0		MAX.
MIN	0.0	0.0	0.0	0.0	0.0	0.0	1		2.	7.1	- 60	0.0	MIN
AC. FT.				315	721	276	1 ^	56 ^	246				AC FT

E — ESTIMATED

NR — NO RECORD

• — DISCNARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

II — E AND •

MEAN M A X I M U M DISCHARGE 2.9

MINIMUM GAGE HT MO DAY TIME DISCHARGE

TOTAL ACRE FEET 1.29

	LOCATIO	И	MA	XIMUM DISCH	ARGE	PERIOD C	F RECORD		DATU	M OF GAGE	
LATITUDE	LONGITUDE	1/4 SEC. T & R		OF RECOR	D	DISCHARGE	GAGE NEIGHT	PEF	HOD	ZERD	REF
LATITUDE	LONGITUDE	M D B &M	CFS	GAGE NT	DATE	DISCHARGE	ONLY	FROM	TO.	GAGE	DATUM
36 05 00	119 04 50	SW20 21S 27E				1					

These flows are deliveries from Friant-Kern Canal into Porter Slough under contract agreement with the U. S. Bureau of Reclamation. Delivery is at the intersection of Porter Slough with the Friant-Kern Canal approximately 4 miles west of Porterville. Records furnished by U. S. Bureau of Reclamation.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO.	STATION NAME			
1965	C03923	FRIANT-KERN CANAL	OELIVERY	TO TULE	RIVER

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	0.0	0.0	0.0	0.0	211	140	0.0	42	187	0.0	0.0	85	1
3	0.0	0.0	0.0	0.0	210	140	0.0	0.0	187	0.0	0.0	100	3
3	0.0	0.0	0.0	0.0	209	179	0.0	0.0	187	0.0	0.0	109	3
4	0.0	0.0	0.0	0.0	211	180	0.0	0.0	187	0.0	0.0	110	4
5	0.0	0.0	0.0	0.0	211	180	0.0	0.0	187	0.0	0.0	110	5
	0.0		0.0	//•0	211	100							
ا ہ ا	0.0	0.0	0.0	0.0	211	179	0.0	0.0	187	0.0	0.0	110	6
7	0.0	0.0	0.0	0.0	211	160	0.0	0.0	6.2	0.0	0.0	110	7
8	0.0	0.0	5.0	0.0	211	151	0.0	109	0.0	0.0	0.0	110	8
9	0.0	0.0	4.0	0.0	207	151	0.0	140	0.0	0.0	0.0	110	9
10	0.0	0.0	6.0	0.0	162	50	0.0	140	0.0	0.0	0.0	110	10
l	0.0	0.0	1.5	0.0	95	0.0	0.0	151	0.0	0.0	0.0	126	111
11	0.0	0.0	0.0	0.0	152	0.0	0.0	132	0.0	0.0	0.0	135	12
13	0.0	0.0	0.0	0.0	190	0.0	0.0	120	0.0	0.0	0.0	135	13
13	0.0	0.0	0.0	0.0	190	0.0	0.0	120	0.0	0.0	0.0	135	14
14	0.0	11	0.0	0.0	190	0.0	0.0	143	0.0	0.0	0.0	135	15
15	0.0	11	0.0	0.0	170		0.0	143					1 ''
16	0.0	78	0.0	0.0	190	0.0	0.0	155	0.0	0.0	0.0	135	16
17	0.0	23	0.0	0.0	190	0.0	85	155	0.0	0.0	0.0	151	17
18	0.0	0.0	0.0	0.0	190	0.0	122	155	0.0	0.0	0.0	159	18
19	0.0	31	0.0	0.0	190	0.0	122	155	0.0	0.0	0.0	159	19
20	0.0	5 2	0.0	0.0	190	0.0	122	155	0.0	0.0	0.0	159	20
21	0.0	46	0.0	0.0	190	0.0	122	155	0.0	0.0	0.0	159	21
23	0.0	34	0.0	0.0	190	0.0	122	155	0.0	0.0	0.0	159	22
33	0.0	67	0.0	0.0	190	0.0	140	155	0.0	0.0	0.0	161	33
24	0.0	38	0.0	0.0	190	0.0	147	155	0.0	0.0	0.0	161	34
35	0.0	32	0.0	95	190	0.0	147	154	0.0	0.0	0.0	161	25
	0.0			234	190	0.0	147	155	0.0	0.0	0.0	161	36
26	0.0	0.0	0.0	234	117	0.0	147	155	0.0	0.0	0.0	161	37
37	0.0	0.0	0.0		73	0.0	147	155	0.0	0.0	0.0	161	38
38	0.0	0.0	n•n	234	73	0.0	147	155	0.0	0.0	0.0	161	29
29	0.0	0.0	0.0	234		0.0						161	30
30	0.0	0.0	0.0	219		0.0	147	175 187	0.0	0.0	5.7 8.5	161	30
31	0.0		0.0	211		0.0		187		0.0	85		31
MEAN	0.0	14.4	0.5	47.1	184	48.7	62+1	11.7	39.5	0.0	4.6	137	MEAN
MAX.	0.0	78.0	6.0	234	211	180	147	187	187	0.0	85.0	161	MAX.
MIN.	0.0	0.0	0.0	95.0	73.0	0.0	0.0	0.0	0.0	0.0	57.0	85.0	MIN.
AC. FT.	0.0	857	33	2898	10217	2995	3697	7196	2348		282	8130	AC.FT

E — ESTIMATED

NR — NO RECORD

• — DISCHARGE MEASUREMENT OR OBSERVATION OF ND FLOW

— E AND **

MEAN		MAXIM	J M			1		MINIM	J M		
DISCHARGE	DISCHARGE	GAGE HT	MO.	DAY	TIME	Ш	DISCHARGE	GAGE HT	MO.	DAY	TIME
5 • 3	Į .				J	1					

38650

1		LOCATION	N	M.M.	XIMUM DISCH	ARGE	PERIOD C	F RECORD		DATU	M OF GAGE		١
	LATITUDE	LONGITUDE	1/4 SEC T. & R		OF RECOR		DISCHARGE	GAGE HEIGHT	PER	100	ZERO	REF.	
	EXTITORE	CONTOUR	M.D B &M	CFS	GAGE HT	DATE		OHLY	FROM	TO	GAGE	DATUM	ı
	36 04 25	119 05 15	NW29 21S 27E										

These flows are deliveries from Friant-Kern Canal into Tule River under contract agreements with the U. S. Bureau of Reclamation. Delivery is located on the Tule River approximately 4 miles west of Porterville. Records furnished by U. S. Bureau of Reclamation.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO	STATION NAME
1965	C321	NORTH FURE T LE MIVER AT PHINGVILLE

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	0.2+	^ • 2	12	7.5	75	44 0	63	133	52	10	U-5	U+4	1
2	0.1	* • 3	12	6.9	73	4.2	72 •	118	5	7 . C	J • 5	5.40	2
3	0.1	0.3	16 •	6.7	7 [40	71	1.4	45	0.4	1.6	. 2	3
4	0.1	0.3	13	107 *	68	3.9	109	92	46	100	1./	5.5	4
5	0+1	0.34	11	185	70	3.7	91	85 +	4.5	0 • 6	0 • 7	0	5
6	^.1	7.3	10	171	91	36	8 7	8.1	⇔ 6	2 . 7	J+6	1.5	6
7	1/1-3	0.2	9 • 2	378	8.3	3.6	143	7.6	47 0	406	0.5	1.0	7
8	0.2	0.1	8.8	185	70	3.6	15_	7.0	46	∠ . E	0.6	0.7	- 8
9	0.3	0.9	8 • 5	128	68 *	35	238	67	45	4.6	0.5	0.5	9
10	0.7	7+3	9 • 2	104	63	3 3	262	64	41	c • 1	0.3	0.0	10
11	r.6	5.6	9 • 6	94	59	3.5	204	61	39	2.0	3+6	0.0	11
12	C.7	71	15	87	5.5	55	157	5.9	38	1.0	1.0	Ç.>	12
13	^.6	61	15	82	53	7.4	154	56	3.7	1.2	0+9	0 + 3	13
14	0.3	24	12	77	5.2	54	146	59	35	C + 9	U+8	0.3	14
15	n+2	13	11	76	50	51	155	59	34	1.0	1 - 1	0 • 3	13
16	0+3	9.1	10	73	49	4.7	176	61	3∠	0.6	1.1	0 . 3	16
17	r.6	6.9	9.9	75	4.7	4.6	165	7.0	29	1.0	0.9	0.3	17
18	r.7	6 • 2	9 • 3	9.3	4.7	49	170	7.7	25	V . 7	0.9	0.0	18
19	0.2	5 • 6	11	99 •	46	4.7	204	7.4	24	C . 7 °	0.6	0.8	19
20	0+1	5 • 7	21	100	4.7	50	248	73	21	0.7	1 - 2	C • 9	20
21	0.1	5.8	22	9.9	47	49	252	7.2	20	0.6	U+5	0.7	21
22	0.4	5.9	19	81	4.6	4.8	239	69	19		0 • 3	C • 0	22
23	0.3	6.5	112	9 0	46	48 *	205	64	19 •	0.5	0.6	1+0	23
24	0+3	7 • 1	267 •	259	4.3	49	190	57	1.7	0./	0.5	1.0	24
25	^•5	8.0	161	145	4.3	47	186	51	1.7	1.0	0 • 6	1.00	25
26	0.4	9.7	105	112	4.2	43	184	45	16	U+6	U+6	0.0	26
27	0 + 4	1.2	681	99	44	51	179	45	15	C . 8	0.5	0 • 0	27
28	C+7	10	306	91	4.7	5.3	170	45	14	0.0	0 • 6	0 • 6	28
29	0.9	8.7	143	84		4.8	156	4.7	1.2	0.5	0 • 4	0.00	
30	0+3	10	101	7.8		46	141	4.8	4.0	C • 6	C+6	C + 7	30
31	0.2		90	77		46		49		6.9	(.6		31
MEAN	0.4	10.0	72.2	113	57.0	45.6	166	68.8	31.2	2.5	0.7	0.7	MEAN
MAX.	0.9	71.0	681	378	91.0	74.0	262	133	52.0	10.0	1 . 7	1.2	MAX
MIN.	C+1	0.1	8 . 2	67.0	42.0	33.0	63.0	45.0	10.0	0.5	0+3	0.3	MIN
AC. FT	22	595	4440	6938	3164	2805	9852	4233	1845	152	10.6	3.9	AC.FT

E — ESTIMATED

NR — NO RECORD

• DISCHARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

II — E AND *

MEAN		MAXIMU	M			1		MIN	LMI	U M		
DISCHARGE	DISCHARGE	GAGE HT	MO	DAY	TIME	1	DISCHARGE	DAGE	HT	MO	DAY	TIME
47.1	1490	0.61	12	27	0210	d	0.0			10	2	1700
				_)	٦						

TOTAL ACRE FEET 34130

DATUM OF GAGE MAXIMUM DISCHARGE PERIOD OF RECORD LOCATION ZERO OF RECORD GAGE HEIGHT ONLY PERIOD 1/4 SEC. T. & R M D.B &M DISCHARGE DATE LATITUDE LONGITUDE ON FROM TO 0.00 1957 LOCAL

Station located at State Highway 190 Bridge, 0.8 mile northeast of Springville. Drainage area is 97.9 square miles. Maximum discharge of record from rating curve extended above 2,470 cfs. Altitude of gage is approximately 990 feet (from U. S. Geological Survey topographic map).

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO.	STATION NAME
1065	C-316	TILE RI LE RELOW SUBTERVILLE

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1 2 3 4 5	0.00	0.0 1.0 1.0 0.0	0.0 0.0 0.0 7.4	399 410 331 160 168	214 219 242 219 214	1.7			16° 16 16° 16° 16°	· · · · · · · · · · · · · · · · · · ·	7.8 7.8	86 108 117 120 120	1 2 3 4 5
6 7 8 9	0.0 0.0 1.0	0.0 0.0 0.0 0.0	3.5	310 179 394 331 111	214 218 218 214 182	164 15 ³ 15		84 127 127	160	21 8.3 1.7	4.0 0.8 0.0 	127 127 114 100 97	6 7 8 9
11 12 13 14 15	0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0	78 108 66 37 47	190 194 214 206 202	0.0 0.0 0.0 0.0	• 0 • - • -	136 120 111 111 127	0.0 0.0	3.3 4.1 1.9 C.C	0.0 0.0 0.1 0.0 0.1	114 127 127 127 127	11 12 13 14 15
16 17 18 19 20	0.0 0.0 0.0	18 14 0.0 0.0	0.0 0.0 0.0	66 49 47 175 261	198 198 198 206 202	0.0 0.0 0.0 0.0	44 108 1'8 108	133 133 133 133 133	* () * () * () * () * ()	0.0 1.0 1.0	1.3 1.9 2.7 1.1	127 136 143 143 143	16 17 18 19 20
21 22 23 24 25	0.0 0.0 0.0 0.0	30 45 39 29 35	1.0 0.0 0.0 268 405	293 312 317 331 322	206 175 175 175 175		1 U 8 1 1 1 1 2 4 1 3 3 1 3 3	133 133 133 133	0.0	0.0 0.0 1.0 1.0	1 * . 3 • 4 8 • 6 6 • 9 8 • 6	147 143 147 147	21 22 23 24 25
26 27 28 29 30 31	0.0	5 n.J n.n	389 247 270 274 390 405	302 261 226 222 219 214	171 117 76		133 133 133 133 133	133 133 133 133 153 160	0.0 	0.0 0 5 1.9 6.9	1.9 1.1 1.1 1.1 48 78	147 147 150 147 147	26 27 28 29 30 31
MEAN MAX MIN. AC. FT.	0.0	8 • 1 45 • 0 0 • 0 480	86 • 1 405 0 • 0 5297	214 410 37. 13180	193 222 76.7 10731	49.8 179 0. 3065	54.7 133 3257	1 1 160 0.0 6185	33.9 160 0.0 2015	1.6 21.0 7.7 109	6.9 78.0 0.0 423	130 150 86.0 7734	

E — ESTIMATED

NR — NO RECORD

O DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW

- E AND *

MEAN		MAXIMU	M		MINIMUM							
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME	DISCHARG	E G	IGE HT.	MO	DAY	TIME	
72.5	Į.]							

TOTAL ACRE FEET 52470

(LOCATIO	N	MA	XIMUM DISCH	ARGE	PERIOD O	F RECORD		DATU	M OF GAGE	,
Γ	LATITUDE	LONGITUDE	LONGITUDE 1/4 SEC. T. & R OF RECORD)	DISCHARGE	GAGE HEIGHT	PERIOO		ZERO	REF.	
	LATITUDE	LUNGITUUE	M.D. B.&M	CFS	GAGE HT.	DATE	DISCHARGE	ONLY	FROM	TO	GAGE	DATUM
3	6 04 40	119 06 22	NW30 21S 27E	5170	8.17	5-19-57	FEB 57-DATE		1957	1959	0.00	LOCAL

Station located 330 feet above Rockford Road Bridge, 5.1 miles west of Porterville. Flows regulated by Success Reservoir and spill from Friant-Kern Canal. Altitude of gage is approximately 400 feet (from U. S. Geological Survey topographic map). Flows include Central Valley Project releases from Friant-Kern Canal to Tule River. Records furnished by the Tule River Association and reviewed by the Department of Water Resources.

DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO	STATION NAME	
1965	17397	FAMPELL-M LA IT H	AR V+ -*F\$ / ILIF

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	16	0.0	0.	9.7	4.9	. 40		23	16	16	701	16	1
2	16	0.0	0.0	8 . 4	O.	7		22	16	16	11	, +	2
3	15	2.0	0.0	7.8	1.0	7			16	16	1 1	1.6	3
4	16	0.0	0.0	1.2	۸.	7.7		21	15	17	1.1	1.6	4
5	1 7	0.1	0.1	1 4	8.6	5.5		21	15	1.6	1	16	5
6	21	0.0	0.0	14	14	6.5			16	1.8		16	6
7	27	0.0	5.5	14	13	+2	4.7	42	1 - 1	2	9.4	1.5	7
8	26	0.0	16	15	13	6.5		2.	19	21	9.1	12	
9	3.0	0.0	1.7	14	13	6 • 2		22	19	20	9.3	12	9
10	2 7	0.0	18	13	14	6.5	•	22	1 9	21	10	11	10
11	2.2	2.0	18	14	14	7 . 2	-0	22	19	21	1 ^	1^	11
12	17	0.0	18	13	14	7.4	. 0	2.2	1.4	21	11	10	12
13	1.2	0.	18	13	14	1.6		42	19	1.8	1	8 . 4	12
3.4	0.7	0.0	1.8	13	14	1	. 1	2.2	19	1.2	2.1	606	14
15	0 • 4	0.0	18	13	14		•	21	1.9	10	10	5 . 7	15
16	0.3	0.0	1.6	13	14			22	1 6	10	. 5	^	16
17	0.2	0.0	2.0	13	14			2.2	1.7	10	10	5.	17
18	0 • 1	^.0	21	13	1.4	7.3		2.2	17 /	10	11	7.1	1.8
19	0.0	0.0	21	14	4 + 2			2.2	.7 8	10		7.	19
20	0.0	1∪	2 (14	0		- 10	22	17	1 ^		6.7	20
21	0.0	0.0	21	14	0.0			21	16	1 ^	1 ~	6	21
22	0.0	0.0	21	14	0.	+1		21	16	10		A.	22
23	0.0	0.0	19	15	0.1	3		21	16	10	2.	1.2	23
24	0.0	0.0	1.7	11	n 44	a la	6.8	2.1	1.7	10	6.	17	24
25	0.0	1.0	2.0	11	0.1		19	2.2	1.0		4 - 1	17	25
26	0.0	1.0	14	12	0.4		2	2.2		r a 40		17	26
27	0.0	2.0	1.2	12	- 4		2.2			P . 4	16	17	27
28	0.0	0.0	12	1.2	- 4		22		1.0	0.4	1.6	1.7	28
29	0.0	0.0	11	13		0.7	23	1.6	6		1.6	1.7	29
30	0.1	1.0	1.2	14		.7	23	16	. 6		16	1.6	30
31	(.)		1.2	14		• -		16		11	16		31
MEAN	8.2	0.11	13.4	12.8	7.1	6.4	4.6	21.1	7.4	13.6	10.9	11	MEAH
MAX.	30.0	0	21.0	15	4.	7	20.0	23.^	10.0	0:.0	14.	17.	MAX
MIN.	0.0	0.1	1.0	7.8	٠.			16.	٠.	- 4	4."	6	MIN
AC FT.	502		928	7.8.7	394	14"	271	12.0	1 1 25	L 35	4 2 3	711	AC FT

E — ESTIMATED

NR — NO RECORO

- DISCHARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

N — E AND *

MEAN		MAXIMI	J M				MIN	I M I	U M		
DISCHARGE	DISCHARGE	GAGE HT	MO	DAY	TIME	DISCHARGE	GAGE	HT	MO	DAY	TIME
13											

TOTAL ACRE FEET

	LOCATIO	4	ма	XIMUM DISCH	IARGE	PERIOD C	F RECORD		DATUA	OF GAGE	
LATITUDE	LONGITUDE	1'4 SEC T & R		OF RECOR	0	DISCHARGE	GAGE NEIGHT	PER	CIOD	ZERO	REF
LAIIIUUE	LONGITUDE	M D B &M	CFS	GAGE HT	DATE	OISCHARGE	ONLY	FROM	TO	GAGE	DATUM
36 02 48	118 56 54	NW 4 22S 28E				AUG 42-DATE		000 00	OCT 62		LOCAL

Station located 3.9 miles southeast of Porterville approximately 2,600 feet below head. This is regulated diversion from Tule River. This station is operated under cooperative agreement between the Department of Water Resources and the Tule River Association. Records furnished by the Tule River Association and reviewed by the Department of Water Resources.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO.	STATION NAME	
1965	C03182	PORTER SLOUGH AT PORTERVILLE	

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
,	0.0	0.0	0.0	148	32	25	0.0	27	23	17	17	20	1
2	0.0	0.0	0.0	148	32	25	0.0	23	2.2	17	2.2	20	2
	0.0	0.0	0.0	104	37	2.2	0.0	22	24	17	2.7	20	3
3	0.0	0.0	0.0	82	41	19	0.0	21	25	17	27	19	4
4				104	40	19	0.0	22	28	17	2.8	19	5
5	0.0	0.0	0.0	1114	40	17	0.0	2.2					
6	0.0	0.0	0.0	117	36	19	0.0	19	3.0	14	2.8	19	6
7	0.0	0.0	0.0	148	35	19	0.0	19	2.8	13	2.8	19	7
g l	0.0	0.0	0.0	185	33	19	0.0	19	2.8	15	28	19	8
9	0.0	0.0	0.0	130	33	19	0.0	19	2.8	14	2.8	18	9
10	0.0	0.0	0.0	83	51	19	0.0	10	2.8	14	2.8	17	10
10	0.0	17.0	11.0	0,	51	1 /							
11	0.0	0.0	0.0	75	67	20	0.0	10	29	14	29	16	11
12	0.0	0.0	0.0	66	64	2.0	:.0	19	2 9	15	28	16	12
13	0.0	0.0	0.0	57	64	20	0.0	18	2 9	17	2.8	15	13
14	0.0	2.9	0.0	51	63	19	0.0	18	29	17	2.8	14	14
15	0.0	0.0	0.0	52	5.9	19	0.0	17	23	19	2.8	14	15
13	0.17			, , ,		* '							
16	0.0	0.0	0.0	52	56	19	0.0	16	1.7	19	25	13	16
17	0.0	0.0	0.0	51	56	19	0.0	20	14	1.7	20	12	17
10	0.0	0.0	0.0	54	3.8	19	0.0	24	16	16	20	19	18
	0.0	0.0	0.0	98	41	17	0.0	25	19	16	19	19	19
19		0.0	0.0	130	50	16	1.4	21	19	16	19	19	20
20	0.0	(1.0)	0.0	130	30	16	1.4	21	17	10	1	1 17	10
21	0.0	0.0	0.0	127	3.2	15	24	19	16	16	19	19	31
22	0.0	0.0	0.0	127	31	15	41	1.8	15	16	19	17	22
23	0.0	0.0	17	129	29	15	42	19	15	16	19	17	23
24	0.0	0.0	86	132	27	8 • 8	31	21	16	16	19	19	24
25	0.0	0.0	101	81	26	1.1	2.0	24	16	19	20	19	25
										, ,	7.0	19	24
26	0.0	0.0	93	47	2.7	0.1	16	24	1.6	19	20		26
27	0.0	0.0	99	41	29	0.0	35	2.5	16	18	20	19	27
28	0.0	0.0	134	3.5	26	∪.0	33	24	16	16	20	19	28
29	0.0	n • n	144	3.2		0.0	3.2	2.2	15	16	19	19	29
30	0.0	0.0	148	30		0.0	3.2	23	16	16	19	19	30
31	0.0		150	29		0.0		23		16	19		31
MEAN	0.0	0.1	31.4	88.5	41.2	14.5	9.6	20.4	21.5	16.3	23.2	17.8	MEAN
MAX.				185	67.0	25.0		27.0	30.0	19.0	29.0	20.0	
	0.0	2.9	150				42.0						
MIN.	0.0	0.0	0.0	29.0	26.0	0.0	0.0	10.0	14.0	13.0	17.0	12.0	
AC. FT.		6	1928	5445	2291	889	574	1252	1279	1002	1424	1057	70.75

E -- ESTIMATED

NR -- NO RECORD

-- DISCHARGE MEASUREMENT OR
OBSERVATION OF NO FLOW

-- E AND **

MEAN		MAXIMI	J.M.				MINIM	U M		
DISCHARGE	DISCHARGE	GAGE HT	MO.	DAY	TIME	DISCHARGE	GAGE HT.	MO.	YAC	TIME
23.7										

TOTAL ACRE FEET 17150

LOCATION		MA	XIMUM DISCH	IARGE	PERIOD C	DATUM OF GAGE						
		1/4 SEC. T. & R	OF RECORD			DISCHARGE GAGE HEIGHT		PERIOD		ZERO	REF.	
L	LATITUDE	LONGITUDE	M.D.B.&M	CFS	GAGE HT.	DATE	DISCHARGE	ONLY	FROM	то	GAGE	DATUM
ſ	36 03 29	118 59 08	SE31 21S 28E				JAN 42-DATE		1957		0.00	LOCAL

Station located at "B" Lane Bridge, immediately east of Porterville. This is regulated diversion from Tule River. Altitude of gage is approximately 465 feet (from U. S. Geological Survey topographic map). Records furnished by the Tule River Association and reviewed by the Department of Water Resources.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO	STATION NAME	
1965	113784	PORTER L H IT H AT P RT-RVILL	

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	0.0	0.0	0.0	11	6.9	1	.0	9.8	~.		^.	E . 4	1
2	0.0	0.0	0.0	10	9.6	1	1 :	8.8	1.3	11	4.4	1 4	
3	0.0	0.0	0.0	9.3	Α.	9.1		A + 8	9.0	1.2	9.4	406	
4	0.0	0.0	0.0	9 + 8	8.	4.4	0	9.1	11	11	A . 5	4 . 5	A
5	C.b	1.0	0.1	9.8	8	• 4	2.0	8 • 8	11	12	8.6	3.9	5
6	₹.0	0.0	0.0	9.7	8.	· . 3	9.0	8 • 4	12	9.9	8.6	3	6
7	0.0	0.0	3.0	10	7.9	9.03	. ^	9.1	13	10	P.A	. 8	7
8	0.0	0.0	0.0	11	7.4	E . 60	0.1	9.3	1 3	8.8	R • 6	1.0	8
9	0.0	0.0	0.0	1	7.6	* A		9.8	1.3	11	7.9	9.7	9
10	0.0	0.0	0.0	10	9.4	17	0.6	6.7	1.3	11	7.1	^	10
11	0.7	0.0	0.0	11	8 . 8	11			14	0.4	8.4	0.1	31
12	0.0	0.0	0.0	11	8 + 5	11		.=	1.4	11	1.1	7.	12
12	0.0	0.0	0.0	10	8.5	11			1.3	10	1.1	0.5	13
14	0.0	0.0	0.0	9.9	A.7	11	0.0		1.2	11	R.6	٠.	14
15	0.0	0.0	0.0	9 • 5	A . 4	10	^ -	1.*	11	1 4	9.2	° ⋅ 8	15
16	0.0	0.0	0.0	0.7	8 + 2	1	.0		8.0	1.2	11	4 . 8	
17	0.0	0.0	0.0	9	8 . 4	1	0.0	9 . 4	6.	11	7.2	4.1	1.7
18	0.0	0.0	0.0	9.7	P . 4	1	0.40	1.5	9 . 40	10	4.3	6.5	18
19	0.0	0.0	0.0	11	8 . 6	1	1.0	1.3	1.2	11	4.6	6.7	19
20	0.0	0.0	0.0	4.6	0.	++5	• 1	10	12	9.7	4.2	6.6	20
21	0.0	0.0	0.0	4 • 3	8+5	6.7	7.0	8.8	11	9.3	4.5	5 . 4	
22	0.0	0.0	0.0	4.2	7.6	6.3	1.1	9.0	8 . 8	8.8	5.7	3.7	
23	0.0	0.0	0.0	4.4	9.0	9.0		5.4	8.8	9.6	5.7	1.7	
24	0.0	0.0	0.0	4.0	9.1	6.0	• Ū	6.7	1.	10	5.5	0.0	
25	0.0	0.0	0.0	3.5	8 + 3		• ^	1.1	11	1.6	6.2	0.7	25
26	0.0	0.0	0.0	2 • 1	11	1.0	1.9	0.0	8.5	13	8.0	0.0	
27	0.0	0.0	0.0	5 - 1	11	0.00	0.0	.0	9.6	1.0	R.3	0.0	
28	0.0	0.0	4.9	10	10	0.0	4.2	0.00	6.8	10	8.3	4.7	
29	0.0	0.0	9.4	10		0.0	9.0	0.0	8.2	11	8.3	3.7	
30	0.0	0.0	10.2	3 . 8		• 3	1	- •	9.2	10	8.4	3.9	
21	0.0		9.6	6.0		(1.0		3.0		5.0	6.5		21
MEAN	0.0	0.0	1.1	7.9	8.6	7.1	1.8	5.5	1 1 • 1	10.6	7.3	2 . 8	
MAX.	0+0	0.0	10.0	11.	11	11.0	17.0	15.0	14 0	16 + 17	11.0	6.7	
MIN.	0.0	0.0	0.0	0.0	6.9	0.0	0.0	.0		5.40	0.0	0.0	MIN.
AC. FT.			67	487	480	439	46	337	600	651	448	167	AC FT

E - ESTIMATED

- DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW R - E AND *

NR	-	NO	RECORI	,
	-	0150	HARGE	MEA

MEAN	,		MAXIMU	M			١		MINIM	UM		
DISCHARGE	ı	DISCHARGE	GAGE HT.	MO	DAY	TIME	1	DISCHARGE	GAGE HT	MO	DAY	TIME
5 - 1	ı						l					

6	TOTAL
	ACRE FEET
	3722
()

	LOCATION			XIMUM DISCH	ARGE	PERIOD C	DATUM OF GAGE				
LATITUDE LONGITUDE 1		1/4 SEC. T. & R	OF RECORD			DISCHARGE	GAGE HEIGHT	PERIOD		ZERO	REF
LATITUDE	LONGITUDE	M D.B.&M	CFS	GAGE HT	DATE	DISCHARGE	ONLT	FROM	TO	GAGE	DATUM
36 04 06	119 01 06	SE26 21S 27E				JAN 43-DATE		1943		0.00	LOCAL

Station located in Porterville 0.5 mile west of Porterville Post Office, approximately 150 feet below head. This is regulated diversion from Tule River via Porter Slough. This station is operated under cooperative agreement between the Department of Water Resources and the Tule River Association. Records furnished by the Tule River Association and reviewed by the Department of Water Resources.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO.	STATION NAME	
1965	C03187	PERTER SLUUGH NO	TERTERVILLE

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	7.0	0.0	٠.٠	100	20	4.6	• (5.8	9.8		4.4	2.0	1
2	n.n	0.0	^ ` `	101	1.8	4.6	. 4	A .	9.4	1.0	4 + "	2.1	2
3	0	0.0	0.1	83	2.1	2.7	.5	2	1.0	2.0	3.65	1.4	3
4	0.		0.	52	2.2	. 2	• -	∃.6	4.6		4.1	1.5	4
5	1.0		0.0	65	21	• 5	.0		5.7		4+6	L	5
	0.0	1.0	r.n	86	40	•0	3		7.3	n.n	4.6	4.0	6
6	1.0	n.0	0.0	93	20	3.9	991	2.6	6 + 2	7.0	4.3	3.7	7
7	1.1	0.0		114	21	4.7	• 3	3	5.7	1.7	4.8	4.3	8
8	0.0	0.0	0.0	03	21	2.0	. 3	9.5	6.	0.0	5.1	404	9
9	0.00	0.0	0.1	55	28		.5	1.5	5 + 1	0+0	5.7	4.5	10
					36	0.9	*.0	1+1	: • 2		= .2	4.3	11
11	2.0	^ • C		46			.3	4	6		4.3	4.6	12
12	0.1	^ • ^	0.0	37	32	1.4		9 • Z	6.7	0.0	4.7	3.6	13
13	0.0	0.0	0.1	3.2	3.2	2.6	• -		6.1	3.0	5.	2.7	14
14	7.0	0.0	0.0	2.8	3.2	+4	.0	8 • 2			5.4	1.1	15
15	0.0	1.0	2.4	27	29	9.7	-	8 • 2	5.0				13
16	0.0	0.0	~ .=	2.9	26	9.0		8+3	2	7 • 2	4.6	0.1	16
17	0.1	0.0	0.0	27	2.6	11.0	0	3.3	0.8		2 • 8	0.0	17
18	2.0	0.0	0.1	2.7	22	1.0		4 • 6	0.0	1 • 1	4.2	0.0	18
19	0.0	0.0	0.0	5.2	21	0.0	.0	2.9	0.0	1.0	4.2	0.1	19
20	0.0	0.0	0.0	92	22	m.n	C	2.3	0 • 0	· • ·	4.)	0.1	20
			0.0	92	19	0.0	7.0	8	0.7	P. *	4.7	0.2	21
21	0.0	0.0	1.0	92	14	1.1	13	1.3	0.0	0.7	3 • 8	1.5	22
22	0.0	0.0	2.0	93	10	0.0	18	1.8	1.0		3 • 8	2.6	23
23	0.0	2.0		79	8.2	7.4	16	4.2	0.0	r.1	3.5	5.2	24
24	9.0	0.0	45				10.0	1.	0.1		3 • 2	4.8	25
25	0.7	0.0	8 9	30	7.3			1 -		• .			25
26	0.0	0.0	8.0	28	4.6		1.6	1 7	0.0	0.0	1.5	4.8	26
	0.1	0.0	7.8	24	4.2		1.8	11	0.	0.1	^ • 1	5.0	27
27	0.0	0.0	104	20	4.4	2.0	14	11	0.0	0.0	1.0	3.5	28
28	1	0.0	104	20		200	13	9 . 8	0.0	0.0	2.8	2.6	29
29	0.0	0.0	102	23		~ 0	10	9.8	0.0	2.0	(+5	2.2	30
30	0.0	0.0	104	25		3.2	10	9.1		1.7	0.9		31
-					20.1	1.0	3.4	5 • 6	3.3	0 • 1	3.6	2.6	MEAN
MEAN	0.0	^.0	22 • 5	56+9	20.1						5.7	5.2	MAX
MAX.	0.0	0.0	104	114	36.0	4 • 6	19.	11.0	9 . 8	1.7			MIN.
MIN.	0.0	0.0	0+0	20.0	4 • 2	0.0	0.3	J.8	3.7	0.0	0.1	0 + 0 154	AC.FT
AC. FT.			1382	3499	1114	60	204	344	194	3	223	154	AC.FI

E — ESTIMATED
NR — NO RECORD

• — DISCHARGE MEASUREMENT OR
OBSERVATION OF NO FLOW

— E AND *

MEAN		MAXIMU	M		_		I M I	UM			
DISCHARGE 9 • 9	DISCHARGE	GAGE HT.	MO.	DAY	TIME	DISCHARGE	GAGE	HT.	MO.	DAY	TIME

TOTAL ACRE FEET 7178

Ì	(LOCATIO	N	MA	XIMUM DISCH	ARGE	PERIOD 0	F RECORD		DATU	M OF GAGE)
i	LATITUDE	LONGITUDE	1/4 SEC. T & R		OF RECOR	0	DISCHARGE	GAGE HEIGHT	PER	100	ZERO	REF.
į	LATITUDE	LONGITUDE	M D B &M	CF5	GAGE HT.	DATE	DISCHARGE	ONLY	FROM	TO	GAGE	DATUM
	36 04 00	119 03 08	NE28 21S 27E	364	5.14	4-3-58	JAN 57-DATE		1957		0.00	LOCAL

Station located at Newcomb Drive Bridge, 2.0 miles west of Porterville. Tributary to Tulare Lake Basin via Tule River. Altitude of gage is approximately 425 feet (from U. S. Geological Survey topographic map). Records furnished by the Tule River Association and reviewed by the Department of Water Resources.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO	STATION NAME	
1965	C03965	VANDALIA TICH NEAR PORTERVI LE	

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DA
1	0.0	0.0	0.0	6.2	1.5		.0		4	5.0	h. "	6.0	1
2	0.0	2.0	0.0	5 . 6	0.0	8.0	.0		4.1	5.0	6.7	6.9	
3	0.0	0.0	0.0	5 • 2	0.0			2.01	4.1	5.1	5 . 8	9	3
4	0.0	0.0	0.0	4 + 8	4.2			3.	4.0	4.9	5 . 6	F . R	4
5	0.0	1.0	0.0	4.9	5.0	• •	1.1	4.5	4 .	40.	6.8	5.1	5
6	0.0	0.0	0.0	4.8	5.0			4+6	4.	5.4	6 + R	5.1	6
7	0.0	0.0	0.0	5.0	5.0	0.0		4.7	4 + 1	6.8	6.7	4.0	7
8	0.0	0.0	0.0	5 • 3	5.0		.0	4.6	4.2	6+6	6.5	1.0	
9	0.0	0	J.0	4.8	5.1			4+6	1 . 3	6.7	6 • 1	0.0	9
10	0 • 0	0.0	0.0	4 . 4	5.5			4+6	5	6.6	6.5	0.0	10
11	0.0	0.0	0.0	4.5	5.7		- 7	4.5	5.1	6.5	6+5	0.0	11
12	0.0	0.0	0.0	4.5	5.5	(10.0)		4.5		6.5	6 . 6	0.0	12
13	0.0	1.0	0.0	4 . 3	5 • 5		0.0	4.4	5	6.6	6.4	0 + 0	13
14	0.0	0.0	0.0	4.3	5 . 5	0.40	0.0	4.3	5	3.2	6 - 4	0.0	14
15	· •	0.0	C.0	40 0 40	5 • 5	• •		4.2	5 + 2	0.0	6.3	0.0	13
16	0.0	0.0	3.1	40 0 40	5.5			4.1	5.	0.0	6.3	0.0	14
17	.0	0.0	4.6	4 . 1	5.5			4.1	5 + 1	- 0	6 • 3		17
18	0.0	0.0	4.7	4.6	5.5		5.0	4.2	6 . "	n. "	4.3	0.0	1.0
19	2.0	0.0	4.8	4.8	5 • 6	0.0		4+2	5.0	0.0	6 + 3	0.0	19
20	0.0	0.0	5.0	5.	5 • 6	/ • -		4 - 1	* .		6 • 1	0	20
21	0.01	0.0	5.1	5.∨	2.1	0.0	- 12	4.1	1.	0.0	6+3	. 4	21
22	0.0	0.0	5 • 1	5.	1.1	0.4.1		40.0	6 g Fl	1.1	6.3	1.6	22
23	0.0	٦.0	5.9	5	* eU			2.5	6	. ^	6.1	^ - 2	
24	0.0	0.0	7.5	E	0.0		F . 1	4.0	5 .		6 - 1	~	24
25	0.0	1.0	9.5	4 . 4	r.	• -	.0	4 .	4.9	C+0	6 . 4	0.1	25
26	0.0	0.0	8.3	4 . 3	^ · .	-	6.0	4.	۵.	10.0	6.1	. 4	
27	0.0	0.0	7.5	406			• =	40 0	4.4	3	6.		27
28	0.7	0.0	7+7	4.	1.0	- 4	1.7	40 0	1 . 1	6.7	6.	0.	21
29	0.0	0.0	8 • 2	4+1		4		4 .	5.	6.7	6 •	^.	29
30	0.0	0.0	9+2	4 . 2			• ^ -	4.1	E . *	6.7	h . "	40	30
31	0.0		8 • 2	4 • 2		0.42		4+1		6.7	6.		31
REAN	0.0	0.0	3 • 4	4 • 2	3.:	2.40		3 • 8	4 . 8	3.0	6 + 4	1 + 3	MEA
XAN		J.0	9.5	6+4	5 . 7	0.0		4.7	2 + 2	6.6	6 + 1	6.	MA
MIN.	0.0	0.0	0.0	4 .	1.1	.0	• 1		4.00	*	6 •	1.0	MIR
C. FT			207	388	186			2 2 3	: 86	218	301	9.9	AC F

E — ESTIMATED

NR — NO RECORO

- DISCHARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

II — E AND *

MEAN		MAXIM	U M			MINIMUM							
DISCHARGE	DISCHARGE	GAGE HT	MO	DAY	TIME	DISCHARGE	GAGE HT	MO	DAY	TIME			

TOTAL ACRE PEET

1		LOCATION	N	MA	XIMUM DISCH	ARGE	PERIOO 0	F RECORD	DATUM OF GAGE			
ı	LATITUDE	LONGITUDE	1 4 SEC. T & R		OF RECORD)	DISCHARGE	GAGE NEIGHT	PER	IOD	ZERO	REF
ı	LATITUDE	CONGITOUE	M D B &M	CFS	GAGE HT	DATE	DISCHARGE	ONLY	FROM	TO	GAGE	DATUM
ı	36 03 00	118 58 18	NE 5 22S 28E				1948-DATE		1948		0.00	LOCAL

Station located 2.8 miles southeast of Porterville approximately 1,000 feet below head. This is regulated diversion from Tule River. This station is operated under cooperative agreement between the Department of Water Resources and the Tule River Association. Records furnished by the Tule River Association and reviewed by the Department of Water Resources.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECONO)

WATER YEAR STATION NO. STATION NAME POPLAR DITCH NEAR PORTERVILLE C03960

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	0.0	0.0	0.0	68	14	16	0.0	0.0	21	31	91	85	1
2	0.0	0.0	0.0	68	5.7	16	0.0	0.0	20	31	95	83	2
2	0.0	0.0	0.0	56	0.0	19	0.0	0.0	18	31	96	82	2
4	0.0	0.0	0.0	44	0.0	28	0.0	0.0	12	31	95	82	4
5	0.0	0.0	0.0	45	5 • 1	31	0.0	3.7	8 • 4	26	98	8.2	5
6	0.0	0.0	0.0	46	5.3	32	0.0	16	13	20	98	82	6
7	0.0	0.0	0.0	50	2.6	32	0.0	20	3.0	19	97	28	7
8	0.0	0.0	0.0	5.4	4.8	34	0.0	19	40	18	97	0.0	8
9	0.0	0.0	0.0	5.2	7.2	36	0.0	19	43	19	98	0.0	9
10	0.0	0.0	0.0	48	8 • 2	34	0.0	19	44	19	99	0.0	10
11	0.0	0.0	0.0	47	10	32	0.0	19	43	20	98	0.0	11
12	0.0	0.0	0.0	46	3.8	30	0.0	19	42	24	96	0.0	12
12	0.0	0.0	0.0	45	51	2.8	0.0	19	39	22	95	0.0	13
14	0.0	0.0	0.0	44	5.2	19	0.0	19	36	20	95	0.0	14
15	0.0	0.0	0.0	44	5 3	19	0.0	19	3 5	19	94	0.0	15
16	0.0	0.0	0.0	44	5.4	19	0.0	19	33	19	95	0.0	16
17	0.0	0.0	0.0	44	54	18	0.0	19	21	19	97	0.0	17
18	0.0	0.0	0.0	44	5.5	18	0.0	19	14	17	98	0.0	18
19	0.0	0.0	0.0	54	5.5	18	0.0	19	15	19	97	0.0	19
20	0.0	0.0	0.0	57	55	18	0.0	18	15	21	97	0.0	20
21	0.0	0.0	0.0	5.8	15	18	0.0	15	6.9	23	98	0.0	21
22	0.0	0.0	0.0	42	4.3	17	0.0	13	0.0	24	99	3.6	22
23	0.0	0.0	0.0	42	12	17	0.0	14	4.0	25	98	38	22
24	0.0	0.0	0.0	42	14	9.2	0.0	15	9.9	25	94	55	24
25	0.0	0.0	0.0	23	16	0.0	0.0	16	23	23	94	64	25
26	0.0	0.0	30	1.2	16	0.0	0.0	16	30	18	92	69	26
27	0.0	0.0	56	12	16	0.0	0.0	16	31	4.7	91	71	27
28	0.0	0.0	64	11	16	0.0	0.0	18	30	8.0	90	72	28
29	0.0	0.0	68	12		0.0	0.0	18	30	8.2	93	68	29
30	0.0	0.0	69	14		0.0	0.0	19	31	8.5	96	67	30
21	0.0		69	14		0.0		21		87	91		21
MEAN	0.0	0.0	11.5	41.4	22.8	18.0	0.0	15.1	24.6	31.1	95.5	34.4	MEAN
MAX.	0.0	0.0	69.0	68.0	55.0	36.0	0.0	21.0	44.0	87.0	99.0	85.0	MAX.
MIN.	0.0	0.0	0.0	11.0	0.0	0.0	0.0	0.0	0.0	18.0	90.0	0.0	MIN.
AC. FT.			706	2543	1268	1107		926	1464	1912	5875	2046	AC.FT.

E — ESTIMATED

NR — NO RECORD

- DISCNARGE MEASUREMENT OR

OBSE RYATION OF NO FLOW

— E AND *

MEAN		MAXIMU	J M				MINIM	J M	-	
DISCHARGE 24 • 7	DISCHARGE	GAGE HT.	MO.	DAY	TIME	DISCHARGE	GAGE HT.	МО	DAY	TIME

TOTAL ACRE FEET 17850

	LOCATIO	Н	AM	XIMUM DISCH	IARGE	PERIOD 0	F RECORD		DATU	M OF GAGE	`
LATITUDE		1/4 SEC T & R		OF RECOR	0	DISCHARGE	GAGE HEIGHT	PER	IOD	ZERO	REF.
	LONGITUDE	M. D. 8 &M.	CFS	GAGE HT.	DATE	DISCHARGE	OHLY	FROM	TO	GAGE	DATUM
36 03 18	119 00 54	SW36 21S 27E				APR 42-DATE		1942		0.00	LOCAL

Station located 1.0 mile south of Porterville approximately 4,750 feet below head. This is regulated diversion from Tule River. This station is operated under cooperative agreement between the Department of Water Resources and the Tule River Association. Records furnished by the Tule River Association and reviewed by the Department of Water Resources.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO STATION NAME 1965 003925 HUBBS-MINER OITCH AT PORTERVILLE

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	0.0	0.0	0.0	11	4.7	0.0	4.4	18	14	21	5.8	6.1	1
2	0.0	0.0	0.0	10	0.0	0.0	3.0	14	8 . 8	22	5.5	4 . A	2
3	0.0	0.0	0.0	12	0.0	U.D.	0.0	1.2	7.7	1.5	9.1	5.0	3
4	0.0	0.0	0.0	11	0.0	0.0	0.0	1.2	5.5	14	14	1.7	- 4
5	0.0	0.0	0.0	11	4.1	0.0	C • O	9.1	5.7	15	11	0.0	. 5
6	0.0	0.0	0.0	11	9.8	C.0	0.0	6.0	5.7	14	3 • 6	0.0	6
7	0.0	0.0	0.0	12	9.9	0.0	0.0	4.0	6 • 2	1.4	0.0	2 . 8	7
8	0.0	0.0	0.0	12	9.2	0.0	0.0	4.0	7.7	1.1	0.0	11	8
9	0.0	0.0	0.0	9.7	8.8	0.0	0.0	4 . 0	8.7	5 • 2	0.0	18	9
10	8.4	0.0	0.0	8.8	9.3	0.0	0.0	4 • 2	1.8	5.9	3 • 2	11	10
11	12	0.0	0.0	9.8	9.9	0.0	0.0	4.2	21	1.2	8 • 7	5 • 0	- 11
12	3.3	0.0	0.0	11	9.7	4 • 1	0.0	2 . 6	1.8	17	9.0	0.0	12
12	0.0	0.0	0.0	11	9.8	6.6	0.0	4.6	15	12	8.3	0.0	13
34	0.0	0.0	0.0	10	9.6	6.2	0.0	6 • 0	12	8.7	9 • 1	0.0	14
15	0.0	0.0	0.0	11	9.3	6.1	0.0	2 • 7	8 • 3	12	11	0.0	15
16	0.0	0.0	0.0	11	8 • 7	6+2	0.0	0.0	8.1	14	11	0.0	16
17	0.0	0.0	0.0	11	8 • 7	6.5	0.0	0.0	8.1	13	11	0.0	17
18	0.0	0.0	0.0	11	8 • 8	6.9	0.0	0.0	8 • 1	13	7 • 6	0.0	18
19	0.0	0.0	0.0	12	9.0	6.8	0.0	0.0	8 • 1	12	1.0	0.0	19
20	0.0	0.0	0.0	12	7.1	6.9	0.0	0.0	8.1	9.4	0.0	0.0	20
21	0.0	0.0	2.5	12	6.4	7.0	0.0	0.0	10	9.3	0.0	0.0	21
22	0.0	0.0	7 • 7	12	1.9	8.4	0.0	0.0	1.3	8.9	0.0	0.0	22
23	0.0	0.0	8 • 1	12	0.0	9.1	0.0	0.7	1 4	11	0.0	0.0	23
24	0.0	0.0	9 • 1	12	0.0	8 • 1	0.0	4 • 2	1.3	9.9	0.5	0.0	24
25	0.0	0.0	9.8	12	0.0	7.5	0.0	5.5	10	8 - 4	5.9	0.0	25
26	0.0	0.0	8 • 2	12	0.0	7.0	0.0	5 . 4	7.3	9.7	7.0	0.0	26
27	0.0	0.0	7.3	ii l	0.0	6.6	0.0	5.7	6 • 8	13	6.5	0.0	27
28	0.0	0.0	8 • 3	9.4	0.0	6.5	1.7	6 • 1	3.0	15	6.2	0.0	28
29	0.0	0.0	9.3	9.6		6.5	12	10	3 • 0	16	5 . 8	0.9	29
30	0.0	0.0	12	9.9		7.2	18	15	8 + 2	16	7.6	1.3	30
21	0.0		11	9.9		8.0		16		10	9.4		21
MEAN	0 • 8	0.0	3.0	11.0	5.5	4.5	1.2	5 • 7	9.7	12.5	5.7	2.3	MEAN
MAX.	12.0	0.0	12.0	12.0	9.9	9.1	18.0	18.0	21.0	22+0	14.0	18.0	MAX
MIN.	0.0	0.0	0.0	8.8	0.0	0.0	0.0	0.0	3.0	5.2	0.0	0.0	MIN
AC. FT.	4.7		185	675	307	274	72	349	577	768	353	134	AC FT

E - ESTIMATED

NR - NO RECORD

- DISCMARGE MEASUREMENT OR

085 ERVATION OF NO FLOW

R - E AND *

MEAN		MAXIMUM				MINIMUM						
DISCHARGE 5 • 2	DISCHARGE	GAGE HT	МО	DAY	TIME	DISCHAR	GE	DAGE	HT	МО	DAY	TIME

TOTAL ACRE PEET 3741

	LOCATION	н	MA	XIMUM DISCH	ARGE	PERIOD 0	F RECORD	DATUM OF GAGE			
LATITUDE	LONGITUDE	1/4 SEC. T & R.	OF RECORD			DISCHARGE	GAGE HEIGHT	PEF	001	ZERO	REF
CATITODE	LONGITUUE	M 0.8 &M	CFS	GAGE HT.	DATE	O/DENTANGE	ONLY	FROM	TO	GAGE	DATUM
36 03 27	119 02 02	NW35 21S 27E				DEC 42-DATE		1942		0.00	LOCAL

Station located 1.1 miles southwest of Porterville, approximately 3,400 feet below head. This is regulated diversion from Tule River. This station is operated under cooperative agreement between the Department of Water Resources and the Tule River Association. Records furnished by the Tule River Association and reviewed by the Department of Water Resources.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME PHODES-FINE OITCH NEAR PORTERVILLE C1394F 1965

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	2.0	0.0	0.0	0.0	0.0	0.0	3.0	19	15	7.6	0.0	0.0	1
2	0.0	0.0	0.0	0.0	0.0	0.1	0.0	20	16	9.2	0.0	0.0	2
3	0.0	0.0	0.0	0.0	0.0	3.8	0.0	19	16	12	0.0	0.0	3
4	0.0	0.0	0.0	0.0	0.0	0.0	2.0	18	17	13	0.0	0.0	4
s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	20	17	12	0.0	0.0	5
											0.0	0.0	6
6	0.0	0.0	0.0	0.0	0.0	0.0	7.0	20	14	11		0.0	7
7	0.0	0.0	0.0	0.0	0+0	0.0	0.0	21	1.8	15	0.0	0.0	
8	0.9	0.0	0.0	0.0	0.0	0.0	0.0	20	20	15	0.0		8
9	0.0	0.0	0 • 0	0.0	0.0	0.0	C.O	20	20	13	0.0	0.0	9
10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	21	18	9 • 8	0.0	0.0	10
11	0.0	0.0	0.0	0.0	0.0	0.0	1.0	20	15	9.6	0.0	0.0	31
12	0.0	0.0	0.0	0.0	0.0	0.0	1.0	21	1.7	9.0	0.0	0.0	12
13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	21	17	12	0.0	0.0	13
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	20	17	11	0.0	0.0	14
14					0.0	0.0	0.0	18	18	7.6	0.0	0.0	15
15	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10	10	7.0		0.0	13
16	0.0	0.0	0.0	0.0	0.0	0.0	0.0	16	18	8.8	0.0	0.0	16
17	0.0	0.0	0.0	0.0	0.0	0.0	7.0	17	1.6	12	0.0	0.0	17
18	0.0	0.0	0.0	0.0	0.0	0.0	FI . 0	1.8	16	12	0.0	0.0	18
19	0.0	0.0	0.0	0.0	0.0	0.0	0.0	19	1 4	12	0.0	0.0	19
20	0.0	0.0	0.0	0.0	0.0	0.0	7.0	16	14	11	1.0	0.0	20
21	0.0	0.0	0.0	0.0	0.0	2.0	11	12	15	11	0.0	0.0	21
21	0.0	0.0	0.0	0.0	0.0	0.0	12	12	15	9.0	0.0	0.0	22
	0.0	0.0	0.0	0.0	0.0	0.0	12	11	15	8.7	0.0	0.0	23
23				0.0	0.0	0.0	14	9.4	15	5.1	0.0	2.0	24
24	0.0	0.0	0.0			0.0	17		14	2.0	0.0	0.0	25
25	0.0	0.0	0.0	0.0	0.1	0.0	17	12	14	9.00	11.41		25
26	0.0	0.0	0.0	0.0	0.0	0.0	13	13	9.4	0.0	0.0	0.0	26
27	0.0	0.0	0.0	0.0	0.0	0.0	15	14	7 • 2	9 • 0	0.0	0.0	27
28	0.0	0.0	0.0	3.0	0.0	0.0	17	15	8.5	0.0	0.0	0.0	28
29	0.0	9.0	0.0	0.0		0.0	18	11	13	0.0	0.0	0.0	29
30	0.0	0.0	0.0	0.0		0.0	18	11	10	0.0	0.0	0.0	30
31	0.0		0.0	0.0		0.0		14		0.0	0.0		31
				0.0	0.0	0.1	4.9	16.7	15.2	8.3	0.0	0.0	MEAN
MEAN	0.0	0.0	0.0		0.0	6.5			20.0	15.0	0.0	0.0	MAX.
MAX.	0.0	0.0	0.0	0.0	0 • 0		18.0	21+0					
MIN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.4	7 . 2	0.0	0.0	0.0	MIN. AC.FT
AC FT.							292	1028	903	510			AC.PI

E - ESTIMATED

NR - NO RECORD

* - DISCHARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

- E AND *

MEAN		MAXIML	I M				MINIM	U M		_
OISCHARGE 3 • 8	OISCHARGE	GAGE HT.	MO.	DAY	TIME	OISCHARGE	GAGE HT.	МО	DAY	nme

	_	

TOTAL 2733

1		LOCATIO	4	MA	XIMUM DISCH	IARGE	PERIOD 0	F RECORD		DATU	M OF GAGE		١
	LATITUDE	LONGITUDE	1, 4 SEC. T. & R.		OF RECOR	D	DISCHARGE	GAGE HEIGHT	PER	100	ZERO	REF	
	LATITUDE	LONGITODE	M.D.B.&M	CFS	GAGE HT.	DATE	OISCHARGE	ONLY	FROM	TO	GAGE	DATUM	
ı	36 03 26	119 04 13	SE32 21S 27E				DEC 42-DATE		1942		0.00	LOCAL	

Station located 3.1 miles southwest of Porterville, approximately 3,100 feet below head. This is regulated diversion from Tule River. This station is operated under cooperative agreement between Department of Water Resources and the Tule River Association. Records furnished by the Tule River Association and reviewed by the Department of Water Resources.

DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND)

WATER YEAR		STATION NAME	
1965	C03948	WOODS-CENTRAL ITCH NEAR . RTFRV LLE	

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	0.0	0.0	0.0	54	0.0	5.00	1.0			0.0	181	153	1
2	0.0	0.0	0.0	55	0.0	0.0		11.00	100	0.0	182	155	2
3	0.0	0.0	0.0	47	0.0	0.0	7.0	1.1		0.0	182	151	1
4	0.0	0.0	0.0	34	0.0	0.0		-:		0.7	179	148	4
5	0.0	0.0	0.0	42	0.0	0.0	0.7		٥.	9.0	174	145	5
6	0.0	0.0	0.0	46	0.0	0.c	0.5	8.0		0.0	173	142	6
7	0.0	0.0	0.0	45	0.0	Tev		T.0	1.0	9.8	169	82	7
8	0.0	0.0	0.0	6.8	0.0	Uell		3	1.0	147	167	0.0	- 8
9	0.0	0.0	0.0	60	0.0	0.0	0.0	1.0		157	170	0.0	9
10	0.0	0.0	0.0	45	0.0	2.0	٠. ٦	7.0	7.0	15.8	172	0.0	10
11	0.0	0.0	0.0	4.8	0.0	0.0	0.0	8.0	0.0	157	175	0.0	- 11
12	0.0	0.0	0.0	51	0.0	0.0	0.0	2.	^ •	158	173	0 . 1	12
13	0.0	0.0	0.0	44	0.0	0.0	.0	0.0	0.0	160	173	C . 1	13
14	0.0	0.0	0.0	3.8	0.0	6.0	.0	0	1.0	173	168	0,0	14
15	0.0	0.0	0.0	3.9	0.0	0.0	0.0	C + (**	0.40	175	165	0.1	15
16	0+0	0.0	0.0	41	0.0	0.0			0.	171	168	1.5	16
17	0.0	0.0	0.0	37	0.0	0.0	0.0	C . 0	0.0	170	173	0.0	1.7
18	0.0	0.0	0.0	37	0.0	0.0	0.0	0.0	0.1	170	169	0.0	
19	0.0	0.0	0.0	60	0.0	0.0	.0	7.0	0.0	175	169	0.0	
20	0.0	0.0	0.0	6.8	0.0	0.0	. ū	0.0	0.40	174	171	0.1	20
21	0.0	0.0	0.0	65	0.0	0.0	7.0	0.0	0.0	172	169	c.n	21
22	0.0	0.0	0.0	57	0.0	0.0			0.	173	163		22
23	0.0	0.0	0.0	55	0.0	0.0	6.0	0.0	0 . 1	169	164	0.1	23
24	0.0	0.0	0.0	55	0.0	0.0	.0	8.00	0.0	168	167	0.41	
25	0.0	0.0	0.0	32	0.0	5.0	. 0	147	0 + 2	160	164	0+0	25
26	0.0	0.0	0.0	0.0	0.0	0.0	U	Us	C	162	161	0 + 0	26
27	0.0	0.0	0.0	0.0	0.0	.0	.17	0.0	0.1	169	155	0.0	27
28	0.0	0.0	37	0.0	0+0	0.0			C /	175	155	0.	28
29	0.0	0.0	57	0.0		0.0			0.0	178	153	0.0	29
30	0.0	0.0	54	0.0		0.0			0.	179	149	1 . ^	20
31	0.0		54	0.0		0.5				180	148		31
MEAN	0.0	0.0	6.5	39.5	0.0	V.U		0.0	. ^	133	168	32.5	MEAN
MAX	0.0	0.0	57.0	68.0	0.0	0.1	^ ·	0.40	1.1	180	182	155	MAX
MIN	0.0	0.0	0.0	0.0	0.0	Det	7.4	0			148	0.0	
AC. FT.			401	2426						8188	10312	1936	AC FT

E — ESTIMATED
NR — NO RECORO

- DISCMARGE MEASUREMENT OR
OBSERVATION OF NO FLOW

— E AND *

MEAN		MAXIMI	J M				MINIM	U M		
32 • 1	DISCHARGE	GAGE HT	МО	DAY	TIME	DISCHARGE	GAGE HT	MO	DAY	TIME

TOTAL ACRE FEET

	LOCATIO	Н	MA	XIMUM DISCH	IARGE	PERIOD 0	F RECORD		DATU	M OF GAGE	
LATITUDE	LONGITUDE	1 4 SEC. T & R		OF RECOR	D	DISCHARGE	GAGE HEIGHT	PERIOD		ZERO	REF
LATITODE	LONGITUDE	M D B &M	CFS	GAGE HT	DATE	DISCHARGE	ONLY	FROM	TO	GAGE	DATUM
36 04 18	119 05 48	SE30 21S 27E				DEC 42-DATE		1942		0.00	LOCAL

Station located 4.5 miles west of Porterville, approximately 100 feet below head. This is regulated diversion from Tule River. This station is operated under cooperative agreement between the Department of Water Resources and the Tule River Association. Records furnished by the Tule River Association and reviewed by the Department of Water Resources.

DAILY MEAN DISCHARGE
(Runoff of Deer Creek at Terra Bella Irrigation District)
October 1, 1960 through September 30, 1965

WATER				M	ONTHLY	RUNOFF I	N ACRE-	FEET					
YEAR	ост.	NOV.	OEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	TOTAL
1961	0	830	1147	997	1029	1399	1203	679	271	0	0	0	7555
1962	14	751	665	1357	3840	3050	2789	1608	679	27	0	0	14780
1963	170	567	831	1247	4488	2118	4300	3511	1770	619	54	104	19779
1964	715	1658	1398	1334	1423	2520	3044	2522	1306	193	0	0	16113
1965	97	1354	3546	4840	2959	2861	7096	3912	2297	1135	418	402	30917

Location--Lat. 35° 56' 36", Long. 118° 49' 36", in SE¼ Sec. 10, T. 23 S., R. 29 E. on left bank approx. 1 mile upstream from the mouth of Pothole Creek on Deer Creek.

Drainage area--86 sq. mi.

Records available--October 1919, to date. Discharge record from October 1919 to September 1960, is published in the Department of Water Resources Bulletin No. 23-61.

Cooperation--Data is furnished by the Terra Bella Irrigation District.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO.	STATION NAME	
1965	C^535	KERN RIVER NEAR BAKERCELELO	

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
,	124	202	236	582	569	8.05	603	886	1089	1572	1179	1026	1
2	131	202	266	578	570	755	604	891	1120	1535	1254	1035	2
2	119	185	292	583	567	724	614	985	1117	1490	1357	1001	3
4	126	186	281	619	567	768	620	1079	1119	1509	1368	927	4
5	131	182	259	609	577	789	602	1088	1125	1585	1312	939	5
1	151	102	2,4	00 1		, , ,	802	1000	1125	1205	1312	737	1
6	143	167	260	585	586	814	597	1067	1169	1631	1298	940	6
7	139	175	252	617	579	845	595	966	1223	1715	1298	933	7
8	150	181	253	593	563	8.85	623	944	1256	1747	1288	885	
9	151	186	247	585	550	926	622	996	1283	1736	1323	872	9
10	151	223	303	578	557	956	649	997	1298	1696	1324	868	10
	203	254	258	582	550	859	653	1001	1318	1659	1370	811	13
11	185	328	265	578	545	567	646	1002	1346	1616	1291	823	12
12		427	286	570	543	601	648	964	1428	1595	1272	855	12
12	150			559	547	681	655	900	1515	1593	1293	864	
14	142	326	250										14
15	139	253	249	531	570	680	657	879	1565	1592	1299	872	15
16	137	263	252	538	588	646	675	932	1614	1564	1335	871	16
17	137	264	246	563	6.05	602	670	959	1688	1545	1346	854	17
18	133	260	244	563	653	560	670	1047	1695	1547	1366	813	18
19	131	228	251	596	655	552	669	1059	1665	1582	1350	779	19
20	131	242	287	611	686	535	669	1061	1644	1622	1283	779	20
21	120	251	333	573	750	545	670	1085	1636	1635	1203	801	21
22	128	248	342	566	756	5 5 8	665	1049	1611	1614	1193	851	22
23	123	252	417	569	775	577	657	1008	1622	1530	1176	912	23
24	130	253	565	629	803	586	657	99]	1625	1493	1100	914	24
25	132	252	573	602	827	577	637	976	1601	1496	1044	91A	25
26	130	247	571	587	848	581	641	1007	1583	1547	1055	917	26
27	132	256	865	580	869	580	694	997	1597	1544	1046	912	27
28	130	257	770	585	848	582	747	979	1595	1574	1009	892	28
	168	252	668	592		583	858	995	1595	1465	982	879	29
29	208	187	610	568		566	897	1042	1583	1338	1019	674	30
30	209	10'	584	570		579	0 7 7	1080	1,113	1222	1021	0.4	31
-								007			1220	0.01	MEAN
MEAN	144	240	372	582	647	673	662	997	1444	1565	1228	881	MAX
MAX.	209	427	865	629	869	956	897	1088	1695	1747	1370	1035	
MIN.	119	167	236	531	543	535	595	879	1089	1222	982	674	MIN
AC. FT.	8852	14259	22879	35784	35907	41383	39399	61313	R5 9 7 4	96236	75497	62307	AC.FT

E - ESTIMATED

NO - NO RECORD

- DISCMARGE MEASUREMENT OR

DESERVATION OF NO FLOW

II - E AND *

MEAN		MAXIMU	м				MINIM	UM		_
DISCHARGE 7.8.7	DISCHARGE	GAGE HT.	MO	DAY	TIME	DISCHARGE	DAGE HT.	MO	DAY	TIME

TOTAL ACRE PEET 569800

	LOCATIO	4	MA	XIMUM DISCH	ARGE	PERIOD D	F RECORD		DATU	M OF GAGE	
		1/4 SEC. T. & R.		OF RECOR		DISCHARGE	GAGE HEIGHT	PER	HOD	ZERO	REF
LATITUDE	LONGITUDE	M.D.B.&M	CFS	GAGE HT	DATE	DISCHARGE	ONLY	FROM	TD	GAGE	DATUM
35 26 9	118 56 8	SW 2 29S 28E	36000	14.2	11-19-50	93-DATE					

Also known as "Kern River at First Point". Station located 5 miles northeast of Bakerafield. Tabulated discharge is the computed regulated flow and is computed from noon to noon beginning at noon of day shown. Records furnished by Kern County Land Company. Drainage area is 2,420 square miles.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR
i

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1 2													2
3 4 5													3 4 5
6 7 8 9		10.8 **											6 7 8 9
10 11 12 13 14 15		10.0			Ç.m.	ATION INSTA	LLED 11=10	-64					11 12 13 14 15
16						ENT DATA TO							16
17 18 19 20													17 18 19 20
21 22 23 24 25													21 22 23 24 25
26 27 28 29 30													26 27 28 29 30 31
MEAN MAX. MIN AC. FT.													MEAN MAX. MIN. AC FT

E - ESTIMATED

NR - NO RECORD

- DISCHARGE MEASUREMENT OR

DBSERVATION OF NO FLOW

- E AND *

** - RESULT OF DISCHARGE

MEASUREMENT

MEAN	(MAXIMU	M)	(MINIMI	J M	
DISCHARGE	DISCHARGE	GAGE HT	MO. DAY	TIME	DISCHARGE	GAGE HT.	MO DAY	TIME

TOTAL ACRE FEET

(LOCATION	1	MA:	XIMUM DISCH	ARGE	PERIOD 0	F RECORD		DATU	M OF GAGE	
	LATITUDE	LOHGITUDE	1'4 SEC. T & R		OF RECORI	D	DISCHARGE	GAGE HEIGHT	PER	100	ZERO	REF.
L	EXTITODE	LONGITUDE	м Ф В.&м.	CFS	GAGE HT.	DATE	DISCHARGE	OHLY	FROM	то	GAGE	DATUM
Γ	35 12 21	119 24 35	NW28 31S 24E		2.9	8-14-65		NOV 64-DATE	1964		0.00	LOCAL

Station located at State Highway 119 bridge immediately southwest of Valley Acres, 5.7 miles northeast of Taft. Tributary to Buena Vista Lake. Recorder installed 11-10-64. Altitude of gage is approximately 425 feet (from topographic map).

TABLE B-6

STREAMFLOW MEASUREMENTS AT MISCELLANEOUS LOCATIONS

Measurements of streamflow at points other than gaging stations or at points where flow has not been computed are listed in the following table.

Stream	Tributary to	Location	Date	Gage Height (feet)	Discharge (cfs)
Ash Slough nr. Chowchilla (at S.F. RR) (a)	San Joaquin River	SW4, Sec. 18, T 9S, R17E	12-23-64	5.58	2782
	via Eastside Bypass		1- 7-65	4.53	2414
Ash Slough Above Eastside Bypass	San Joaquin River	SE', Sec. 22, T10S, R14E	4-12-65	(b)2.31	647
	via Eastside Bypass		4-13-65	(b)2.6B	414
			4-14-65	(b)2.68	435
Bear Creek below Eastside Canal (c)	San Joaquin River	NW ¹ , Sec. 12, T 8S, R11E	4-14-65	87.38	549
	via Eastside Bypass				
Berenda Slough at Avenue 18	San Joaquin River	SW4, Sec. 34, T10S, R15E	4-12-65	(d)	18.5
	via Eastside Bypass		4-13-65		21.5
Berenda Slough at Santa Fe RR Bridge (a)	San Joaquin River	SW4, Sec. 18, T 9S, R17E	1- 7-65	6.07	1431
	via Eastside Bypass				
Fresno River at Road 16	San Joaquin River	NE%, Sec. 19, T11S, R16E	4-12-65	(d)	635
	vıa Eastside Bypass		4-13-65		427
Mariposa Bypass near Crane Ranch (c)	San Joaquin River	NW ¹ 4, Sec. 31, T 8S, R11E	12-29-64		1196
			1- 8-65		1613
			4-15-65		532
Owens Creek below Eastside Canal (c)	San Joaquin River	SW4, Sec. 19, T 8S, R12E	4-14-65	87.39	422
	via Eastside Bypass				
San Joaquin River below Sand Slough (c)		SW4, Sec. 30, T 9S, R13E	1- 8-65		674
			4-12-65		343
			4-13-65	101.36	286
			4-14-65	100.81	247
San Joaquin River to Eastside Bypass	San Joaquin River	SE ¹ 4, Sec. 30, T 9S, R13E	1- 6-65	(d)	7B.6
through Parshall Flume	via Eastside Bypass		4-14-65		193

a Recorder installation.
b Measuring point to water surface.
c Staff gage only.
d No gage.

DIVERSIONS - SAN JOAQUIN RIVER (Vernalia to Fremont Ford Bridge) October 1964 through September 1965

	MILE AND BANK	NUMBER				м	ONTHLY	DIVERSI	ON IN AC	RE - FE	ET				DIVERSION
WATER USER	AND SANK	OF PUMP IN INCHES	OCT.	NOV	OEC.	JAN	FE8	MAR	APR.	мач	JUNE	JULY	AUG.	SEPT.	OCTSEPT ACRE-FEET
DURHAM PERRY BRIDGE	76.7														
	76.7														
GAGING STATION - SAN JOAQUIN RIVER NEAR VERNALIS						1							918	160	3135
Moresco Brothers (a)	78.9 R	1-14 1-24	255							864	275	663	918	160	3135
Cruze, Trudel and Gillmeister	79.4 R	1-20	45				1			48	50	38	36		218
STANISLAUS RIVER	79.7 R														
Faith Ranch	79,8 R	1-16	100							173	135	142	150	157	857
W. C. Blewett Estate	80.7 L	1-12						229		82	124	359	232	192	1218
W. C. Blewett Estate	81.8 L	2-12 1-14	586				798	140	141	950	741	2670	956	1450	8432
GAGING STATION - SAN JOAQUIN RIVER AT MAZE ROAD BRIDGE	81.85														
Blewett Mutual Water Company	B1.95L	1-10 2-12 b 1-14	172					589		1340	1160	1240	1410	858	6769
El Solyo Water District	82.0 L	1-10 1-16 3-18	416					1680	1180	2180	2470	3200	3420	1490	16040
GAGING STATION - SAN JGAQUIN RIVER AT HETCH HETCHY AQUEDUCT CROSSING	82.65	3-18													
AQUEDUCT CROSSING El Solvo Ranch	B2.9 L	1-16	33	2							83	79	198	76	471
El Solyo Ranch	83.5 L	1-12	22	1						67	90	38	74	18	309
El Solyo Ranch	83.7 L	1-12	22							40	290	196	292	153	993
Faith Ranch	84.4 R	1-16 1-20	342						607	453	598	790	934	782	4506
		1-20													
TUOLUMNE RIVER	91.0 R														
GAGING STATION - SAN JOAQUIN RIVER AT WEST STANISLAUS IRRIGATION DISTRICT INTAKE CANAL	91.8 L														
WEST STANISLAUS IRRIGATION DISTRICT INTAKE CANAL	91.8 L														
West Stanislaus Irrigation District	91.8 L	1-12 1-24 6-26	1560		428		1430	9670	4550	12900	15120	13220	9880	5540	74300
Fred Lara #1 *	(0.6S)	1-14					22		148	180	207	328	80	155	1120
Prank Sarmento #1 *	(0.7N)	3=16	354						333	97	967	895	755	369	3770
Frank Sarmento #2	(1,1N)	1-14 1-16	52					172	157	74	1150	713	758	288	3364
Pred Lara #2	(2.2S)	1-16	16				8			34	33	26	6	2	125
Frank Sarmento #3		2-16					244		259	248	460	414	332	204	2161
:. V. Steenstrup Eatate	93.1 R	1-12 1-14						211		225	503	698	986	257	c 2880
T. C. Daily	94.1 L	1-14 1- 3 1- 6						51			89	128	50		318
Rancho Dos Rios	94.7 R	1-12	107				17	109	24	206	221	295	299	172	1450
E. L. Brazil	95.5 R	1-16	36			1	1	245	77	104	119	144	204	186	1116
GAGING STATION - SAN JGAQUIN RIVER AT GRAYSON	95.95L												-	100	1110
Island Dairy	96.0 L	1-18					140	260		380	442	583	478	322	2605
LAIRD SLOUGH BRIDGE	96.05														
Rancho El Peacadero	98.9 L	1-18	2				207	47	87	206	4B3	381	387	148	1948
GAGING STATION - SAN JOAQUIN RIVER AT PATTERSON BRIDGE	104.4 L														
Patterson Water Diatrict	104.4 L	1-14 2-18 3-20 1-36						2930	926	7980	8650	7840	8170	4250	40750
Chase Brothers	104.5 R	1-18	185					267	74	560	578	514	472	418	3068
PATTERSON BRIDGE	104.6														
Chase Brothers	106.5 R	1-12	72					634		140	502	501	711	505	3065
Tony Spinellı	109.1 R	1-12								34	75	52	43	50	254
Twin Oaks Irrigation Company	109.8 L	1-12 2-16 1-18	290					888	464	2180	2470	2180	2460	1830	e 12760
T. J. Nenderson	110.8 R	2- 8	217									1			218
L. A. Thompson	112.55R	1-18						95	65	455	256	437	248	332	1888

TABLE B-7 (C nt.)

DIVERSIONS - SAN JOAQUIN RIVER (Vernalis to Fremont Ford Bridge) October 1964 thr qh September 1965

	MILE AND BANK	NUMBER AND SIZE				М	ONTHLY	DIVERSI	DN IN A	CRE - FE	ΕŤ				TOTAL DIVERSION
WATER USER	٠	OF PUMP IN INCHES	ост	NOV	OEC	JAN	FEB	MAR	APR	MAY	JUNE	JULY	4 UG	SEPT	OCT-SEPT
L. A. Thompson	112.55R	1-10						95	6	455	2 6	437	24H	332	1888
Den Lemas (d)	113.4 R	1-12	127					9	66	190	161	180	159	165	113B
GAGING STATION - SAN JOAQUIN RIVER AT CROWS LANDING BRIDGE	113.4														
Dan Lemas (d)	114.63R	e 1- 8						24		80	25	68	60	3.2	259
Arnold and Ben Soura (f)	114.75R	2-10	43				18	147	104	273	278	303	281	242	1689
ORESTIMBA CREEK	115.2 L														
Roy F. Crow	115.8 L	1-10						34		183	159	181	162	133	852
L. B. Crow	116.05L	1-14	5.2				35	35	20	192	142	193	176	88	933
John W. Greer (g)	116.15R	1-8								7.2	24	83	56	53	288
John W. Greer	116.5 R	1-12	31							276	132	182	173	153	947
Stevinson Water District	121.3 R	1-18	142				43	108	89	241	248	223	239	170	1503
MERCED RIVER SLOUGH	122.2 R														
GAGING STATION - SAN JOAQUIN RIVER NEAR NEWMAN	123.7														
MERCEO RIVER	123.75R														
Stavinson Corporation	129.1 R	1-16	212				121	40	3	279	217	301	316	234	1123
GAGING STATION - SAN JOAQUIN RIVER AT FREMONT FORD BRIDGE	129.5														
VERNALIS TO FREMONT FORD BRIDGE															
Total Average cubic fast per second Monthly was in percent of seaso	nal		5491 89 2.6	2 0 0	428 7 0.2	1 0 0	3084 56 1.5	18700 304 8.9	9374 158 4.5	33960 552 16.2	39730 668 19.0	40480 658 19.3	36560 595 17.5	21630 364 10.3	209400 289

- Nileage elong San Joaquin River from its mouth 4.5 miles below Antioch.

 Meat Stanislaue Irrigation District Canal. The intake canal joins the San Joaquin River at mile 91.8L. Distance from San Joaquin River and bank on which diversion is located are shown in parentheses.

 Formerly listed as Cook Land and Cattle Company.

- b The 14-inch unit was installed in 1965.

 C Includes an undetermined amount of water returned to river by apil.

 d Formerly listed as Frank C. Mosier.

 e A 4-inch unit was removed in 1965.

 f Formerly listed as Manuel A. Serpa.

 g Installed prior to 1965. Not previously listed.

DIVERSIONS - SAN JOAQUIN RIVER (Fremont Ford Bridge to Gravelly Ford) October 1964 through September 1965

MILE AND BANK	NUMBER AND SIZE				M	ONTHLY	DIVERSIO	N IN AC	RE - FEI	ΕT				DIVERSION
WATER USER *	OF PUMP	ост.	NOV.	DEC.	JAN	FEB	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	OCTSEPT. ACRE-FEET
GAGING STATION - SAN 129.5 JOAQUIN RIVER AT FREMONT FORD BRIDGE														
GAGING STATION - SAN 186.0 JOAQUIN RIVER NEAR DOS PALOS														
San Luis Canal Company (a) 186.6 L	Gravity	7 193	3733	2114		5393	13952	11047	22119	25150	26670	25890	16374	160435
FIREBAUGH BRIDGE 198.4														
GAGING STATION - SAN 206.2 JOAQUIN RIVER NEAR MENDOTA														
MENDOTA DAM 208.63														
Central California (a) 208.8 L Irrigation District FRESNO SLOUGH Ö 209.0 L	Gravity	22933	9596	518		19224	53761	25973	70320	67036	77521	69026	40529	c 456437
DELTA-MENDOTA CANAL (0.2L)														
Firebaugh Canal Company (a) 8 (0.4L)		1704	63	304		5584	3586	3709	12762	11367	14265	14029	5661	73034
M. Jenson (b)		13												13
M. L. Dudley (b) 8 (3.4L)						274	457	315	347	480	462	448	20	2803
State of California		4602	2210	1131			79	188	212	2261	3164	1751	3299	18897
Fresno Slough Water Ö (9.20-10.50) District (b)						946	335	48	103	518	460	444	202	3056
JAMES BYPASS Ö (11.80R)														
Traction Water District (b) 88 (0.75)		563	56			262	940	543	1123	992	964	883	B23	7149
Reclamation District (b) 88 (1.50)						69	12		186	135	169	129	2	702
James Irrigation District (b) 88 (4.4)		117				7105	4453	1317	4578	8495	BB33	8858	1303	45059
Tranquillity Irrigation Ö (12.00-13.75) District (b)		230				6353	1815	758	1601	4941	5088	4360	992	26138
Melvin D. Hughes (b) 8 (12.20)						30				16	30	14		90
LONE WILLOW SLOUGH 219.8 R	1					-								
Columbia Canal Company (a) 219.8 R		3289	1367	571		3435	4070	4919	7942	B515	8862	B690	6337	57997
State Center Land Company (b)	d 1- 6		220	38						123	111	77	32	601
C. Sawall (b)	e 1- 8						NO	DIVERS.	ION					
Mendota Duck Club (b)	f 1- 8	28						DIVERS						28
M. Beck (b) Mario Giomi (Jennings Ranch) (b)	g 1- 8						NO	DIVERS.	50	91	101			242
F. A. Yearout (b)		16	44	36					30	1	101		•	96
Tulle Gun Club (b)	h 1- 8	14												14
Westlands Water District (b)		762	1169			2386	1684	1182	2346	2444	3747	3461	1690	20871
Grasslands (b)		22556	2176										2777	27509
F. J. Oil Company (b)													2	2
GAGING STATION - SAN 219.83 JOAQUIN RIVER AT WHITEHOUSE														
GRAVELLY FORD CANAL 232.8 R														
FREMONT FORD BRIDGE TO GRAVELLY FORD														
Total Average cubic feet per second Monthly use in percent of seasonal		64820 1054 7.2	20634 347 2.3	4712 77 0.5	0	51061 919 5.7	85144 1385 9.5	49999 840 5.5	123689 2012 13.7	132564 2228 14.7	150447 2447 16.7	138060 2245 15.3	80043 1345 8.9	901173 1245

- Mileage along San Joaquin River from its mouth 4.5 miles below Antioch, 6 Flant is located on Freeno Slough which diverts from San Joaquin River at mile 209.01. Distance from San Joaquin River and bank on which diversion is located are shown in parentheses. 6 Flant is located on James Bypass which diverts from Freeno Slough at mile 6 (11.80R). Distance from Freeno Slough and bank on which diversion is located are shown in parentheses.

- a Records furnished by Contracting Entities.
 b Records furnished by U. S. Bureau of Reclamation.
 c Includes Class I water.
 d Pump located on arm of slough, at SW corner S. 12, T. 14 S., R. 15 E.
 Fump located on arm of slough, 1500 feet W. of SE corner, S. 18,
 T. 14 S., R. 16 E. (Discontinued)
 Pump located on arm of slough, at S. 's corner, S. 11, T. 14 S.,
 B. 15
 G. T. 14 S., R. 15 E.
 T. 14 S., R. 15 E.
 Pump located on arm of slough, 1400 feet S. of NE corner, S. 24,
 T. 14 S., R. 15 E.
 Pump located on arm of slough, adjacent to M. Beck.

(Growlly For the Friend to be 1844 to record the first t

	MILE AND BANK	NUMBER ANO SIZE				M	ONTHLY	OIVERSIO	N IN AC	RE - FE	ΕT				TOTAL
WATER USER		OF PUMP IN INCHES	0 C T.	NOV	OEC	JAN	FEB	MAR	APR	YAM	JUNE	JULY	AUG	SEPT	OGT - SEPT
Carl H. Hobe (a)	233.03R	2- 6	1					4	21	232	2	17	2	0.	1.0
SKAGGS BRIDGE	238.18														
U. S. HIGHWAY 99 BRIDGE	247.3														
SANTA FE RAILROAD BRIDGE	249.23														
Miller Brothers	2°1.461	1- 6	2						34		6		6	77	- 4
Sycamore Island Stock Ranch 2	256.52R	1- 8	3							1.0	11.5	13		4	2.3
Oscar Spano River Ranch 1	257.101	1-16	6.9	,				3	^4	1.14	169	1	1177	1 .	1100
Oscar Spano River Ranch 2	257.7JL	1-12	_ 9					4 8	17	10	44	149	142		4
L. D. Cobb	258.08R	1- 6 1- 7					7	18		9	118	164	121	14	4 1
STATE HIGHWAY 41 BRIOGE	258.33														
R. J. Curtis 2	258.39L	b 1= 7										8	4.2	4	14
W. E. Roberts 2	258.90L	1-12	49	3	1	2	3		t	13	71	19	98	115	4 1
J. E. Cobb	259.39R	2- 6	2				29	9		4	40	61	7.3	16	234
OLD LANES BRIDGE	259.78														
J. E. Cobb 3	260.40R	1- 6	<u>-</u> 1					24	51	113	1.24	133	11°	10	111
R. C. Arnold	261.53R	1- 4 1- 5	17				5	17	8	38	92	142	134	11.0	Ame
Duane M. Folsom	261.70L	1- 6	66					4	6	10	66	92	94	42	4.
E. G. Rank, Jr.	262.32L	1- 5	4					16	13	28	40	r 5	64	26	246
Dale McCoon 1	262.60R	1= 5						44			14	30	3.2	1	121
W. H. Rohde	262.66L	1- 7	3					1	5	16	32	51	7	23	22
Dale McCoon 2	263.40R	1- 7						51			19	26	3.2	2	13
Dale McCoon 3	263.48R	1- 6						20							20
H. K. Jensen	263.76F	1- 5	46						3	88	66	64	6	46	4 1
H. W. 8all 4	264.08L	1- 6	13				4	16	25	83	~6	6	29	23	2~-
Ike D. Sall	264.60R	1- 6	83				16	0	4.2	111	114	108	118	9.2	9.4
W. F. 8all	264.83L	1- 4 1- 5	26					15	20	43	4	51	4.7	3.2	288
Virgil Durando	267.56L	1- 8	4	4		-	18	22	7	43	134	233	2 9	67	753
GAGING STATION - SAN JOAQUIN RIVER BELOW FRIANT															
FRIANT BRIDGE	268.88														
COTTONWOOD CREEK	269.53R														
FRIANT DAM	269.63														
GRAVELLY FORD TO FRIANT DAM															
Total Average cubic feet per second Monthly use in percent of seaso	onal		545 8.9 5.7	10 0.2 0.1	0.1	9 4.1 7.1	82 1.5 0.9	539 8.8 5.6	369 6.2 3.8	12 2 2 12.5	1619 27 16.8	2025 33 21.0	2180 35 22.6	1 42 18 10.8	9626 13

^{*} Mileage along San Joaquin River from its mouth $4 \frac{1}{3}$ miles below Antioch.

a Installed prior ** 196 , not previously listed, b A 4-inch unit was aban! ned in 1965.

TABLE 8-7 (Cont.) DIVERSIONS - STANISLAUS RIVER October 1964 through September 1965

	MILE	LE NUMBER MONTHLY DIVERSION IN ACRE - FEET										TOTAL			
WATER USER	above mouth	DF PUMP IN INCHES	ост.	NOV.	OEC.	JAN.	FEB	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	OCT SEPT. ACRE-FEET
Moresco Brothers (a)	1.9 R	1-16								32	39	100	97	98	366
C. C. Angyal	2.4 R	1-18	14					166		147	211	264	215	171	b 1188
Faith Ranch	3.4 L	2-12 1-16	302						258	459	434	451	577	384	2865
Reclamation District 2064	4.0 R	1-14 1-16 2-20	794				113	828	430	1780	1660	2140	2140	1560	11440
Reclamation District 2075	4.05R	2-16 1-20	392	S18			111	721	222	2190	1860	2250	2480	1690	12430
D. F. Koetitz	4.7 L	c 1-20	165							224	158	335	318	160	1360
E. T. Mape	4.75L	d 1-20	210												210
Henry Pelucca	5.5 L	e 1-16								162	115	138	153	80	648
Alice Gill	6.4 L	f 1-14	234							95	275	337	260	209	ь 1410
D. J. Macedo	8.4 R	1-16	32						125	392	249	433	478	361	2070
N. E. Cannon	8.7 R	1-10	82				1	90	88	260	245	340	227	185	1518
GAGING STATION - STANISLAUS RIVER AT KOETITZ RANCH	9.35L														
D. F. Koetitz	9.4 L	1-12	259						194	259	277	3 2 5	312	194	1820
John L. Hertle	9.8 L	1-10	1							15	8	32	19	2	77
Nelson Santos	10.0 R	1-16								7	15	94		36	152
Nelson Santos	10.5 R	1-16								78	49	273		120	5 2 0
GAGING STATION - STANISLAUS RIVER AT RIPON	15.7 L														
SOUTHERN PACIFIC RAILROAD BRIDGE	15.7														
U. S. HIGHWAY 99 BRIDGE	15.7														
A. Girardı	17.7 L	1-16								8	295	277	151		ъ 731
E. J. Freethy	19.0 R	1-14	29							60	102	135	142	85	S53
Libby, McNeill and Libby	20,9 R	1-14	SS						91	320	261	345	179	108	1359
Neath Ranch	21.2 L	1- 6	17					54		68	32	59			230
MODESTO-ESCALON HIGHWAY BRIDGE	29.6					}					ļ				
SANTA PE RAILROAD BRIDGE	33.4														
GAGING STATION-STANISLAUS RIVER AT RIVERBANK	33.6														
Oakdale Irrigation District (9) (Crawford pump)	37.7 L	1-14							11	98	134	202	81	8	ъ 534
Oakdale Irrigation District (g. (Brady pump)	39.1 L	1-12	41							55	157	177	16	74	b 520
OAKDALE-STDCKTON NIGHWAY BRIDGE	41.2														
SOUTHERN PACIFIC RAILROAD BRIDGE (OAKDALE BRANCH)	41.2														
GAGING STATION-STANISLAUS RIVER AT ORANGE BLOSSOM BRIDGE	47.0														
STANISLAUS RIVER															
Total Average cubic feet per second Monthly use in percent of seaso	onal		2630 43 6.3	518 9 1.2	0	0 0	225 4 0.5	1860 30 4.4	1420 24 3.4	6710 109 16.0	6580 111 15.7	8710 142 20.7	7840 128 18.7	5520 93 13,1	42000 58

a Pormerly listed as Cook Land and Cattle Company and
C. N. Carroll.
b Includes an undetermined amount of water returned to river by spill.
c Replaces a 14-inch unit. A 20-inch unit was a temporary installation during 1965.

TABLE B-7 (Cont.) DIVERSIONS - TUOLUMNE RIVER October 1964 through Saptembar 196'

	MILE AND BANK	NUMBER AND SIZE				M	NTHLY	DIVERSIO	N IN AC	RE - FEI	E T				TOTAL
WATER USER	above mouth	OF PUMP	OCT	NOV	DEC.	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG.	SEPT	OCT - SEPT
E. T. Mape	1.3 R	2-14	143	5	13		198	343	92	435	4.36	504	724	272	3165
J. V. Staanstrup Estate	1.9 L	2-12	35					44	50	615	492	501	35.2	29	2118
J. V. Staanstrup Estate	2.9 L	1-10	95	1		1		47	116	294	294	440	415	46	1749
		1-12													
GAGING STATION - TUOLUMNE RIVER AT TUOLUMNE CITY (SHILOH BRIDGE)	3.35														
Bancroft Fruit Farms	5.0 R	1-10	16		1		1	30	8	44	48	65	50	42	305
Dalla Battestin	5.9 L	1-16						NO	DIVERSI	ON					
Western Farma	6.3 L	1-16	51					91		88		110	130	76	546
Eugene Boone, Galen Hartwich, and Dr. Harold Willis	7,1 R	1-10								60	65	60	72	21	278
Beth Wootten	8.4 R	1-10		2				29	34	31	91	6.2	123	54	426
James A. McCleaky (a)	9.4 L	1-20	10			1		30	5	108	117	144	77		492
McClure Ranchea	9.7 R	b 1-16										219	43		26 2
Homer Coachman	10.2 R	1-14	48				1	37	17	167	196	99	180	136	881
CARPENTER ROAD BRIDGE	12.9														i
U. S. MIGHWAY 99 FREEWAY BRIDGE	15.55														
SEVENTH STREET BRIDGE	15.75														
SOUTHERN PACIFIC RAILROAD BRIDGE	15.8														
U. S. HIGHWAY 99 BRIDGE	16.05														
GAGING STATION - TUOLUMNE RIVER AT MODESTO	16.05														
DRY CREEK	16.5 R														
EAST MODESTO BRIDGE	19.3														
Jack Gardella	20.3 R	1-10	8					9	7	39	25	32	23	20	163
SANTA FE RAILROAD BRIDGE	21.6														
SANTA FE ROAD BRIDGE	21.65														
GEER AVENUE BRIDGE	26.0														250
Michel Investment Company	28.8 R	1- 8	7					29	13	62	65	72	86	25	359
J. W. and Lola Mae Short	29.8 L	1-10								37	57	36	20 53	29	c 179
Firpo Ranch	30.2 L	1-10	13					1		64	52	7.2	5.3		312
SOUTHERN PACIFIC RAILROAD BRIDGE (OAKDALE BRANCH)	31.5														
GAGING STATION - TUOLUMNE RIVER AT HICKMAN BRIDGE	31.55		31						,	71	141	112	129	95	588
Iva M. Ketcham	39.4 R	1-8	1						10	BB	93	94	78	57	441
Wastley N. Sawyer	39.8 L	1- 8	21						10	68	7,3	74	18	37	441
GAGING STATION - TUDLUMNE RIVER AT ROBERTS FERRY BRIDGE	39.9														
Wastley N. Sawyer	40.8 L	1-14	8						8	78	69	117	74	50	404
Curtner Zanker	45.7 L	1-10		1		1	1	1	1	59	40	4.2	59	23	228
Dolling Brothers	46.3 R	1- B	57							123	95	105	125	61	566
STATE HIGHWAY 132 BRIDGE	47.4														
GAGING STATION - TUOLUMNE RIVER AT LA GRANGE	50.5														
TUOLUMNE RIVER														1000	1346
Total Average cubic feet per second Monthly use in percent of see	l izonal		543 9 4.0	9 0 0,1	0.1	3 0	2 1 3 1.	691 11 5.1	3 6 2.8	2463 41 18.3	2376 40 17.7	2886 47 21.4	2813 46 20.9	1093 18 8.1	13460

a Formerly listed as A. C. Watkins Estate. b Replaces a 12-inch unit.

c Includee an undaterminad amount of water returned to river by spill.

TABLE 8-7 (Cont.)

DIVERSIONS - DRY CREEK
October 1964 through September 1965

	MILE AND BANK	NUMBER AND SIZE	MONTHLY DIVERSION IN ACRE - FEET												
WATER USER	above mouth	OF PUMP IN INCHES	ост.	NOV.	ØEC.	JAN	FEB	MAR.	APR.	мач	JUNE	JULY	AUG.	SEPT.	OCTSEPT. ACRE-FEET
MODESTO-EMPIRE TRACTION COMPANY RAILROAD BRIDGE	0.7														
STATE HIGHWAY 132 BRIDGE (YOSEMITE BOULEVARD)	.8														
LA LOMA BRIDGE	1.2														
EL VISTA AVENUE BRIDGE	2.9														
GAGING STATION - DRY CREEK NEAR MODESTO	5.3 R														
CLAUS ROAD BRIDGE	5.4														
SANTA FE RAILROAD BRIDGE	6.4														
CHURCH STREET BRIDGE	7.2														
WELLSFORD ROAD BRIDGE	8.7														
ALBERS ROAD BRIDGE	11.0								,						
MODESTO IRRIGATION DISTRICT CANAL CROSSING	11.1														
Edward Johnson	12.6 R	1- 6	13							11	30	48	47	3.0	179
Edward Johnson	12.7 R	1- 6	5							26	65	54	41	29	220
Joe Fagundes	14.7 R	1-10	55		4		10	17	40	151	120	179	178	129	883
OAKDALE-WATERFORD HIGHWAY BRIDGE	17.4														
DRY CREEK															
Total Average cubic feet per second Monthly use in percent of seas	onal		73 1.2 5.7	0 0	0.1 0.3	0	10 0.2 0.8	17 0.3 1.3	40 0.7 3.1	188 3.1 14.7	215 3.6 16.8	281 4.6 21.9	266 4.3 20.7	188 3.2 14.7	1282

	MILE AND BANK	NUMBER AND SIZE				M	NTHLY	DIVERSIO	IN IN AC	RE FE	ET				DIVERSIO OCT-SEP		
WATER USER	abcve mout T	AND SIZE OF PUMP IN INCHES	ост	NDV	DEC	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	OCT-SEP SCRE-FFE		
HILLS FERRY BRIDGE	1																
Stevinson Water District #1	1. R	-14					1.3	100	2 1	252	46	42		Les			
Stevinson Water District #2	3.8 R	-1	204	- 1		. 4	64	412	21	1.1/2	9	3 2	6 4	. 2	3181		
Milton Gordon	4.3 L	1-10	3(4						4.1		+ 1	2	100	+34		
GAGING STATION - MERCED RIVER NEAR STEVINSON	4.6																
Maria DeAngelis	1.8 L	1-12	+					1	27	43	1.65	1	8	4	1.2		
Stevinson Water District	6.1 L	1-2	136	2	2	2		() -4	3 0	43^	496	110	3B4	176	2 84		
Stevinson Water District #3	7.7 L	1-20	,26				169	1 12		14	3.21	3-1	248	4	2222		
Manuel Clemintin	8.5 L	1-12	36					19	2	-1	43	46	1	17	262		
Manuel Clemintin	8.9 L	1-12	66					- 4	- 1	141	9	160		88			
Samuel B. McCullagh	9.4 L	1- 8						4 4			100	26	49	79	416		
Mrs, J. R. Jacinto	9.6 L	12	47					-1	1	2	,	84	1 1	10.1	150		
Mrs. J. B. Silva, E. and J. Gallo Winery Ranch, L. Alves and A. Mattos	10.35L		111	133	5		4	g 2	- 1	4.2	292	3(19	1 4	6	4 .		
Manuel Freitas	13.9 L	1-12	56					h	19	64	16	111	16	1.	4		
R. E. Prusso and John Vierra	10.9 L	1 1-12								72	99	122	нь	+4	6 :		
		1-12	66	11-		-1>		2+	9	_		369	3 24	+4	1844		
E. and J. Gallo Winery Ranc?	11.6 L	1-1		-1	-	-11		-4	9	169	ь	369	3 24		184		
E. and J. Gallo Winery Ranc	12.35L	1-1-						PLANT 1	REMOVED								
Anthony L. Calderia	12.55E	1-12	36					1	KEMOVED!	1.0		61	6-4	40	2 .		
E. and J. Gallo Winery Ranch	12.5 K	1-12	30	68	2			16	12	61	2	198	89	- "	2		
. M. Souza	14. L	1-12	13		- 4			1-	12	28	64	170	-1	26	291		
GAGING STATION - MERCED RIVER NEAR LIVINGSTON	16.49	1-1						-									
E. and J. Gallo Winery Ranch	16.5 L	1-14		4.2		93			1.7	1	1.1	119	н г		31		
J. E. Gallo	21.4 L	1-	3	1=4				4.5	1	6)	23	167	~	4	72		
U. S. HIGHWAY 99 BRIDGE	21.04																
SOUTHERN PACIFIC RAILROAD BRIDGE	215																
allo Cattle ompany	22.2 R	1- 1-16	. 66	9	4		-5	_ 4	1	3 h	3 в	7/1	2	100	2 .		
Gallo Cattle Company	22.B P	1-12	1.4	ь				12		222	2 18	2	124		1148		
Merced River Farms Association	26.3 R	1- 8	980							6.2	4	64	6.2		26-		
SANTA FE RAILROAD BRIDGE	27.05																
W. C. Magneson	27.5 R	1-10	100					11		3	4.2	= 1	48	-01	2 -		
GAGING STATION - MERCED RIVER AT CRESSEY	27.55																
CRESSEY BRIDGE	27.50																
Manuel Silva	29.9 -	1- 6 1-1	47				,				- (4+	4 +	4.			
Manuel Silva	3 1, 9: R	1-12	42							9	2	4	8.2	6	41		
Rancho Con Valor	31.1 L	1- 8	39						1	1 €		14	1	2	1.5		
Manuel Silva	31.4 R	1-10	72							26	42	1.1	114	101	115		
P. Hilarides	32.2 L	1-12	69									9	111		16		
HAFFER BR DGE	32																
Harry P. Sch dt and Sons	13.1 F	1-10	3							"		4.3	42	4	2 *		
W. F. Bettencourt, P. Hilarides and Cowel Lime and Cement Co.		ravity	740	111				100			•6	1		ü	.,		
Amsterdam Orchards Incorporate		14		}		- 4	61	1				-4			- 1		
hizlaff Brothers	4 ,2 L	- 2	12							4	4	- 1	4	- 1	2.		
COX FERRY BRIDGE	42.1				100						47			2 1			
GAGING STATION - MERCED RIVER BELOW SNELLING	45.3 R 46.2	(avit,	4	-165	104		2 _			. 1		-		2-1	**		
ME CE RIVER		-	-														
Total Average cubic feet per second Monthly use in percent of seas.	na.		2 1 4 4 4 4 .	124.	2.		1.:	2 2 4	11.4	4 .	7	1 4	14	4.	144		

a Include at indetermined amount is water sturment.

TABLE B-7 (Cont.) OIVERSIONS - TULE RIVER(a)
October 1964 through September 1965

	MILE AND BANK	NUMBER AND SIZE	MONTHLY DIVERSION IN ACRE - FEET												
WATER USER	*	OF PUMP	ост.	NOV.	DEC.	JAN.	FEB	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	OCTSEPT. ACRE-FEET
SUCCESS DAM	0.0														
GAGING STATION - TULE RIVER BELOW SUCCESS DAM	0.35														
Campbell Moreland Ditch	2.4 L	Gravity	502		B2B	787	3 94	147	271	1299	1035	B35	673	711	7482
PORTER SLOUGH	2.4 R								Ì						
GAGING STATION - PORTER SLOUGH AT PORTERVILLE (B LANE BRIDGE)	** (2.4)														
PIONEER SPILL	** (3.7R)									1					
Porter Slough Ditch	** (4.5R)	Gravity			67	487	480	439	46	337	600	651	448	167	3722
GAGING STATION - PORTER SLOUGH NEAR PORTERVILLE (NEWCOMB ROAD)	** (6.1)														
Vandalia Ditch	3.1 L	Gravity			207	288	186			233	286	218	391	88	b 1897
SANTA FE RAILROAD BRIDGE	5.1														
Poplar Ditch	5.8 L	Gravity			706	2543	126B	1107		926	1464	1912	5875	2046	17850
MAIN STREET BRIDGE	5.9														
SOUTHERN PACIFIC RAILROAD BRIDGE	6.0														
Hubbs-Miner Ditch	6.4 R	Gravity	47		185	675	307	274	72	349	577	768	353	134	3741
STATE HIGHWAY 65 BRIDGE	6.6														
Rhodes-Fine Ditch	8.4 L	Gravity							292	102B	903	510			2733
OLIVE AVENUE BRIDGE	9.9					,									
FRIANT-KERN CANAL CROSSING	10.5														
Woods-Central Ditch	11.0 L	Gravity			401	2426			1			8188	10310	1936	23260
GAGING STATION - TULE RIVER BELOW PORTERVILLE	11.8														
OTTLE BRIDGE	14.4														
TULE RIVER															
Total Average cubic feet per second Monthly use in percent of seas	onal		549 9 0.9	0	2394 39 3.9	7206 117 11.9	2635 47 4.3	1967 32 3.2	681 11 1.1	4172 68 6.9	4865 82 8.0	13080 213 21.6	18050 294 29.8	50B2 B5 8.4	60680 84

Mileage downstream from Success Dam.
 Figure in parentheses indicates distance along Porter Slough from Tule River.

a Records furnished by the Tule River Association and reviewed by the Department of Water Resources. b The greater portion of this water was used to recharge Vandalia Irrigation District well fields.

TABLE B-8 OIVERSIONS AND ACREAGE IRRIGATED - EAST SIDE CANALS AND IRRIGATION DISTRICTS*
October 1964 through September 1965

WATER USER		DIVERSION													
WALT USER	001	MOV	010	JAN	FER	MAN	APR	MAY	JUNE	JULY	4u6	\$£ PT	TOTAL	GENERAL	RICE
Friant-Kern Canal				San Jo	aguin R	ver									
Total scre-feet diverted Average cubic feet per second Monthly use in percent of seasonal	25785 419 1.6	4593 77 0.3	629 10 0.0	68973 1122 4.4	241876 4355 15.3	212412 3455 13.4	76244 1281 4.8	2998	204765 3441 13.0	210407 3422 13.3	199781 3249 12.6	152009 2555 9.6	1581792 2185		
Maders Canal															
Total acre-feet diverted Average cubic feet per sacond Monthly use in percent of seasonel	92 1 0	89 1 0	18 0 0	875 14 0.3	3953 71 1.3	31907 519 10.0	13836 233 4.4	617	947	7241 1178 22.8	63073 1026 19.9	3726 626 11.7	317834 439		
Morced Irrigation District				Merc	d Rive	1									
Mein Cenel Northeide Cenel	0 50	0 61	0 81	0	0	275 25 1194	41298 668	108884 4312		107482 4491	90957 4239	68343 3483	e 551090 22780	ь 105763	5318
Total scre-feet diverted Average cubic feet per second Monthly use in percent of sessonal	50 1 0	61 1 0	81 1 0	0	000	28719 467 5.0	41966 705 7.3	113196 1841 19.8	1862	111973 1821 19.5	95196 1548 16.6	71826 1207 12.5	5 3870 793		
Turlock Irrigation District				Tuolu	mne Riv	12									
Total scre-feet diverted Average cubic feat per second Monthly use in percent of seasonal	35570 578 5.4	9530 160 1.5	4900 80 0.7	828 13 0.1	649 12 0.1	65710 1069 15.1	49670 835 7.6		104300 1753 16.0	97050 1578 14.9	90760 1476 13.9	87450 1470 13.4	c 653017 902	d 172347	
Modesto Irrigation District	1														
Total scre-feet diverted Average cubic feet per second Monthly use in percent of sessonal	25278 411 6.9	257 4 0.1	256 4 0.1	108 2 0	819 15 0.2	36414 588 10.0	41503 697 11.4	1031	63028 1059 17.2	55008 895 15.0	43333 705 11.9	591	e 365748 505	f 73985	441
Materford Irrigation District															
Total acro-feet diverted Average cubic feet per second Monthly use in percent of seasonal	2164 35 5.4	0 0	0 0	0 0	0	2161 35 5.4	2161 36 5.4	7428 121 18.5	7560 127 18.9	7648 124 19.1	5915 96 14.8	5027 84 12.5	g 40064 55	1 7152	(to
Oakdale Irrigation District				Stania	laus Ri	i ver									
Northeide Canal Southeide Canal	6811 10201	0	0	0	24	2922 4062	3554 6812			22552 32466	20870 30906		120109 178275	1 20006 3 34118	3139 436
Total acre-feet diverted Average cubic feet per second Monthly use in percent of seasonal	17012 277 5.7	0 0	0 0	0 0	24 0 0	6984 114 2.3	10366 174 3.5	905	55990 941 18.8	55018 895 18.4	51776 842 17.4	45593 766 15.3	298384 412	k 54124	k 3575
South San Josquin Irrigation District															
Total ecre-feet diverted Average cubic feet per second Monthly use in percent of sessonal	7285 118 2.7	0 0	0 0	0 0	9207 166 3.4	14839 241 5.5	23450 394 8.7	784	742	48506 789 18.1	38893 633 14.5	566	268208 370	n 64332	265

- Data for Madera and Frient-Kern Cenale furnished by U. S. Bureau of Reclaration, all other data furnished by individual irrigation districts.

 An additional 80,002 accerdant of vater was pumped from wells.

 An additional 150,504 accerdant of vater was pumped from wells.

 An additional 150,504 accerdant of vater was pumped from wells.

 Of this screage. 20,107 were double cropped.

 An additional 40,804 accerdent of vater was pumped from wells.

 Of this acreage. 8,778 were double cropped.

 An additional 80,806 accerdent of vater was pumped from wells.

- h Of this acrosse, 120 were double vropped.

 1 Of this acrosse, 110 were double cropped.

 1 Of this acrosse, 479 were double cropped.

 2 This ecrosse also received 34.134 acro-feet of weter from wells and controlled drainage.

 2 This acrosse also received an undetermined amount of well water, and an undetermined amount of controlled drainage water from Oakdals Trigation District.

 3 Section Served by subtrigation.

		MILE POST FROM	POST FROM MONTHLY DELIVERIES IN ACRE-FEET												TOTAL
	WATER USER	FROM TO	ост.	NOV	OEC.	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	TOTAL
-		FROM TO								. 1					
							De		lota Car 206	2012	3683	5682	7510	7032	30405
State (50)	of California uth 8ay Aqueduct)	3.54	2469	1479	109	0	31	192	206	2012	2003	3002	7520	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Plain	View Water District	4.22 20.00	400	43	4	1	13	1039	709	3043	3324	3497	3093	1596	16762
West S	Side Irrigation District	14.78	15	1	0	0	0	0	0	908	575	799	689	73	3060
Banta-	-Carbona Irrigation District	20.42	10	0	0	0	0	690	0	2106	1624	1923	1553	105	8011
Nospit	tal Water District	18.05 30.96	1085	226	59		258	2262	853	3936	4850	4776	4479	2288	25072
	Stanislaus Irrigation trict	31.31	0	0	0		0	591	0	65	997	6818	5529	0	14000
Kern (Canon Water District	31.31 35.18	460	57	0	0	44	558	356	1120	1387	1589	1296	507	7374
Del Pu	uerto Water District	35.73 42.51	348	113	12	0	41	1403	180	1441	2894	2368	2146	1142	12088
Patter	rson Water District	42.51	197	0	0	0	61	555	284	557	915	530	600	406	4105
Salado	o Water District	42.10 46.83	148	6.2	0	0	36	1049	549	1354	2195	2281	1337	716	9727
Sunflo	ower Water District	44.23 52.02	140	113	26	0	36	1285	902	1698	1994	2284	1792	380	10650
1	imba Water District	46.83 51.41	50	0	0	0	0	665	2110	1757	1543	3260	1601	283	11269
1	ıll Water District	51.65 57.46	327	0	0	0	26	715	332	1209	1629	1647	1676	1072	8633
Davis	Water District	53.60 56.82	91	44	0	0	32	352	18	712	553	685	361	324	3172
Mustar	ng Water District	56.80 62.67	156	0	0	0	169	766	289	1028	718	1432	1229	319	6106
_	o Water District	64.32 67.55	261	U	0	0	0	737	83	713	609	1040	847	423	4713
Romero	o Water District	66.70 68.03	233	0	0	0	11	287	2	5.2	221	61	216	72	1155
San Lu	uis Water District	69.21 90.53	2694	1910	634	104	4956	8884	3798	7372	10223	12482	8718	24 20	64195
Grase	land Water District	70.00	10636	2788	0	0	0	0	870	727	863	912	292	675	17763
Dist	al California Irrigation trict	60.65 76.05	1881	. 0	0	0	36	3120	455	8140	10754	11570	11169	6932	54057
	amburg Farms	90.53	3	1	1	2	1	3	2	3	5	3	5	3	32
	he Water District	93.25 96.70	1785	2790	1162	55	8665	7992	1608	6018	7828	11555	10311	1951	61720
	Field Water District	93.27 94.57	88	30	30	0	623	431	106	407	540	718	905	264	4142
	oma Water District	95.50 96.62	0	0	0	0	0	1	143	1377	1079	1195	1196	277	5 268
	Side Golf Association	95.95	9	3	2	2	0	3	8	19	24	24	24	15	133
	Springs Water District	97.70 99.82	122	0	0	0	0	286	213	1395	1162	1456	1236	348	6218
	n Water District	102.03	0	0	0	0	0	46	27	415	372	367	409	65	1701
-	view Water District	102.95	0	0	0	0	1748	5387	402	1586	3102	4056	2727	303	19311
1	ara Corporation of California	16.24	8	1	0	0		1	2	2		3	4	1	22
	uis Water District mporary M. & I.) rn Contracting Corporation	69.21 47.48 38.15 60.06	14	1 6	0	0	1	6	4	22	27	42	111	63	228
1	rn Contracting Corporation	6.95 16.25	45	0	0	0	0	0	0	21	34	11	111	21	50
	gher and Surke	10.50	0	0	0	0	0			2	3	11		21	6
	gner and Surke echert and Sons	20.96	0	0	0	0	0		0	0	0	0	14	14	28
	Kiewit and Sons	1.18 64.30	0	0		0	0		0	0		1.2	11	21	44
	son-Knudsen	8.01	5	0		0	0			0		12	11	21	44
	ara-Mannix	68.03	89	63	41	0	6		0	0		0		0	199
U.S.	Bureau of Reclamation	69.21 93.25	319	130	162	333	27	51	88	214	281	271	291	365	2232
Con	Total		24088	9861	2243	197	16822	39361							
-	10(81		24088	9861	2243	197	10822	39361	14605	51431	66009	85439	73446	30535	414037
Net De	eliveries DMC to Mendota Pool		73985	24914	4336	1928	62991	91043	54883	135299	142401	165614	151549	85755	994698
								Millert	on Lake						
Fresn	o County Water District #18		8	0	2	1	2	3	5	16	16	21	18	12	104
Ralst	on Associates		1	0	1	1	0	1	1	2	4	3	1	2	17
	Total		9	0	3	2	2	4	6	18	20	24	19	14	121
								No Com	-						
Made	a Irrigation District	6.1 32.2	0.	0		875	1652	Madera 18312	Canal 8957	20864	23.00	41.00	24	1000	126020
1	Ranch	20.6	92	89	18	875	1652	18312	8957	20864	31236	41957	34727	18240	176820
1	hilla Water District	20.6 35.9	92	89	18	0	2301	13595	4879	17088	25133	30453	28346	19020	140815
chowel		35.9	92	89	18	875	3953	31907	13836	17088 37952	56369	72410	28346 63073	19020 37260	140815 317834
	Total														

TABLE 8-9 (Cont.)

DELIVERIES FROM CENTRAL VALLEY PROJECT CANALS* October 1964 through September 1965

WATER USER	MILE POST FROM CANAL HEAD					MONTHLY	DELIVER	ES IN ACR	E-FEET					TOTAL
WAIEN VSER	FROM TO	ост	NOV	OEC.	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	TOTAL
						F	riant-K	ern Can	1					
Garfield Water District	7,53	200	9			294	60	39	611	498	563	422	242	293
Dag Crask Water District	14.8	0	0	0	6	0	0	0	0	0	0	0	6	6
International Water District	14.9	34	0	7	0	0		0	121	164	208	193	134	854
Round Mountain Water District	20.85 21.33	8	0		0	0		0	0	15	3.	33	31	122
Round Mountain Ranch	20.22	0	0	3		0		0	0	9	4	3	4	20
Trimmer Springs Water District	27.56	0	0	0		0		0	0	0		0	21	21
Consolidated Irrigation District	28,50	0	0	la.	12994	29667	14995	2501	15500	0	0	0	30022	105679
Last Chance Water Ditch Company	28,50	0	0	0	0	188	1813	0	0	2	0	0		2001
Laguna Irrigation District	28.50	0	0	n	d	1200	3800	0		n	0	0		5000
Corceran Irrigation District	28.50	0		0	4838	8595	567		,	10	0	0		140
Stratford Irrigation District	28.50	0		0	597	780	373				0			175
Tulare Lake Basın Water Storage District	28.50 95.64	0	,	0	5032	9406	1912	0	0		0	0		1635
Alta Irrigation Diatrict	28.50	0	0	0	2860	10715	4325	0	0	0	0	0	0	17900
Fresno Irrigation District	28.50	0	0	0	0	10001	15198	14831	13473	0	19615	32883		106001
Murphy Slough Association	28.50	0	U	0	2424	3487	1089	0	0	0		0		7 10
Riverdale Irrigation District	28.50	0	0	0	0	0	0	0		0	0	0)	
Kings River Water Association	28,50	0	-0-	0		0	0	0	0		0		0	
Empire Westside Irrigation District	28.50	0		10	2483	4846	1171	0	0	0	0	0	U	8500
Kings County Water District	28.50 71.29		0	0.	6284	17249	5967	0	2882	7619	0	0	0	4000
Orange Cove Irrigation District	35,87 53,31	2182	3.8	0		0	476	137	4233	5070	6746	6530	3846	2925
City of Drange Cove	43.44	22	2		0	0	8	15	32	34	48	42	34	23
Stone Corral Irrigation District	56.90 64.40	428	4	0	0	16	746	38	869	1388	1694	1753	879	781
Ivanhoe Irrigation District	65.04 68.13	1236	476	0	0	0	682	323	1819	1815	2751	2882	2610	14 9
Tulare Irrigation District	68.14 71.29	0	0		0	1~548	31195	1782	35108	37042	27329	27676	23302	21702
Lakeside Irrigation Water District	69.42	0	0	0	2430	8595	559		1500	2202	0	0		1528
Kaweah-Delta Water Conservation District	69.08 71.29	0	0	0	13823	28919	12258	0	1000	0	0	0	0	600
Exeter Irrigation District	72.52 79.24	1131	105	0	0	327	1557	549	4661	4663	4834	4116	2565	2410
Lindsay-Strathmore Irrigation District	85.56	3104	139	0	· ·	313	686	238	3842	4209	4889	4768	3844	a 2603:
Lindmore Irrigation District	86.17 91.12	3189	242	- 0	G	1876	4048	1043	7095	8735	10011	8721	5679	5063
Porterville Irrigation District	93.93 98.62	694	0	0	- 10	1281	2273	1067	2967	3235	3792	3574	2692	2208
Lower Tule Irrigation District	95.67 98.62	0	0	0	5869	31895	39926	22689	39204	46424	43119	38446	37585	30515
Tea Pot Domo	99.35	468	17	0	0	30	109	48	615	698	829	817	5 9 3	422
Saucelito Irrigation District	98.62 107.37	990	119	0	111	3846	6337	1674	5389	92 ^	1 29	8271	4179	5// 20
Closr Community Service District	101.60	0	0	0	0	18	0	0	12	18	14	7	6	30
Terra Bella Irrigation District	102.65	1503	44	0	0	0	173	135	1944	2218	2854	2777	1851	1349
Pixley Irrigation District	102.69	0	0	0.	1105	5544	3851	7=1	4 1	8045	2523	1446	4913	3285
Delano-Earlimart Irrigation District	109.48 118.45	4600	1002	0	218	10495	24264	6782	18139	293 2	31869	23945	11360	162//2
Southern San Joaquin Municipal Utility District	117.44 127.97	4058	734	Ú.	0	6145	19647	3729	1336	22362	26412	2231	10513	12927
Rag Gulch Water Oiatrict	117.96	0	0			95.2	851	1 6	12 8	121			619	(7)
Shafter-Wasco Irrigation District	134.42 137.17	1938	841	252	0	22 3	7797	1619	4 (28	8483	1/1239	8166	4479	12
Pacific Gas & Electric Company	150.83	0	821	377	- 0	-0-	- 0	0					- 0	19
Roaedale Rio Bravo Water Storage District	151.0	0	0	- 9	1861	5974	968	- 0		7			- 8	980
Buena Vieta Water Storage District	151.80			- 1	534	19391	2731	-	- "			0	- 0	2765
Total		2578	4_93	123	€ 973	241 76	212412	nr 244	84318	20476	21 4 7	1 /9~81	2 9	1 . 9

Data furnished by the U.S. Buruau of Recalmation.
 Includes water transported from Wutchumna Dich.
 Note: Deliveries include operational spill.

TABLE 8-10 IMPORTS AND EXPORTS October 1964 through September 1965

WATER USER	ост.	NOV.	OEC.	JAN	FEB	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	TOTAL
					In	porta 1	rom De	ta					
Delta-Mendota Canal Total acre-feet Average cubic feet per second Monthly use in percent of seasonal	129581 2107 9.0	37411 629 2.6	0	170 0.7	1499	9.2	1130 4.7	13.0		253806 4128 17.6	221551 3603 15.4	108581 1825 7.5	1441197
City and County of San Francisco Total acre-feet Average cubic feet per second Monthly use in percent of seasonal	16155 263 9.5	265	265	157				14542 237 8.6	14150 238 8.4	18720 304 11.0	15548 253 9.2	14959 251 8.8	169497 234

(Summary of exports from Tuolumne River)^a October 10, 1934^b through September 30, 1965

				м	ONTHLY	OIVERSI	DN IN AC	RE - FE	ETC				
WATER YEAR	ост.	NOV.	DEC.	JAN	FEB	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT	TOTAL
1935	1618	4234	4354	4220	3966	5442	4500	4160	4499	4195	851	0	42039
1936	2111	2061	2437	4546	4025	6474	5619	2577	5460	6367	6401	5687	53765
1937	4434	1945	3240	942	631	194	685	655	548	551	717	709	15251
1938	724	703	178	197	390	0	0	0	0	0	11	99	2302
1939	0	0	108	0	583	4188	5081	6639	6345	6540	6412	6177	42073
1940	5463	1414	4316	5742	4999	2852	1375	0	383	522	2004	3230	32300
1941	2197	463	208	3332	2642	2942	2829	2696	0	0	0	0	17309
1942	0	0	3898	2987	2756	3046	2927	2016	0	0	0	0	17630
1943	0	0	331	2590	1698	1900	1856	5326	5559	5380	288	0	24928
1944	0	0	736	4748	5504	5893	5835	421	0	1562	6062	5849	36610
1945	6062	3512	1894	2907	2893	6049	5871	6044	5799	5967	5038	4849	56885
1946	4932	4792	5024	4727	2728	4506	5749	5881	2937	5908	5827	5780	58791
1947	5931	5672	5760	5906	5316	5912	5711	5905	5710	5880	5893	5700	69296
1948	5888	5685	5858	5857	5460	5854	5650	5825	5600	5785	5817	5637	68916
1949	5838	5647	5844	5830	5250	5830	5642	5795	5590	5811	5829	4853	67759
1950	5480	5671	5831	5854	5301	5861	5610	5063	4105	5643	6782	8516	68717
1951	7883	6194	8075	8752	7905	8752	7249	7487	5652	5798	5880	5807	85434
1952	4987	5737	7357	4725	2156	2338	7232	8165	8344	6834	2662	0	60537
1953	807	2732	3420	3361	3747	9391	13601	13298	8488	12374	10035	8224	89478
1954	4135	2568	4698	4770	7233	11470	11759	13204	11085	11419	8746	8212	99299
1955	8433	7993	8181	8389	6089	6687	13208	14904	14009	11276	11216	10946	121331
1956	11480	10049	6422	2432	1612	2367	6627	10615	11436	10983	9551	8956	92530
1957	5531	4704	5076	7070	9994	11951	11563	11959	11621	12887	12918	12534	117808
1958	5692	7186	8230	8158	3346	2869	3150	6905	6834	7061	7060	7020	73511
1959	7210	5440	5231	7551	10512	14326	14317	15046	14625	15220	15314	14890	139682
1960	15413	14851	15257	15004	13889	14732	14801	15066	14717	13957	15180	14684	177551
1961	8335	13482	12656	12663	12296	14838	14424	15157	14868	15400	15247	14705	164071
1962	15122	14555	15156	15136	11207	15162	14586	15021	14606	15158	15146	14666	175521
1963	11476	8045	8279	9366	6724	13868	12307	12179	13555	15066	12875	9892	133632
1964	10255	7476	3457	12319	13961	15981	15324	16121	15560	16185	16236	15713	158588
1965	16155	15747	16298	9682	6295	13043	14358	14542	14150	18720	15548	14959	169497

a This data was furnished by the City and County of San Francisco.
b October 16, 1934, was the beginning of pipeline operations.
c Water Which was diverted through the Hatch Natchy Aqueduct by the City and County of San Francisco.

TABLE B-II

DAILY MEAN GAGE HEIGHT

WATER YEAR STATION NO. STATION NAME

1965 C03110 TULARE LAKE

(IN FEET)

NF - NO FLOW

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1													1
2													2
4 5													4 5
6 7													6 7
8 9													8 9
10													10
11													11
12													12
14							RY						14
15													15
16 17													16 17
18													18
19													19
21													21
22													22
23 24													23 24
25													25
26													26
27 28													27 28
29 30													29
31													30

CREST STAGES

STAGE

	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME
E - ESTIMATED											
NR - NO RECORD											

	LOCATION	4	MA	XIMUM DISCH	ARGE	PERIOD C	F RECORD		DATU	M OF GAGE	
LATITUDE	ATITUDE LONGITUDE 1/4 SEC. T. & R		OF RECORD			DISCHARGE	GAGE HEIGHT	PERIOD		ZERO	REF
LATITODE	LONGITUDE M.D.B.&M.		CFS	GAGE HT	DATE	DISCHARGE	ONLY		TO	GAGE	DATUM
30 03 10	119 49 35		196.8 6-28-41			FEB 37-DATE	1937		0.00	uscas	

Station located 2.2 miles southwest of Chatom Ranch, 6 miles southwest of Corcoran on south end of £1 Rico Bridge. Tulare Lake receives water from Kings, Kaweah, and Tule Rivers during high-water periods and occasionally from Kern River, Deer Creek, and several small intermittent streams. Elevation at lowest point of lake bed is now about 180 feet. U. S. Geological Survey datum. Records furnished by Tulare Lake Basin Water Storage District.

DAILY MEAN GAGE HEIGHT

WATER YEAR	STATION NO.	STATION NAME
1965	807885	SAN JOAQUIN RIVER BELOW FRIANT

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	2.30	2.19	2.04	1.86	2.00	2.03	2 • 12	2.12	2.10	2.35	2.20	2 • 22	1
2	2.30	2 • 19	2.04	1.83	2.00	2.03	2.16	2.12	2.13	2.35	2.20	2.23	2
3	2.30	2.16	2.04	1.84	1.98	2.01	1.97	2.14	2.16	2.35	2.22	2.23	3
4	2.30	2.10	2.04	1.87	1.98	2.01	1.96	2.20	2.15	2.35	2.32	2 • 2 3	4
5	2.31	2.11	2.04	1.90	2.00	2.00	1.96	2.25	2.16	2.35	2.37	2.22	S
"	2 • 5	7 • 11	7. 4	1.70	2 . 00	2 . 110	1 . 70	2.00					
6	2 + 31	2 • 11	2.04	2.01	2.06	2.00	1.96	2 • 25	2.16	2.35	2.37	2.23	6
7	2 • 3 2	2.12	2.05	7.34	2.03	2.00	2.01	2.25	2.17	2,39	2.51	2.23	7
8	2.32	2.12	2.06	2.14	1.97	2.00	1.93	2.25	2.18	2.43	2.61	2.24	8
9	2.32	7.14	2.07	2.07	1.95	2.00	1.85	2.24	2.25	2.56	2.63	2.27	9
10	2 • 32	2.15	2.07	2.01	1.94	2.04	2.02	2.24	2.28	2.69	2.66	2 • 25	10
'	6.36	7.17	20111	2.07	1 0 74	2 . 114	2 0 1 1 2	2 0 2 -					
11	2.31	7 • 14	2.07	2.01	1.94	2 - 10	2.05	2.24	2.29	2.68	2.63	2 • 24	11
12	2.31	2.15	2.07	1.98	1.93	2 • 13	1.91	2 . 24	2.32	2.68	2.52	2.23	12
13	2 • 1]	2 • 15	2.07	1.96	1.93	2.11	1.92	2.24	2.33	2.67	2.48	2.23	13
14	2.32	2 • 15	2.07	1.95	1.94	1.99	1.91	2.24	2.33	2.67	2.47	2 • 23	14
15			2.07	1.99	1.94	1.98	1.85	2.24	2 • 34	2.67	2.47	2.23	15
13	2 - 31	2+15	2+07	1.99	1.74	1.90	1.00	2 + 2 4	2 . 34	2 0 0			
16	2.28	2 • 11	2 • 07	2.02	1.92	1.98	1.82	2.24	2.33	2.67	2.47	2 • 23	16
17	2.28	2.06	2.07	2 • 01	1.92	1.98	1.80	2.24	2.33	2.67	2.47	2.22	17
18	2.28	2.07	2.07	2.01	1.99	1.98	1.79	2.24	2.33	2.66	2.47	2.22	18
19	2.25	2.07	2.08	2.01	2.15	1.98	1.77	2.24	2.34	2 • 66	2.47	2.22	19
2D		2.07	2.08	2.06	2.17	1.97	1.76	2.24	2.35	2.66	2.47	2.22	20
	2 • 23	2.111	7.00	2 + 0 0	5.11	1.4.7.1	1.70	2 + 2 4	2000			2.000	
21	2.23	2.07	2.07	2.02	2.17	1.97	1.75	2.24	2 • 34	2.53	2.48	2.20	21
22	2.23	2.07	2.08	1.99	2.18	1.98	1.76	2.24	2 • 35	2.39	2.48	2 • 18	22
23	2.23	2.07	2.10	1.99	2.18	2.04	1.75	2.24	2.35	2.39	2.46	2 • 20	23
24		2.07	2 • 10	2.12	2.09	2.13	1.73	2 • 23	2.35	2.39	2.42	2.16	24
25	2 • 23			2.04	2.00	2.13	1.73	2.20	2.35	2.33	2.39	2 • 13	25
	2 • 23	2.08	2 • 1 1	2.04	2.00	2 • 13	1 + / 5	2.20	2 . 77	2.00	2 . 33	2 + 1 3	1.5
26	2 00	2.00	2 12	2 00	2 00	2 12	1 72	2 • 16	2.35	2.26	2 . 39	2.13	26
27	2.23	2.09	2 • 12	2.00	2.00	2 • 13	1.72	2 • 16		2.26	2 • 39	2.08	27
28	2.23	2.07	2 • 1 8	2.00	2.02	2.15	1.82		2 • 35	2.22		2.05	28
29	2 • 28	2.07	2.04	2.00	2 • 0 3	2 • 16	2.07	2.10	2.35		2 • 28	2.05	29
30	2.26	2.07	1 • 9 4	2.00		2 • 12	2.07	2.10	2.34	2.20	2 • 28		30
31	2 • 24	2.05	1 • 82	2.02		2.08	2 • 10	2.10	2 • 35	2 • 20	2 + 28	2 • 0 4	31
(,,	2.20		1.87	2.00		2.09		2 • 10		2.20	2.25		31 /

CREST STAGES

	DATE	TIME	STAGE									
E - ESTIMATED												
NR - NO RECORD												
NF - NO FLOW												

	LOCATIO	И	MA	XIMUM DISCH	IARGE	PERIOD C	F RECORD		DATU	M OF GAGE	
LATITUDE	LDNGITUDE	1/4 SEC. T. & R		OF RECORD		DISCHARGE	GAGE HEIGHT	PERIOD		ZERO	REF.
	25/10/1002	M D.B.&M	CFS	GAGE HT.	DATE	DISCHARGE	OHLY	FROM	то	GAGE	DATUM
36 59 04	119 43 24	SW 7 11S 21E	77,200 23.8 12-11-37		OCT 07-DATE		1938		294.00	USGS	

Station located l mile downstream from Friant Dam. Flow regulated by Millerton Lake. Records furnished by U. S. Geological Survey. Drainage area is 1,675 square miles.

DAILY MEAN GAGE HEIGHT (IN FEET)

WATER YEAR STATION NO.	STATION NAME
1965 B64200	CHOWCHILLA RIVER NEAR RAYMOND

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	NR	NR	NR	71.55	70.37	69.87	70.62	70.38	NR	NR	NR	NR	1
2	NR	NR	NR	71.10	70.31	69.80	70.62	70.32	NR	NR	NR	NR	2
3	NR	NR	NR	71.72	70.25	69.75	70.63	70.31	NR	NR	NR	NR	3
4	NR	NR	NR	72.10	70.19	69.71	70.42	70.30	NR	NR	NR	NR	4
5	NR	NR	NR	72.78	70.33	69.70	71.35	70.27	NR	NR	NR	NR	5
6	AIR	NR	NR	76.23	71.03	69.69	70.71	70.24	NR	NR	NR	NR	6
7	NR	NR	NR	75.78	70.62	69.70	71.79	70.20	NR	NR	NR	NR	7
8	MR	NR	NR	72.94	70.39	69.77	71.93	70.19	NR	NR	NR	NR	-8
9	NR	NR	N/R	72.13	70.32	69.74	72.43	70.14	NR	NR	NR	NR	9
10	MR	NR	NR	71.80	70.23	69.71	74.05	70.07	NR	NR	NP	NR	10
11	NR	70.28	NR	71.54	70.18	69.71	73.27	70.00 E	NR	NR	NR	NR	11
13	NR	71.69	NR	71.36	70.15	69.78	72.37	69.94 E	NR	NR	NR	NR	12
13	NR	71.29	NR	71.15	70.14	70.71	72.51	69.87 E	NR	NR	NR	NR	13
14	NR	70.12	NR	71.01	70.09	70.28	72.56	69.81 E	NR	NR	NR	NR	14
15	MR	NR	NR	70.92	70.08	70.09	72.26	69.78	Иb	NR	NR	NP	15
16	NR	NR	NR	70.83	70.06	69.99	71.90	49.74 E	NR	NR	NR	NR	16
17	NR	NR	NR	70.75	70.02	69.94	71.70	69.71 E	NR	NR	NR	NP	17
18	NR	NR	NR	70.69	70.00	69.88	71.55	69.65 E	NP	NR	NR	NR	18
19	NR	NR	NR	70.68	69.99	69.83	71.41	69.62 E	NR	NR	NR	NR	19
30	NR	NR	69.98	70.84	69.99	69.80	71.34	69.60	NR	NR	NR	NR	30
21	NR	NR	69.76	70.69	69.97	69.78	71.23	NR	NR	NR	NR	NR	21
23	NR	NR	69.72	70.57	69.96	69.77	71.10	NR	NR	NR	NR	NR	22
23	NR	NR	77.70E	70.52	69.89	69.76	70.97	NR	NR	NR	NR	NR	23
24	AIR	NR	78.34E	71.90	69.80	69.77	70.86	NR	NR	NR	NR	NP	24
35	NP	NR	72.43	71.12	69.78	69.77	70.78	NG	NR	NB	NR	NP	25
26	NR	NR	71.67E	70.78	69.77	69.78	70.70	NR	NR	NR	NR	NR	26
27	NR	NR	75.12	70.67	69.83	70.56	70.63	NR	NR	NR	NR	MR	27
28	NR	NR	73.97	70.61	70.11	71.03	70.54	NR	NR	NR	NR.	NR	28
29	NR	NR	72.24	70.54		70.36	70.48	NR	NR	NR	NR	NR	29
30	NP	NR	71.90	70.48		70.20	70.43	MR	NR	NR	NR	NR	30
31	NP		71.89	70.43		70.14		NR		NR	NR		31

CREST STAGES

NR - NO RECORD NF - NO FLOW

DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
12-23-64	1125	83.25	1- 6-65	1415	78.61						
12-24-64	1540	78.92	1- 7-65	0800	78.76						
12-27-64	0745	77.52	4-10-65	1900	75.18						

	LOCATIO	ν	МА	XIMUM DISCH	ARGE	PERIOD O	F RECORD	DATUM OF GAGE			
1 4 7171105	LATITUDE LONGITUDE 1/4 SEC T & R			OF RECOR	0	DISCHARGE	GAGE HEIGHT	PERIOD		ZERO	REF
LATITUDE	LONGITUDE	M D 8 8.M	CFS	GAGE HT	DATE	DISCHARGE	ONLY	FROM	TO	GAGE	DATUM
37 15 36	119 56 42	SE 1 8S 18E	8497E	83.9	2-1-63	NOV 59-SEP 62	OCT 62-DATE	1959		0.00	USCGS

Station located 6.0 miles northwest of Raymond on Raymond Road. Elevation of station is approximately 600 feet. U. S. Coast and Geodetic Survey datum. This station was installed in cooperation with Madera County and Chowchilla Water District. It is a flood control warning station, equipped with a Stevens Surface Detector and Telemark. Low flows are not recorded. Prior to 1962, high flow records were insufficient for publication. Discharge measurements and partial flow records are available in DWR files. In order to machine process this station, the recorder datum was changed. To obtain true elevations add 500 feet to all of the above gage heights. Drainage area is 201.7 square miles.

DAILY MEAN GAGE HEIGHT (IN FEET)

WATE	R YEAR	STATION NO	STATION NAME	-				_	
	1965	B07575	SAN JOAQU	N RIVER	ABOVE	SAND	SLOUGH		

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1		NF	NR	13.86	11.91	10.30	9.75	10.93	10.85	9.78	10.46	9.89	1
2		NF	NR	13.77	11.84	10.37	9.74	10.66	10.69	9.75	10.57	9.79	2
3		NF	NR	13.28	11.79	10.38	9.74	10.54	10.56	9.75	10.53	10.01	3
4		NF	NR	13.02	11.73	10.31	9.74	10.47	10.51	9.86	10.56	9.98	4
5		NR	NR	13.84	11.63	10.19	10.82	10.43	10.42	10.20	10.59	9.95	5
6		NR	NR	13.96	11.54	10.09	11.51	10.41	10.42	10.60	10.52	9.98	6
7		NR	NR	15.40	11.54	9.97	11.32	10.52	10.51	10.61	10.60	10.03	7
é l		NR	NR	16.16	12.18	9.82	11.30	10.73	10.64	10.75	10.63	10.25	8
9		NR	NR	15.03	12.01	9.73	12.22	10.56	10.58	10.64	10.50	10.36	9
10		NR	NR	14.55	11.91	9.73	13.16	10.48	10.56	10.50	10.25	10.10	10
11		NR	NR	13.73	11.90	9.74	14.22	10.30	10.48	10.38	10.14	9.94	11
12	N	NR	NR	13.17	11.72	9.72	14.23	10.09	10.37	10.25	10.17	9 • 85	12
13	0	NR	NR	12.69	11.68	9.73	13.93	10.03	10.42	9.97	10.47	10.21	13
14		NR	NR	12.46	11.42	9.77	13.55	9.78	10.71	9 . 89	10.42	10.18	14
15		NR	NP	12.50	11.36	9.74	13.57	9 • 8 3	10.64	9.92	10.34	10.05	15
16	F	NR	NR	12.32	11.29	9.73	13.51	10.04	10.56	10.04	10.51	9.84	16
17	L	NR	NR	12.29	11.21	9.72	13.22	9.93	10.53	10.11	10.47	9.77	17
18	Ö	NR	NR	12.36	11.03	9.71	12.84	9.92	10.57	10.12	10.37	9.77	18
19	W	NR	NR	12.25	10.85	9.72	12.61	9.87	10.42	10.38	10.45	9.83	19
20	l I	NR	NR	12.18	10.86	9.72	12.47	9.75	10.28	10.58	10.45	10.12	20
21		NR	NR	12.19	10.88	9.71	12.39	9.94	10.14	10.45	10.35	10.51	21
22		NR	NR	12.24	10.68	9.71	12.32	9.99	10.01	10.55	10.67	10.50	22
23		NR	NR	12.14	10.72	9.72	12.08	10.17	9.96	10.61	11.02	10.49	23
24		NR	11.15	12.10	10.53	9.72	11.96	10.54	10.23	10.49	10.99	10.46	24
25		NR	14.67	12.17	10.43	9.71	11.87	10.59	10.53	10.20	10.90	10.43	25
26		NR	15.17	13.05	10.35	9.71	11.81	10.59	10.62	10.02	10.55	10.35	26
27		NR	14 • 73	12.65	10.29	9.72	11.75	10.59	10.45	9.84	10.23	10.27	27
28		NR	15.28	12.36	10.26	9.73	11.63	10.44	10.18	9.76	10.33	10.39	28
29		NR	15.60	12.22		9,73	11.43	10.46	9.98	9.75	10.54	10.34	29
30		NR	15.18	12.09		9.73	11.27	10.56	9.83	9.75	10.66	10.28	30
31		44	14.36	11.98		9.73		10.61		10.12	10.36		31

CREST STAGES

-	

NR - NO RECORD

NF - NO FLOW

DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
12-26-64 12-29-64 1- 8-65	1040	15.25 15.71 16.50	4-11-65	1950	14.59						

	LOCATIO	N	MA	XIMUM DISCH	ARGE	PERIOD O	F RECORD		DATUM OF GAGE			
1 ATITUDE	ATITUDE LONGITUDE 1/4 SEC T. & R			OF RECORD	0	DISCHARGE	GAGE HEIGHT	PERIOD		ZERO	REF.	
CATTOBE	LONGITUDE	M.D.B.&M.	CFS	GAGE HT.	DATE	DISCHARGE	ONLY	FROM	TO	GAGE	DATUM	
37 06 36	120 35 24	NE31 9S 13E	2110	6.55	2-12-62	OCT 61-SEP 62	OCT 62-DATE	1961		0.00	HECCE	

Station located 5 miles northwest of Santa Rita Bridge and 5 miles west of El Nido. In order to machine process this station, the recorder datum was changed. To obtain true elevations add 90 feet to all of the above gage heights.

DAILY MEAN GAGE HEIGHT

WATER YEAR STATION NO. STATION NAME

1965 B07400 SAN JOAQUIN RIVER NEAR STEVINSON

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	60.81	60.64	60.54	69.92	62,57	61.71	61.88	62.47	61.98	62.18	61.05	62.00	1
2	60.74	60.65	60.50	69.67	62.44	61.77	51.79	62.36	62.15	51.82	61.14	62.14	2
3	60.72	60.62	60.47	68.88	63.26	61.64	61 . 87	62.43	62.54	61.55	61.22	52.10	3
4	60.73	60.59	60.47	68.06	63.12	61.29	51.86	62.49	62.54	61,45	61.21	51.95	4
5	60.78	60.54	60.46	67.61	63.06	61.22	61.72	62.41	62.68	61.46	61.19	61.89	s
6	60.76	60.49	60.44	67.80	62.99	61.18	61.55	62.35	62,54	61.61	61.16	51.90	6
7	60.73	60.48	60.44	68.66	63.00	61.20	61 • 36	62.30	52.86	61.67	61.17	51.99	7
8	60.72	60.47	60.41	71.08	63.20	61.21	62.19	52.19	62.75	61.58	61.18	62.02	8
9	60.72	60.48	60.39	72 • 10	63.14	61.26	63.25	62.14	62.63	51 450	61.23	62.04	9
10	60.72	60.49	60 • 40	71.59	63.25	61.28	55 • 65	62.09	62.91	51442	61.20	62.60	10
- 11	60.71	60.46	60.43	70.62	63.25	61.31	66.62	62.04	52.87	61.31	61.19	62.50	-11
12	60.70	60.47	60.40	69.56	63.09	61.41	68.21	61.92	62.76	61.27	61.17	62 • 38	12
12	60.65	60.48	60.40	68.48	62.86	61.49.	58.86	51.76	62.57	61.25	61.25	62.34	12
14	60.62	60.59	60.40	67.30	62.55	61.89	68.87	41.62	62.45	51.21	61.39	52.26	14
15	60.59	61.58	60.40	66.37	62.58	62.20	68.71	61.58	62.61	£1.16	51.42	62.30	15
16	60.55	61.28	60.41	65.79	62.49	62.12	68.27	61,60	62.43	61.18	61.46	62.45	16
17	60.55	60.80	60.43	65.43	62.38	61.78	67.76	61.69	62.39	61.06	61.50	62.50	17
18	60.58	60.83	60.43	65.08	62.22	61.49	67.31	61.82	62.28	60.98	61.59	62.54	18
19	60.55	60.83	60.49	64.83	61.87	61.39	66 • 62	61,90	62,13	60,99	61.71	62.53	19
20	60.55	60.80	60.46	64.67	61.60	61.43	65.84	61484	62.00	60.95	61.68	62.49	20
21	60.55	60.74	60.43 E	64.47	61.49	61.37	65.32	61.65	61.97	50.91	61.67	62.39	21
22	60.55	60.69	60.44 E	64.34	61.41	61.46	64.76	61.73	61.63	61.06	61.59	62.15	22
23	60.54	60.68	60.47 E	64.24	61.38	61.49	64.53	61.83	61.50	61.10	61,65	62.01	22
24	60.57	60.66	61.56 E	64.09	61.38	61.55	64.32	61.94	61.74	61.24	61.61	62.07	24
25	60.57	60.63	64.33 E	64.15	61.34	61.55	63.49	62.07	61.75	61.29	61.75	62.13	25
26	60.50	60.61	66.24 E	64.32	51.40	61.49	63.47	62.09	61.91	61.12	61.84	62.08	26
27	60.47	60.58	67.74 E	64.51	61.42	61.39	64.22	61.98	62.01	61.09	61.84	61.99	27
28	60.48	60.54	69.13 E	64.60	61.53	61.37	63.80	61.87	62.13	61.06	61.23	61.96	28
29	60.57	60.53	70.09	64.36		61.69	63.18	61.85	62,30	60.97	61.89	61.94	29
30	60.85	60.50	70.58	64.01		62.36	62.76	61.96	62.31	60.96	61.82	61.76	30
21	60.80		70.28	63.77		62.18	1	61.96		61.08	61.83		31

CREST STAGES

E - ESTIMATED

NR - NO RECORD

DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
12-30-64 1- 9-65 4-14-65	1150 1340 1830	70.63 72.20 68.90									

NF - NO FLOW

	LOCATION	ч	MAXIMUM DISCHARGE			PERIOD O	F RECORD	DATUM OF GAGE			
LATITUDE	LONGITUDE	1 4 SEC. T. & R		OF RECOR	D	DISCHARGE	GAGE HEIGHT	PER	100	ZERO	REF.
LATITUUE	LUNGITUUE	M.O.B &M.	CFS	GAGE NT.	DATE	OISCII ANGE	DNLY	FROM	TO	GAGE	DATUM
37 17 42	120 51 00	26 7S 10E	6060	73.04	2-17-62	OCT 61-DATE	MAY 61-SEP 61	1961		0.00	USCGS

Station located on bridge 2.3 miles south of Stevinson on Lander Avenue.

DAILY MEAN GAGE HEIGHT

(v	VATER YEAR	STATION NO.	STATION NAME			
t	1965	B07375	SAN JOAOUIN RIVER	AT FREMONT F	ORD BRIDGE	

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	54.55	55.16	54.97	62.56	57.14	55.04	55.27	56.37	55.79	55.81	55.43	55.63	1
2	54.52	55.32	54.96	62.43	56.95	56.15	56.21	56.45	55.92	55.56	55.40	55.77	2
3	54.56	55.41	64.95	62.03	56.74	56.29	56.30	56.44	56.09	55.47	55.34	55.80	3
4	54.63	55.34	54.93	61.37	56.62	56.23	56.22	55.64	55.03	55.42	55.24	55.77	4
5	54.58	55 • 28	54.92	60.86	56.56	57.22	56.20	56.61	56.00	55.54	55.27	55.71	5
6	54.50	55.27	54.92	60.70	56.50	56.16	56.13	56.49	56.92	55.56	55.30	55.62	6 7
7	54.45	55.19	54.91	61.25	56.52	56.42	55.91	56.60	56.13	55.57	55.19	55.59	8
8	54.41	55 • 13	54.88	53.00	56.82	56.96	56.12	56.55	56.34	55.53	55.36	55.65	9
9	54.29	55 • 21	54.83	64.31	56.80	57.06	56.88	56.47	56.45	55.43	55.40	55.56	10
10	54.29	55 • 28	54.78	64.57	56.58	57.07	58.31	56.36	56.58	55.38	55.39	55.74	10
11	54.24	55.28	54.75	64.14	56.59	56.90	59.35	56 - 18	56.77	55.47	55.43	55.99	- 11
12	54.14	55.26	54.76	63.42	56.50	56.76	60.58	56.07	55.90	55.65	55.43	55.77	12
13	53.98	55.27	54.74	62.42	56.37	56.56	61.40	55.95	56.77	55.53	55.35	55.77	13
14	NR	55.29	54.74	61.27	56.32	56.01	61.46	55.75	56.68	55.45	55.50	55.60	14
15	53.91	55.59	54.74	60.30	56.39	56.40	61.42	55.74	56.72	55.37	55.58	55 • 61	13
16	NR	55.77	54.76	59.75	56.34	56.46	61.29	55.85	56.64	55.23	55.49	55 • 66	16
17	NR	55.48	54 • 81	59.38	56.20	56.67	61.09	55.86	56.45	55.08	55.50	55.84	17
18	NR	55.36	54 • 83	59.05	55.99	56 • 62	60.85	55.86	56.04	55.13	55.45	55.91	18
19	NR	55 • 38	54.77	58 • 64	55.83	56.00	60.44	55.82	55.91	55.21	55.53	55.84	19
20	NR	55.33	54.80	58.28	55.63	55.96	59.46	55.83	55.84	55.26	55.47	55.88	20
21	NR	55 • 26	54.92	58.06	55.59	55.87	58.51	55.72	55.73	55.21	55.52	55.97	21
22	NR	55.26	54.82	57.87	55.58	55.93	58.15	55.84	55.56	55.06	55 45	55.80	22
23	NR	55.29	54.96	57.73	55.63	55.81	57.94	56.08	55.39	55.03	55.59	55.59	23
24	NR	55.28	55 • 16	57.67	55.65	55.74	58.04	56.03	55.50	55 + 21	55.57	55.59	24
25	NR	55 • 26	57.26	57.92	55.58	55.77	57.79	55.94	55.69	55.30	55.59	55.62	25
26	NR	55 • 25	59.54	58.20	55.65	55.95	57.51	55.75	55.77	55.28	55.54	55.56	26
27	NR	55 • 14	60.72	58.29	55.79	55.92	57.59	55.91	55 + 87	55.48	55.58	55.65	27
28	53.91	55.08	61.26	58.21	55.92	55.93	57.33	55.76	55.80	55.30	55.63	55.70	28
29	54.18	54.95	62.02	57.70		56.07	56.96	55.52	55.95	55.19	55.66	55.62	29
30	54.57	54.92	62.58	57.33		56.34	56.59	55.72	55.98	55.29	55.64	55.55	30
31	54.93		62.74	57.16		56.33		55.81		55+38	55.68		31

CREST STAGES

E - ESTIMATED

NR - NO RECORD

NF - NO FLOW

DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
12-31-64	0400 0700	62.77 64.62									

	LOCATION		МА	XIMUM DISCH	ARGE	PERIOD O	F RECORD		DATUA	OF GAGE	
LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECOR)	DISCHARGE	GAGE HEIGHT	PER	HOD	ZERO	REF.
	EGNOTIONE	M.D.B.&M	CFS	GAGE HT	DATE	DISCHARGE	ONLY	FROM	TO	GAGE	DATUM
37 18 35	120 55 45		5910	71.14	4-6-58	MAR 37-DATE		1944	1957	-3.73	USCGS
								1957 1959	1959	-3.77 0.00	USCGS

Station located 30 feet below Fremont Ford Bridge, 4.5 miles west of Stevinson, 6.7 miles above the Merced River.
During periods of high flow, some water bypasses station through Mud Slough. Maximum discharge of record is for
period 1944 to date. Records furnished by U. S. Geological Survey. Drainage area is approximately 8,090 square miles.
Flow records are published in U. S. Geological Survey report "Surface Water Records of California".

DAILY MEAN GAGE HEIGHT

WATER YEAR STATION NO. STATION NAME

1965 B05170 MERCEO RIVER BELOW . LLING

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	4.74	5.98	6.73	5.91	7.59	5.69	5.52	7.42	8.96	7,10	6.11	5.91	1
2	4.75	5,83	7.35	5.71	6.01	11.76	5.49	10.00	8.98	7,89	6.09	5.91	2
3	4.75	5.89	6 • 43	5.57	6.56	12.00	5,46	10.43	9.05	7.21	6.07	5,96	3
4	4.74	5 • 87	6.79	5.56	9.68	11.53	5.45	10.41	9.11	7.14	6.07	5.93	4
5	4.75	5.83	5 • 64	5 • 6 3	9.95	9.73	7.91	10.37	9.12	7.15	6.17	5.94	5
6	4.77	5.62	5.40	11.93	10.36	11.47	9.45	10.35	9.14	6,93	6.11	5.94	6
7	4.76	5.52	5.30	16.44	10.73	11.55	9.50	10.2	9.47	6.59	6.06	5.96	7
8	4.76	5.54	5 • 22	14.16	8.30	11.51	9.99	10.32	10.40	6.53	6.11	6.05	8
9	4.77	5.67	5.17	12.86	6.08	11.34	10.23	10.24	10.81	6.55	5.98	6.16	9
10	4.77	6.63	5.12	11.49	5 + 80	11.09	11.19	10.16	10.95	6 • 4 1	5.95	6 • 0 6	10
-11	4.79	7.39	5.10	9.89	5.72	10.99	11.54	10.13	10.98	6.25	5.94	6.03	11
12	4.80	7.65	5.07	6.59	6 • 82	9 . 62	7.86	9.84	10.98	6.22	6+01	6.00	12
13	4.78	8.99	5.03	7.89	10.37	7.41	6 • 48	8 • 66	10.97	6.19	6.02	6.04	13
14	4.78	8 • 47	5.02	10.33	10.37	10.80	7.02	8.60	10.97	6.19	6.11	6.04	14
15	4.78	7.98	5.00	10.59	10 + 29	10.85	11.21	8 - 58	10.96	6.11	4.09	5.97	15
16	4.78	7.58	4.98	10.60	9.68	10.96	11.30	8.57	9.75	6.12	6.37	5.96	16
17	4.78	7.12	4.96	10.20	9 • 00	10.96	11.30	8.61	7.76	6.12	6.09	5.94	17
18	4.79	6.73	5.04	7.74	8 • 66	9.94	11.06	8.62	7.65	6.19	6.01	5.90	18
19	4.78	6.64	5 . 23	6.22	8 • 48	6.58	6.88	8 • 6 3	7.68	6 • 21	6.00	5.85	19
20	4.77	6.47	5.19	6.02	6.61	6.63	5.90	8.65	7.57	6.15	6.00	5 + 8 2	20
21	4.77	6.78	5.23	5 • 88	9.06	6.61	6.66	8.72	7.37	6.15	6.01	5 + 85	21
22	4.77	6.57	5.78	7.26	8.83	6.50	10.89	8.81	6.71	6.15	6.00	5 . 88	22
23	4.85	6.46	5.87	10.09	8 . 72	6.37	10.89	8.85	6.62	6.14	6+12	5.85	23
24	4.88	6.39	6.32	11.09	A . 57	6.28	10.67	8.88	6.87	6.12	5.89	5.83	24
25	4.89	6 • 45	6.22	11+19	6.29	6.27	10.22	8.93	8.53	6.09	5 • 87	5 • 8 2	25
26	4.89	6.86	6.11	11.03	5.97	6.22	7.00	8.95	8.58	6.12	5.96	5 • 8 4	26
27	4.90	6+97	6.29	9 + 71	5.79	6.23	6.42	8.96	7.43	6.12	5.97	5.79	27
28	4.91	6.91	6 • 25	6.39	5.67	6.61	5.43	8.96	6.55	6,29	5.94	5.76	28
29	4.99	7.32	6.12	5.99		6.29	6.69	8.97	6.56	6.13	5.94	5.93	29
30	4.98	6 • 72	5.93	9.11		5.67	6.71	9.00	6.60	6.16	5.94	5 . 35	30
31	5.87		5.95	9.96		5.58		8.98		6.13	5.91		31

CREST STAGES

E - ESTIMATED

NR - NO RECORD

NF - NO FLOW

DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
1- 7-65	1230	17.10	2-13-65	1530	10.87	4-16-65	1130	11.35			
1-25-65	2210	11.32	3- 4-65	1600	12.17	6-15-65	2040	11.36			
2- 7-65	1520	11.04	4-10-65	2400	11.56						

	LOCATIO	ч	MA	XIMUM DISCH	ARGE	PERIOD 0	F RECORD		DATU	M OF GAGE	
LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECOR		DISCHARGE	GAGE HEIGHT	PEF	100	ZERO	REF
LAIIIUUE	LONGITUDE	M.D 8.&M.	CFS	GAGE HT.	DATE	o i o i o i o i o i o i o i o i o i o i	ONLY	FROM	TO	GAGE	DATUM
37 30 06	120 27 03	NE17 5S 14E	14500	17.10	1-7-65	NOV 58-DATE		1958		0.00	LOCAL

Station located 0.2 miles below Merced-Snelling highway bridge, 1.4 miles southwest of Snelling. Flow regulated by Exchequer powerplant and Lake McClure. Prior to November 1958, records available for a site 3.6 miles downstream. Altitude of gage is 221 feet, U. S. Geological Survey datum.

DAILY MEAN GAGE HEIGHT

WATER YEAR STATION NO. STATION NAME

1965 B05155 MERCEO RIVER AT CRESSEY

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1 2 3 4 5	10.43 10.40 10.41 10.43 10.42	10.69 10.82 11.01 11.00	11.98 12.20 12.51 11.90 11.99	12.35 11.60 11.37 11.43 11.25	14.65 12.08 11.40 13.22 15.04	10.92 14.25 18.13 18.31 15.51	10.60 10.51 10.44 10.39 10.56	11.43 13.96 15.78 15.85 15.81	14.03 14.05 14.02 14.11 14.12	11.18 12.10 12.30 11.76 11.72	10.51 10.55 10.48 10.43 10.47	10.46 10.46 10.53 10.54 10.59	1 2 3 4 5
6 7 8 9	10.37 10.43 10.39 10.41 10.36	11.05 11.05 10.98 10.99 11.05	11.22 10.93 10.85 10.76 10.68	13.17 25.28 24.61 21.97 19.05	15.53 16.41 15.85 12.50 11.52	16.72 17.67 17.68 17.59 17.13	13.93 14.41 15.00 15.36 16.42	15.81 15.78 15.75 15.72 15.63	14.14 14.18 15.38 16.32 16.68	11.73 11.44 11.17 11.12 10.93	10.47 10.47 10.56 10.53 10.46	10.62 10.63 10.69 10.70 10.71	6 7 8 9
11 12 13 14 15	10.30 10.39 10.42 10.36 10.30	11.68 12.79 13.65 14.85 13.93	10.72 10.63 10.55 10.51	17.24 13.92 12.43 15.38 16.25	11.22 11.09 13.94 15.88	16.97 16.69 13.01 15.34 16.53	17.77 16.09 12.48 12.32 14.76	15.53 15.47 14.26 13.62 13.57	16.78 16.80 16.75 16.75	10.79 10.76 10.61 10.55 10.45	10.45 10.43 10.60 10.63 10.67	10.67 10.67 10.72 10.66 10.77	11 12 13 14
16 17 18 19 20	10.45 10.53 10.52 10.51 10.49	13.42 13.00 12.50 12.16 11.96	10.46 10.46 10.44 10.47	16.45 16.44 14.96 12.46 11.78	15.49 14.57 14.01 13.77 12.94	16.68 16.81 16.74 13.34 11.78	17.24 17.29 17.27 14.85 11.79	13.54 13.59 13.61 13.59 13.65	16.54 13.51 12.67 12.67 12.53	10.33 10.31 10.35 10.41 10.42	10.63 10.55 10.50 10.53 10.48	10.75 10.66 10.68 10.71 10.69	16 17 18 19 20
21 22 23 24 25	10.47 10.48 10.48 10.51 10.52	11.86 12.00 11.84 11.74 11.61	10.51 10.54 11.03 14.23 13.37	11.55 11.39 14.71 16.43 17.28	12.92 14.04 13.89 13.83 12.91	11.63 11.50 11.33 11.14 11.12	11.12 14.30 16.57 16.53 16.02	13.69 13.78 13.86 13.91 13.93	12.48 11.92 11.49 11.36 12.42	10.39 10.43 10.47 10.44 10.48	10.45 10.52 10.52 10.40 10.44	10.63 10.62 10.64 10.64 10.57	21 22 23 24 25
26 27 28 29 30 31	10.53 10.54 10.55 10.69 10.76 10.72	11.65 12.09 12.18 12.26 12.51	11.99 13.25 12.32 12.64 11.90 12.13	17.27 16.41 13.63 11.82 12.29 15.65	11.51 11.23 11.08	11.06 11.07 11.16 11.44 11.11 10.70	14.12 11.79 11.36 11.31 11.45	14.00 14.00 13.98 13.94 13.95 14.00	13.48 13.46 11.71 11.29 11.16	10.41 10.46 10.47 10.45 10.44	10.45 10.51 10.50 10.53 10.55 10.53	10.62 10.66 10.64 10.62 10.61	26 27 28 29 30 31

CREST STAGES

E - ESTIMATED

NR - NO RECORD

NF - NO FLOW

DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
11-14-64			1-26-65	0630		3- 4-65	2250	18.35			
	1950		1-30-65	2400		4-11-65	1010	18.07			
1- 7-65	2040	27.40	2- 8-65	0230	16.74						
)					

	LOCATIO	И	MA	XIMUM DISCH	ARGE	PERIOD C	F RECORD		DATU	M OF GAGE	
LATITUDE	ATITUDE LONGITUDE 1/4 SEC. T. & I			OF RECOR	D	DISCHARGE	GAGE HEIGHT	PER	IOD	ZERO	REF.
CATHODE	EDITOTION	M.D.B.&M.	CFS	GAGE HT.	DATE	DISCHARGE	ONLY	FROM	TO	GAGE	DATUM
37 25 28	120 39 47	SW 9 6S 12E	34400	22.67	12-4-50	JUL 41-DATE	APR 41-JUL 41	1950		96.24	USCGS

Station located 150 feet below McSwain Bridge, immediately north of Cressey. Prior to May 20, 1960, station located 250 feet upstream.

DAILY MEAN GAGE HEIGHT

WATER YEAR STATION NO. STATION NAME

1965 B05138 MERCED RIVER NEAR LIVINGSTON

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1 2 2 4 5	10.64 10.68 10.66 10.74 10.73	10.98 10.96 11.12 11.20 11.20	13.37 12.85 13.94 13.05 13.20	14.00 12.97 12.55 12.43 12.36	18.29 14.90 13.31 14.02 17.84	12.08 14.12 22.52 23.25 20.72	12.08 11.90 11.78 11.68 11.59	13.15 15.04 19.28 19.57 19.51	16.70 16.71 16.62 16.79 16.82	12.80 13.29 14.21 13.60 13.44	11.59 11.59 11.50 11.43 11.49	11.43 11.39 11.31 11.50 11.76	1 2 2 4 5
6 7 8 9	10.68 10.65 10.66 10.66	11.25 11.32 11.32 11.29 11.36	12.55 12.03 11.90 11.67 11.56	12.58 26.36 29.93 28.20 25.45	18.71 19.96 20.10 15.73 13.57	19.95 22.25 22.39 22.43 22.06	14.72 17.41 18.04 18.91 20.02	19.49 19.49 19.46 19.47 19.38	16.90 17.01 19.09 19.90 20.72	13.29 13.15 12.79 12.66	11.53 11.45 11.51 11.61	11.72 11.68 11.79 12.57 11.77	6 7 8 9
11 12 13 14 15	10.67 10.66 10.70 10.69 10.68	11.46 12.95 14.13 16.88 16.31	11.51 11.47 11.38 11.32 11.28	22.58 18.58 15.33 17.53 19.94	12.91 12.59 14.45 19.23 19.50	21.70 21.38 17.58 17.53 20.75	22 • 23 21 • 50 15 • 81 14 • 89 16 • 39	19.14 19.07 17.93 16.43 16.19	20.99 21.14 21.13 21.09 21.13	12.75 12.13 12.03 11.92 11.74	11.41 11.91 11.90 11.80	11.76 11.76 11.85 11.66 11.58	11 12 13 14 15
16 17 18 19 20	10.69 10.77 10.82 10.80 10.80	15.41 14.72 14.03 13.44 13.20	11.24 11.22 11.20 11.24 11.23	20.49 20.56 19.04 15.49 13.99	19.17 17.83 16.80 16.23 15.80	20.94 21.17 21.18 17.94 14.37	21.50 21.88 21.95 19.93 14.86	16.17 16.17 16.08 16.00 16.17	21.05 17.76 15.44 14.99 15.04	11.54 11.54 11.52 11.58 11.56	11.56 11.56 11.59 11.47	11.63 11.51 11.53 11.52 11.60	16 17 18 19 20
21 22 22 24 25	10.77 10.70 10.70 10.77 10.83	12.91 12.96 12.86 12.73 12.56	11.23 11.26 11.33 13.57 17.06	13.48 13.20 15.94 19.56 21.46	14.26 16.52 16.34 16.17 15.68	13.82 13.54 13.24 12.98 12.83	13.58 15.47 20.50 20.77 20.25	16.26 16.39 16.60 16.66 16.57	14.72 14.33 13.70 13.44 13.84	11.49 11.56 11.55 11.57 11.75	11.33 11.42 11.58 11.53 11.53	11.46 11.50 11.46 11.44 11.42	21 22 23 24 25
26 27 28 29 30 31	10.78 10.77 10.81 10.93 10.97 10.96	12.55 12.73 13.34 13.04 13.71	13.69 14.29 14.08 13.90 13.48 12.91	21.70 20.93 17.64 14.27 13.42 18.47	13.36 12.69 12.36	12.77 12.86 13.14 13.43 13.08 12.39	18.72 14.58 13.45 13.12 13.23	16.58 16.73 16.75 16.51 16.53 16.65	15.71 16.07 14.58 13.15 12.90	11.73 11.55 11.56 11.50 11.50 11.48	11.43 11.40 11.35 11.57 11.60 11.37	11.31 11.48 11.40 11.28 11.27	26 27 28 29 30 31

CREST STAGES

E - ESTIMATED

NR - NO RECORD

DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
11-14-64	1410	17.32	1-17-65	1120	20.92	4-11-65	1840	22.88	5- 4-65	0650	19.62
12-25-64	0250	19.63	1-26-65	1130	21.84	4-18-65	1950	21.96	6-13-65	0620	21.20
1- 8-65	0400	30.62	3- 5-65	0200	23.35	4-24-65	1100	20.80			

NF - NO FLOW

	LOCATIO	N	MA	XIMUM DISCH	ARGE	PERIOD O	F RECORD		DATU	M OF GAGE	
LATITUDE	LONGITUDE	1 4 SEC. T & R.		OF RECOR	0	DISCHARGE	GAGE HEIGHT	PER	RIOD	ZERO	REF
LATITUDE	LONGITUDE	M D 8 &M.	CFS	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM
37 23 18	120 47 35	NW29 6S 11E	11100	21.44	2-12-38	MAR 22-SEP 24		1062	DATE	70.5	usce

Station located 4.5 miles west of Livingston and 9.5 miles upstream from mouth. Early discharge records, 1922-44, available in U. S. Geological Survey Water Supply Papers. Stage records from 1951-1960 were not published, available from Department of Water Resources, State of California. Station reactivated April 1, 1962, for stage only. Drainage area is 1,259 square miles. In order to machine process this station, the recorder datum was changed. To obtain recorder gage heights subtract 10.00 feet from all of the above gage heights.

DAILY MEAN GAGE HEIGHT (IN FEET)

WATER YEAR	STATION NO.	STATION NAME	
1965	807300	SAN JOAQUIN RIVER NEAR NEWMAN	

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	50.00	51.29	50.36	56.09	54.33	50.48	50.90	51.18	52.75	50.51	49.83	49.94	1
2	50.12	50.17	50.16	56.00	53.49	50.41	50.67	51.16	52.79	50.56	49.91	50.02	2
3	50.15	49.60	50.09	55.62	51.95	NP	50.57	53.33	52.85	50.89	49.75	50.00	3
4	50.19	49.50	50.30	54.93	51.43	56.17	50.49	54.43	52.85	50.89	49.67	50.00	4
5	50.19	49.54	50.07	54.27	NR	56 - 36	50.44	54.59	52.90	50.80	49.67	50.06	5
6	50.14	49.54	50.11	53.92	53.86	54.56	50.65	54.54	52.91	50.73	49.70	50.12	6
7	50.06	49.52	49.86	55.87	54.40	55.58	52.47	54.55	53.00	50.75	49.71	50.09	7
8	50.08	49.50	49.66	60.46	55.08	56.15	53.07	54.57	53.23	50.60	49.78	50.14	8
9	50.03	49.55	49.47	62.28	54.20	56.25	54.02	54.58	54.29	50.49	49.94	50.19	9
10	50.02	49.59	49.73	52.51	52.12	55.23	54.89	54.63	55.01	50.32	49.83	50.17	10
11	49.97	49.54	49.79	61.86	51.44	55.99	56.30	54.46	55.35	50.24	49.86	50.22	11
12	50.03	49.71	49.84	57.46	51.13	55.77	57.43	54.30	55.51	50.28	50.07	50.17	12
13	50.16	50.13	49.67	58.21	50.98	55.09	56.70	54.14	55.57	50.16	50.06	50.21	13
14	49.93	50.84	49.41	56.39	NR	52.79	55.60	53.05	55.57	49.99	50.01	50.08	14
15	49.93	51.90	49.32	55.55	54.37	54.76	55.30	53.57	55.53	49.90	50.08	50.07	15
16	49.90	51.77	49.32	66.58	54.48	55.28	56.90	52.53	55.54	49.80	50.09	50.02	16
17	49.90	51.37	49.23	56.48	54.07	55.46	57.70	52.59	54.91	49.68	49.90	50.14	17
18	49.91	51.00	49.21	66.17	53.32	55.53	57.75	52.52	52.76	49.66	49.80	50.23	18
19			49.18	54.94	52.79	55.13	57.54	52.52	51.98	49.78	49.88	50.13	19
20	49.96	50.72						52.48	51.88	49.71	49.87	50.21	20
	49.95	50.49	49.26	53.40	52.57	52.53	55.46	52.40	21.00	97.71	47.01	30.21	
21	49.94	50.34	49.28	52.77	51.66	51.54	53.46	52.52	51.64	49.69	49.85	50.25	21
22	49.92	50.21	49.28	52.44	52.09	51.25	52.71	52.60	51.41	49.69	49.78	50.09	22
23	49.87	50.27	49.33	52.28	52.56	51.00	54.78	52.83	51.03	49.62	49.95	49.96	23
24	49.87	50.19	49.56	54.30	52.48	50.81	55.70	52.93	50.83	49.68	49.95	49.92	24
25	49.95	50.15	52.00	55.62	52.36	50.72	55.67	52.86	50.81	49.81	49.97	49.94	25
26	50.02	50.11	53.50	56.23	51.41	50.81	55.32	52.81	51.57	49.98	49.91	49.94	26
27	49.95	50.08	53.92	54.31	50.78	50.78	53.67	52.86	52.21	49.92	49.90	49.98	27
28	50.27	50.14	54.65	55,59	50.61	50.94	52.32	52.85	52.10	49.92	49.90	50.08	28
29	50.31	50.21	55 • 13	53.52	0,01	51.03	51.69	52.63	51.18	49.76	49.95	50.04	29
30	51.01	50.17	55.74	52.28	1	51.26	51.34	52.60	50.84	49.67	50.09	49.94	30
31	51.09	,,,,,	56.04	52.89		51.03		52.76		49.75	50.01		31
	21.02		20104	25,00		1		1 320.0					

CREST STAGES

E - ESTIMATED

NR - NO RECORD

NF - NO FLOW

					C K L J .	3.702.	,				
OATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
1- 1-65 1-10-65	1900 0800	56.15 62.69		_							

	LOCATION			MAXIMUM DISCHARGE			PERIOD OF RECORD			DATUM OF GAGE			
LATITUDE	LONGITUDE	1/4 SEC. T. & R.	OF RECORO		DISCHARGE	GAGE HEIGHT	PERIOD		ZERO	REF.			
LATITOOL	LENGITORE	M.O B.&M	CFS	GAGE HT.	DATE	DISCHARGE	ONLY	FROM	TO	GAGE	DATUM		
37 21 02	120 58 34	SW 3 7S 9E	33000	18.50	3-7-38	APR 12-DATE		1912		47.24	USCGS		
								1959	1959	47.31	USCGS		

Station located at bridge on Hills Ferry Road, 300 feet below the Merced River, 3.5 miles northeast of Newman. Records furnished by U. S. Geological Survey. Drainage area is 9,990 square miles. This station equipped with DWR radio telemeter. Flow records are published in the U. S. Geological Survey report "Surface Water Records of California".

DAILY MEAN GAGE HEIGHT

WATER YEAR	STATION NO.	STATION NAME	
1965	R07250	SAN JOAQUIN RIVER AT CROWS LANDING ERIDGE	

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	39.50	40.73	39.82	45.74	43.86	40.20	41.02	40.94	42.37	40.16	39.13	39.35	1
2	39.55	40.28	39.74	45.82	43.61	40.11	40.62	40.83	42.38	40.05	39.29	39.37	2
3	39.65	39.34	39.52	45.58	42.14	41.94	40.37	42.12	42.52	40.16	39.07	39+36	3
4	39.65	39.27	39.75	45.08	41.37	45.13	40.34	43.78	42,49	40.40	38.98	39.30	4
5	39.70	39.18	39.59	44.36	41.96	46.05	40.40	44.18	42.51	40.24	39.04	39.40	S
6	39.67	39.13	39.57	44.04	43.28	44.96	40.42	44.24	42.52	40.15	39.00	39.53	6
7	39.66	39.07	39.43	45.01	43.82	44.86	41.68	44.21	42.65	40.20	39.00	39.38	7
8	39.64	39.01	39.22	49.12	44.50	45.74	42.70	44.27	42.76	40.11	39.08	39.41	1 8
9	39.59	39.05	39.05	52 • 35	44.43	46.07	43.63	44.37	43.53	39.97	39.23	39.47	9
10	39.56	39.13	39.06	53.78	42.48	46.15	44.43	44.41	44.36	39.82	39.16	39.52	10
11	39.53	39.14	39.75	53.64	41.44	46.00	45.83	44.25	44,88	39 • 68	39.17	39+65	11
12	39.52	39.20	39.28	52.40	41.01	45.83	47.15	44.09	45.12	39.67	39.36	39.55	12
13	39.64	39.46	39.19	50.19	40.76	45.48	47.35	44.01	45.28	39.63	39,52	39.57	13
14	39.44	40.02	38.99	47.75	42.07	43.38	46.13	43.25	45.34	39.43	39.59	39.50	14
15	39.38	41.11	38.80	46.80	43.72	43.93	45.46	42.51	45.36	39.28	39.66	39.40	15
16	39.40	41.30	38.81	46.78	44.04	44.98	46.27	42.34	45.36	39.23	39.45	39.32	16
17	39.36	41.03	38.74	46.67	43.88	45.27	47.71	42.32	45,11	39.10	39.28	39.45	17
18	39.40	40.65	38.65	46.44	43.22	45.40	48.09	42.25	43.28	39.03	39.10	39.52	18
19	39.40	40.36	38.69	45.55	42.64	45.34	48.07	42.22	42.01	39.12	39.13	39.47	19
20	39.39	40.10	38.71	43.90	42.30	43.38	46.76	42.18	41.77	39.10	39.12	39.49	20
21	39.36	39.93	38.72	42.97	41.76	41.72	44.27	42.21	41.53	39.11	39.21	39.53	21
22	39.34	39.77	38.72	42.51	41,48	41.32	43.06	42.21	41,15	39.01	39.24	39.43	22
23	39.31	39.77	39.74	42,18	42.17	40.93	43.92	42.44	40.77	38.97	39.31	20,33	23
24	39.29	39.73	39.83	43.42	42.12	40.65	45.38	42.64	40.42	39.97	39.23	39.32	24
25	39.35	39.68	40.22	44.90	42.02	40.52	45.64	42.58	40.37	39.06	39.21	39.27	25
26	39.44	39.65	42.59	45.86	41.45	42.50	45.38	42.57	40,79	39.17	39.16	39.24	26
27	39.40	39.62	43.10	46 • 19	40.65	40.52	44.14	42.54	41.66	19.17	37.15	39.23	27
28	39.64	39.60	43.79	45.83	40.39	40.61	42.41	42.51	41.78	39.26	39.21	39.38	28
29	39.81	39.73	44.39	44.14		40.73	41.60	42.35	40,94	29.14	30.25	39.35	29
30	40.33	39.64	45.02	42.48		40,89	41.17	42.25	40,44	39.00	39,39	33.27	30
31	40.68		45.56	42.25	1	40.85		42.36		38.99	39.33		21

CREST STAGES

ε	-	ESTIMATED	
NR	-	NO RECORD	
NF	_	NO FLOW	

DATE	TIME	STAGE	DATE	TIME	5TAGE	DATE	TIME	STAGE	OATE	TIME	STAGE	
1-10-65 3- 5-65 4-18-65	1820 1650 2400	53.94 46.22 48.15										

	LOCATION			XIMUM DISCH	ARGE	PERIOD (DATUM OF GAGE				
LATITUDE LONGITUDE		1/4 SEC T & R	OF RECO)	DISCHARGE	GAGE HEIGHT	PERIOD		ZERO	REF
LATITUDE	LONGITUDE	M D.8.8M	CFS	GAGE HT	DATE	DISCHARGE	OHLY	FROM	TO	GAGE	DATUM
37 26 52	121 00 44	NW 8 6S 9E		61.9	4-7-58		41-0ATE		1959	0.00	USED
								1959		0.00	USGS

Station located at Crows Landing Road Bridge, 4.3 miles northeast of Crows Landing.

DAILY MEAN GAGE HEIGHT

WATER YEAR	STATION NO.	STATION NAME	
1965	B07200	SAN JOAQUIN RIVER AT PATTERSON BRIDGE	

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1									35.88	33.70	32.40	32.88	7
2	33.21	34.32	33 • 41	40.03	37.29	33.80	34 • 91	34.49	36.04	33.60	32.57	32.75	2
3	33.35	34.23	33.45	40.19	37.61	33.63	34.77	34 • 30 35 • 08	36.13	33.56	32.34	32.73	3
4	33.59	33.24	33.20	40.08			34.48	37.06	36.18	33.91	32.23	32.66	4
5	33.63	33.00	33 • 32	39.67	35 • 28	38.07	34.48	37.59	36.14	33.79	32.07	32 • 83	5
3	33.71	32.92	33.28	29.02	35.37	39.48	34.49	21027	20014	33.17	25.00	32.00	
6					26 75	39.11	34.45	37.67	36.04	33,60	32.00	33.05	6
7	33.67	32.85	33.18	38 • 41	36.75	38.36	35.28	37.68	36.12	33.57	31.97	32.86	7
8	33.59	32.80	33.11	38.72 41.82	37.41	39.26	35 • 28	37.78	36.23	33.59	32.22	32.97	8
9	33.60	32.76	32.94		38.08			37.89	36.73	33.47	32.40	32.97	9
10	33.51	32.72	32.77	44.82	38.42	39.76	37 • 38 38 • 20	37.87	37.68	33.41	32.38	33.02	10
10	33.37	32.84	32.68	46 • 48	36.89	39.91	38 • 20	3/40/	3/400	33141	22.00	33.02	
11								37.73	38,34	33 . 21	32.39	33.19	11
12	33.33	32.85	32.88	46.94	35.46	39.90	39 • 27			33.20	33.03	33.23	12
	33.35	32.87	32.89	46.33	34.87	39.75	40 • 65	37.56	38 465	33.21	33.22	33.17	13
13	33 • 38	33.03	32.84	45.04	34.54	39.57	41.45	37.50	38.83			33.07	14
14	33.33	33.49	32.66	43.10	35.14	38.01	40.65	37.00	38.95	32.92	33.21		15
15	33.24	34.37	32.50	41.62	37.10	37.34	39 • 85	36.12	38.98	32 • 80	33.27	32.87	
.,		1							20.07	22.66	20.06	22.06	16
16	33.15	34.87	32 46	41.21	37.72	38.60	40.05	35.83	38.97	32.66	32.96	32.86	17
17	33.07	34.71	32.42	40.90	37.73	39.03	41.49	35.76	38.90	32.54	32.70	33 • 13	18
18	33 • 10	34.37	32.35	40.63	37.16	39.18	42.14	35.70	37.52	32.39	32.38	33 • 16	19
19	33.08	34.06	32.36	39.95	36 • 49	39.12	42.27	35.63	35.78	32.48	32.42	33 • 20	20
20	33.05	33.80	32.40	38 • 40	36.03	37.71	41.60	35.67	35.22	32.53	32.44	33.19	
													21
21	33.02	33.62	32.41	37.10	35.65	35.57	39 • 35	35.76	35.08	32.52	32 • 46	33.10	22
22	33.03	33.47	32.41	36 • 44	35.00	34.93	37.63	35.72	34.64	32 • 42	32.65	33 • 18	23
23	33.01	33.40	32.44	35.99	35.65	34 • 43	37.51	36.02	34.25	32.25	32 • 71	33.06	
24	32.97	33.43	32.50	36.72	35 • 74	34.07	38.99	36 • 26	33.82	32.22	32.58	33.07	24
25	33.03	33.37	33.30	38 • 35	35.62	33.87	39.53	36.21	33.74	32 • 27	32.62	32.92	25
26	33.09	33.31	36.20	39.45	35.29	33.82	39.41	36.16	33.93	32.48	32.61	32.98	26
27	33.07	33.27	37.02	40.00	34.42	33.93	38 • 52	36.07	34.91	32 • 42	32.56	32.98	27
28	33.25	33.24	37.73	39.95	34.05	34.08	36 • 64	36.03	35.24	32.45	32.61	33.10	28
29	33.54	33.36	38.49	38.70		34.29	35.46	35.83	34.57	32.36	32.68	33.11	29
30	33.90	33.29	39.13	36.74		34.46	34.91	35.71	33.88	32 . 27	32.86	33.10	30
31	34.31		39.72	35.84		34.51		35.82		32.20	32.75		31
					l								

CREST STAGES

STAGE DATE

TIME

STAGE

Ε	-	ESTIMATED
NR	_	NO RECORD

DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME
--6-65	0.000	48.66	6-17-65	0.400	39.02		
-13-65	0.120	39.95					
-13-65	0.120	42.30					

NF - NO FLOW

	LOCATION		МА	XIMUM DISCH	ARGE	PERIOD	OF RECORD		DATU	M OF GAGE	F GAGE	
LATITUDE	LONGITUDE	1/4 SEC. T. & R		OF RECORD		DISCHARGE	GAGE HEIGHT	PE	RIOO	ZERO	REF.	
LATITOBL	EGNOTIONE	M.D.B.&M.	CF5	GAGE HT.	DATE	DIOGIANOE	OHLY	FROM	TO	GAGE	DATUM	
37 2 9 52	121 04 52	SW15 5S 8E		54.0	6-13-38		APR 38-DATE	1938 1959 1959	1959	0.00 0.00 3.53	USED USCGS USED	

Station located at Patterson-Turlock highway bridge, 3.1 miles northeast of Patterson.

DAILY MEAN GAGE HEIGHT

WATER YEAR		STATION NAME
1965	B07080	SAN JOAQUIN RIVER AT GRAYSON

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	24.81	25.80	25.00	35.28	29.63	26.56	26.73	26.82	27.65	25.80	24.21	24.74	1
2	24.87	26.00	25.00	35 • 41	30.30	26.22	26.91	26.40	27.69	25.65	24.38	24.74	2
3	25.02	25.15	24.90	35.35	29.53	26.37	26.87	26.77	27.65	25.48	24.28	24.67	3
4	25.20	24.75	24.90	35.0R	28.88	29.26	27.04	27.95	27.66	25.83	24.20	24.56	4
5	25.21	24.70	25.00	34.68	28.06	30.95	27.18	29.10	27.69	25.80	24.08	24.67	5
6	25.19	24.65	24.80	34.08	29.26	31.20	27.13	29.33	27.82	25.55	24.00	24.86	6
7	25.10	24.60	24.80	34.21	30.33	30.25	27.29	29.43	27.89	25.51	24.04	24.85	7
8	25.15	24.53	24.60	35.87	31.05	30.87	28.44	29.53	28.04	25 - 60	24.22	24.85	8
9	25.07	2A . 58	24.50	37.24	31.30	31.58	29.21	29.62	28.31	25.57	24.32	24.92	9
10	25.00	24.35	24.40	38.28	30.94	31.87	30.22	29.73	29.18	25.43	24.37	24.92	10
-11	24.90	24.50	24.50	39.14	29.56	31.77	31.44	29.65	29.85	25.30	24.27	25.04	-11
12	24.95	24.50	24.50	39.10	28.49	31.61	33.12	29.47	30.23	25.16	24.87	25.12	12
13	25.05	24.55	24.50	37.60	28.00	31.46	34.27	29.32	30.48	25.27	25.07	25.02	13
14	25.10	24.90	24.40	37.57	27.98	30.55	34.49	29.15	30.88	24.98	25.16	24.93	14
15	25.00	24.65	24.20	36.18	29.43	29.02	34.15	28.39	30.95	24.76	25 • 18	24.68	15
16	24.85	24.75	24.10	34.83	30.20	30.09	34.16	27.84	30.82	24.65	24.91	24.69	16
17	24.75	26.70	24.15	37.95	30.21	30.63	34.83	27.65	30.87	24.55	24.68	24.89	17
18	24.65	26.00	24.13	33.43	29.84	30.83	35.05	27.51	30.16	24.42	24.46	25.03	18
19	24.65	25 . 85	24.13	32.36	29.19	30.82	35.07	27.53	28 • 15	24.37	24.29	25.07	19
20	24.65	25.90	24 • 16	31.59	28.70	30.00	34.62	27.57	27.20	24.46	24.45	25.02	20
21	24.65	25.80	24.14	30.12	28.39	27.78	32.78	27.60	27.04	24.50	24 - 35	24.86	21
22	24.70	25.60	24.12	30.70	27.69	27.02	31.00	27.64	26.67	24.44	24.54	25.02	22
23	24.65	25.50	24.25	28.86	28.00	26.48	30.55	27.76	26 • 37	24.27	24.62	24.88	23
24	24.55	25.00	25.81	29.98	28.45	26.04	31.52	28 • 14	26.05	24.10	24.58	24.90	24
25	24.55	25 • 30	30.40	30.34	28.54	25 • 8 3	31.98	28.16	25.91	24.21	24.52	24.73	25
26	24.65	25.20	33.14	32.61	28.38	25.72	31.98	28.08	25.92	24.31	24.59	24.77	26
27	24.65	25.10	33.35	32.10	27.95	25.87	31.55	27.90	26.79	24.34	24.49	24.80	27
28	24.70	25.00	34.02	32.88	26.88	25.90	30.17	27.81	27.32	24.31	24.54	25.03	28
29	25.25	25.10	34.49	32.11		26.08	28.44	27.67	26.89	24.18	24.49	25.08	29
30	25.30	25.10	74.97	30.40		26.23	27.53	27.49	26 • 10	24.22	24.68	25.17	30
31	25.75		35.15	29.16		26.36		27.55		24.08	24.62		21

CREST STAGES

	OATE	TIME	STAGE	OATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
E - ESTIMATED	12-26-64	0800 0930		1-12-65 1-28-65	0600 0800		3- 6-65 4-19-65	1000 1400	31.37 35.12	6-17-65	1800	30.92
NR - NO RECORD	1- 2-65	1800	35.45	2- 5-65	1000	28.13	5-10-65	1400	29.80			
NF - NO FLOW				-								

(LOCATIO:	N	MA	XIMUM DISCH	ARGE	PERIOD O	F RECORD		DATU	M OF GAGE	
LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PE	R100	ZERO	REF
LATITODE	LONGITUDE	M D B &M	CFS	GAGE HT	DATE	OISCHARGE	ONLY	FROM	TO	GAGE	DATUM
37 33 47	121 09 06	NW25 4S 7E	23900	45.15	3-8-41	JUL 28-DATE		1960 1960	1959	0.00 0.00 3.81	USED USCGS USED

Station located at Laird Slough Bridge, 5 miles above the Tuolumne River. High flows bypassing this atation through old channel of San Joaquin River are included in figures shown. Records furnished by City of San Francisco.

DAILY MEAN GAGE HEIGHT

WATER YEAR STATION NO.	STATION NAME		
1965 807070	SAN JOAQUIN RIVER AT	WEST STANISLAUS I. D. INTAKE	

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	20.49	21.84	21.79	34.37	27.56	25.19	22.78	23.48	22.6h	24.90	16.89	19.81	1
2	20.47	21.87	22.02	34.48	27.99	24.93	23.43	22.90	22.69	22.64	19.23	19.90	2
3	20.39	21.38	21.98	34.31	27.57	24.86	24.46	23.04	23.16	21.40	18.98	19.93	3
4	20.49	21.03	21.77	34.03	26.83	25.97	25.37	23.77	23.50	21.44	18.83	19.95	4
5	20.51	20.95	21.92	33.64	26.56	26.88	25.64	24.30	23.43	21.41	19.01	20.02	5
6 7 8 9	20.52 20.48 20.42 20.41 20.38	20.88 20.87 20.94 20.86 20.94	21.76 21.50 21.43 21.61 21.52	33.16 33.56 34.98 35.55 36.06	27.56 28.69 29.36 29.72 29.50	27.14 26.48 26.83 27.77 27.99	25.47 25.23 25.88 26.42 27.62	24.02 25.20 25.27 25.32 25.45	23.63 23.63 23.62 23.72 24.40	21.10 20.04 20.94 20.98 20.92	18.90 18.39 19.20 19.45 19.38	20.14 20.11 20.03 20.01 19.93	6 7 8 9
11	20.37	21.20	21.57	36.56	28.48	27.10	29 • 16	25.0	24.73	20.83	19.29	20.08	11
12	20.34	21.38	21.64	36.64	27.46	26.42	30 • 81	24.65	25.21	20.72	20.14	20.25	12
13	20.39	21.46	21.63	36.34	27.05	26.19	31 • 85	24.43	25.99	21.40	20.59	20.23	13
14	20.46	21.76	21.40	35.71	26.89	26.42	32 • 49	24.21	27.28	20.94	20.57	20.13	14
15	20.42	22.76	21.37	34.14	27.68	24.41	32 • 59	23.58	27.09	20.17	20.44	19.93	15
16	20.42	23.38	21.78	32 • 13	28.07	24.55	32 • 78	23.05	26.49	20 • 11	20.29	19.92	16
17	20.20	23.06	22.18	30 • 91	27.82	24.99	32 • 88	22.91	26.86	19 • 82	19.86	20.18	17
18	20.13	22.52	22.28	30 • 24	27.53	25.10	32 • 45	22.82	26.57	19 • 35	19.65	20.42	18
19	20.03	23.13	22.19	29 • 74	27.08	25.16	32 • 28	23.35	24.59	19 • 09	19.38	20.51	19
20	19.93	23.66	22.10	28 • 95	26.67	24.80	32 • 08	23.45	23.00	19 • 22	19.55	20.42	20
21	19.95	23.58	21.84	27.93	26.42	23.16	30.92	23.46	22.62	18.88	19.57	20.93	21
22	19.90	23.55	21.86	27.28	25.97	22.22	29.41	23.68	22.53	18.95	19.83	20.55	22
23	19.87	23.33	22.57	26.87	26.11	21.68	28.54	23.93	23.53	19.04	19.81	20.72	23
24	19.79	23.16	25.27	26.91	26.82	21.37	28.89	24.86	23.67	18.84	19.73	20.83	24
25	19.83	22.64	30.60	27.69	27.11	21.16	29.23	25.03	23.67	19.17	19.58	20.91	25
26 27 28 29 30 31	19.89 19.97 20.55 21.20 21.47 21.73	22.33 21.94 21.74 21.74 21.76	32.99 33.01 33.66 34.02 34.32 34.31	28.79 30.06 30.28 29.66 28.56 27.60	26.97 26.06 25.51	21.31 21.52 21.68 21.37 21.42 21.87	29.12 28.71 27.46 25.77 24.74	24.64 23.73 23.26 22.95 22.71 22.66	23.64 24.03 24.67 24.42 23.59	19.12 19.29 19.15 19.17 19.01 18.98	19.55 19.38 19.49 19.59 19.72 19.63	21.14 21.22 21.41 21.67 22.04	26 27 28 29 30 31

CREST STAGES

STAGE

E - ESTIMATED

NR - NO RECORD

DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME
1-11-65	2330	36.67								
4-17-65	0830	33.00								
6-14-65	1200	27.38								

NF - NO FLOW

	LOCATION	1	MA	XIMUM DISCH	CHARGE PERIOD OF RECORD DA				DATU	M OF GAGE		
LATITUDE	LDNGITUDE	1/4 SEC. T. & R		OF RECORD		DISCHARGE	GAGE HEIGHT	PERIOD		ZERO	REF.	
		M.D B.&M	CFS	GAGE HT.	DATE	DISCHARGE	OHLY	FROM	то	ON GAGE	DATUM	
37 36 07	121 10 51	SE10 4S 7E					DEC 50-DATE		1959	0.00	USED	
								1959 1959		0.00	USCGS	

Station located at intake gates for West Stanislaus Irrigation District Canal, 2.6 miles north of Grayson.

DAILY MEAN GAGE HEIGHT

WATER YEAR STATION NO. STATION NAME

1965 804175 TUOLUMNE RIVER AT LAGRANGE BRIDGE

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	67.04	69.15	70.17	75 • 53	72.29	72.19	69.09	68 • 85	68.89	69.76	67.42	67.42	1
2	67.16	69.23	69.78	75.42	72.25	72.21	71.36	68.82	70.25	68.75	67.50	67.44	2
3	67.07	69.22	69.91	75.34	72.25	71.73	71.89	68.83	70.12	68.56	67.41	67.45	3
4	67.13	69.23	70.02	75+27	72.64	71.10	71.98	69.07	70.13	68 . 57	67.51	67.83	4
5	67.17	69+28	69.54	75.31	73.07	70.95	71.50	70.27	69.77	68 . 57	67.74	67.09	5
6	67.13	59.46	69.46	75 • 85	73.52	71.00	71.21	70.23	68.95	68.56	67.61	66,99	6
7	67.17	69.22	69.97	75.59	73.54	71.53	71 - 25	70.14	68.92	68.56	67.42	67.03	7
- 8	67.08	69+19	69.92	75.30	73.50	71.89	71.25	70.04	69.05	68.56	67.42	67.00	8
9	67.09	69.38	69.89	75 . 44	73.53	71.45	72 • 18	70.03	69,40	68.56	67.54	67.00	9
10	67.00	69.58	69.97	75.59	73 • 17	69.38	72.68	69.32	69.00	58.56	67.70	67.00	10
11	67.00	69.62	70.03	75.68	72.94	68,45	73.10	68.70	69,28	59.13	67.43	66.99	11
12	67.07	69.72	69.79	75 • 62	72.96	67.52	73.59	68.71	71.08	69.91	67.41	66.99	12
13	67.17	70.23	69.53	75.34	72.95	67.48	73.94	68.71	71.64	68.65	57.40	65.99	13
14	67.23	70.95	70.40	72.82	72.93	67.56	74.41	69.70	70.49	68.65	67.40	67.29	14
15	67.26	70.34	70.42	71.86	72.51	67.86	74.76	69.72	70.21	68.58	67.40	57.36	15
16	67.25	60.83	70.34	71.86	72.25	67.64	73.89	68.69	71.68	57.70	57.49	67.34	16
17	67.39	69,97	70.30	71.80	72.26	67.84	72.94	69.34	70.91	67.44	67.58	67.32	17
18	67.41	71.42	70.47	71.69	73.26	67.83	72 . 84	70.12	69.60	67.43	67.44	57.34	18
19	67.39	71.47	70.33	71 + 71	72.26	67.66	72.69	69,36	68.98	5 . 43	67.41	67.41	19
20	67.34	71.35	70.11	71.75	72.24	67.53	72.20	70.12	60.93	67.42	67.40	68.58	20
21	67.34	71.31	70.68	71.83	72.18	67.45	72.20	70.26	70.16	57.66	67.40	68.95	21
22	67.35	71.13	71.17 E	71.75	72.45	67.44	72.22	70.69	71.44	67.94	67.42	59.05	22
23	67.41	70.81	72.69 E	71.75	72.94	67.42	72.20	71.34	71,45	67.45	57.45	59.07	23
24	67.41	70.26	75 • 15 E	71.69	72.99	69.37	72.05	71.15	71.47	57.44	67.45	69.39	24
25	67.67	69.88	74.95	72.37	72.81	68.40	71.95	70.20	71.16	67.43	67.44	69.52	25
26	68.97	69.68	75.04	73.18	72.30	68.44	71.95	59.49	71.43	67.43	67.44	69.47	26
27	69.29	69.72	75.02	72.80	72.26	67.47	71.46	69.33	71.55	67.43	67.43	59.50	27
28	69.21	69.73	75.35	72.54	72.20	67.43	70.96	49.21	71.55	67.42	67.63	59.92	28
29	69.13	69.72	75.44	72.53	1	68.37	69.83	68.74	70.81	67.42	67.42	72.30	29
30	69.23	69.88	75.40	72.50		68.40	68.90	68.75	70.58	57.41	67.42	7 .44	30
31	69.22	1	75.51	72.44		69.02	0.000	68.74		67.42	67.41		31
C						0.402		00114		0.047	0.441		

CREST STAGES

E - ESTIMATED

DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
12-31-64 1- 7-65 1-10-65	0340	75.72 76.49 75.89		0620	74.89						

NR - NO RECORD

	LOCATIO	N	MA	XIMUM DISCH	ARGE	PERIOD C	F RECORD		DATU	M OF GAGE	
LATITUDE	LONGITUDE	1.4 SEC T & R		OF RECORD		DISCHARGE	GAGE HEIGHT	PER	IOD	ZERO	REF
CATTIONE	LONGITUDE	M.D.8 &M	CFS	GAGE HT	DATE	DISCITATOR	ONLY	FRDM	TO	GAGE	DATUM
37 39 59	120 27 40	NW20 3S 14E	48200	88.0	12-8-50	OCT 36-SEP 6		1937		0.00	usgs

Station located at highway bridge, immediately north of La Grange. Flow regulated by reservoirs and powerplants. Drainage area is 1,540 square miles. In order to machine process this station the recorder datum was changed. To obtain true elevations add 100 feet to all of the above gage heights.

DAILY MEAN GAGE HEIGHT (IN FEET)

WATER YEAR	STATION NO.	STATION NAME	
1965	B04165	TUOLUMNE RIVER AT ROBERTS FERRY BRIDGE	

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	8,66	10+35	10.93	16.43	12.66	12.39	09.54	9.54	9,41	10.79	8+26	8 • 36	1
2	8.68	10.38	10.73	16.26	12.57	12.40	11.22	9.48	10.35	9.45	8.24	8.39	2
3	8.72	10,38	10.72	16.17	12.58	12.11	11.94	9.49	10.40	9.35	8 + 28	8 • 4 2	3
4	8.73	10.38	10.83	16.08	12.62	11.44	12.09	9.50	10.42	9.28	8,28	8 • 62	4
5	8.71	10.37	10.51	16.03	13.29	11.20	11.83	10.49	10.35	9 4 28	8 • 40	8.74	5
6	8.78	10.43	10.36	16.60	13.91	11.22	11.40	10.53	9.60	9.28	8 • 66	8 • 45	6
7	8.77	10.56	10.50	16.45	13.96	11.47	11.45	10.49	9.51	9.28	8.53	8 • 37	7
8	8.80	10.34	10.75	16.00	13.91	11.99	11.37	10.39	9,61	9.27	8.34	8 • 37	8
9	8.77	10.37	10.72	16.24	13.93	11.92	12.11	10.38	9,87	9.27	8 + 31	8 • 39	9
10	8.76	10.58	10.75	16.30	13.70	10.34	12.80	10.07	9.61	9 • 27	8.52	8 • 37	10
11	8.77	10.71	10.79	16.50	13.24	9.67	13 • 12	9.41	9.61	9 • 38	8 • 62	8 • 36	11
12	8.74	10.84	10.73	16.41	13.23	8.71	13.66	9.39	10.68	10.26	8.38	8 • 35	12
13	8.73	11.10	10.47	16.24	13.26	8.54	14.19	9 • 38	11.95	9.61	8.36	8 • 36	13
14	8.72	11.97	10.90	13.91	13.22	8 • 48	14.48	9.38	11.04	9.36	8 • 34	8 • 34	14
15	8.77	11.53	11.17	12.32	12.96	8.68	15.09	9.37	10.47	9.39	8.33	8 • 40	15
16	8.81	11.03	11.13	12.28	12.53	8.67	14.53	9.38	11.45	8 4 82	8.33	8 • 48	16
17	8 • 81	10.69	11.05	12.25	12.51	8.72	13.20	9.59	11.43	8.60	8.37	8 • 44	17
18	8 • 8 4	12.24	11.20	12.12	12.51	8.79	13.02	10.37	10.44	8 • 32	8.53	8 • 44	18
19	8.83	12.39	11.18	12.13	12.52	8.69	13.00	10.30	9.64	8.30	8.38	8 • 45	19
20	8 • 82	12.42	10.99	12.15	12.50	8.55	12.38	10.41	9.57	8 • 30	8 • 35	8 • 84	20
21	8 • 83	12.28	11.13	12.23	12.43	8.44	12.36	10.54	10.01	8.30	8 • 33	9.74	21
22	8.83	12.09	11.82	12.19	12.52	8.39	12.37	10.68	11.54	8.87	8.33	9 • 83	
23	8.82	11.86	13.49	12.15	13.12	8.37	12 • 36	11.44	11.57	8,45	8 • 3 3	9 • 8 4	23
24	8.86	11.21	16.29	12.11	13.23	8.73	12.24	11.33	11.59	8.31	8 • 32	9.97	24
25	8.86	11.02	16.00	12.50	13.16	9.24	12.09	10.86	11.57	8.25	8 • 36	10.17	25
26	9.74	10.68	15.98	13.55	12.54	9.26	12.08	10.05	11.32	8.26	8 • 38	10.16	26
27	10.52	10.60	16.04	13.35	12.50	8 95	11.80	9.84	11.68	8.27	8.37	10.17	27
28	10.49	10.61	16.26	12.92	12.41	8.46	11.24	9.76	11.67	8 . 28	8.37	10.33	28
29	10.44	10.59	16 • 46	12.90	}	8.76	10.66	9.43	11.33	8 • 28	8.39	10.76	29
30	10.42	10.62	16.35	12.87	}	9.25	09.63	9.40	10.70	8 • 29	8.36	10.97	30
31	10.41		16.39	12.81		9.65		9.41		8.29	8 • 32		31

CREST STAGES

E - ESTIMATED

NR - NO RECORD

NF - NO FLOW

DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
11-20-64 1- 6-65 4-15-65	1710	13.05 17.07 15.14		0730	12.48						

	LOCATIO	N	MAX	XIMUM DISCH	IARGE	PERIOD O	F RECORD		DATU	M OF GAGE	
LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECOR	D	DISCHARGE	GAGE NEIGHT	PEI	RIOD	ZERO	REF.
		M.D B.&M.	CFS	GAGE HT	DATE	DISCHARGE	ONLY	FROM	TO	GAGE	DATUM
37 38 08	120 37 03	NW35 3S 12E	49800	28.2	12-8-50	JUL 28-OCT 36 JAN 37-FEB 38		1930 1940	1940	106.20	USCGS USCGS

Station located at highway bridge, 7.5 miles east of Waterford. In order to machine process this station, the recorder datum was changed. To obtain true elevations add 100 feet to all of the above gage heights.

DAILY MEAN GAGE HEIGHT

WATER YEAR	STATION NO.	STATION NAME	
1965	804150	TUOLUMNE RIVER AT HICKMAN BRIDGE	

2 73.08 6 73.11 8 73.16 0 73.17 7 73.17 9 73.21 1 73.36 1 73.14 3 73.16 2 73.40	73.91 73.75 73.85 73.75 73.75 73.47 73.49 73.84 73.80	78.60 78.46 78.37 78.26 78.29 78.52 78.59 78.04 78.27	75.10 74.98 74.96 74.97 75.61 76.18 76.25	74.84 74.86 74.65 73.89 73.58	72.04 73.51 74.53 74.73 74.53	71.66 71.62 71.59 71.54 72.56	71.52 72.42 72.63 72.65 72.63	73.28 71.60 71.50 71.37 71.36	70.30 70.28 70.28 70.30 70.34	70.28 70.28 70.30 70.30 70.55	1 2 2 4 5
8 73.16 73.16 7 73.17 9 73.21 73.36 1 73.14 3 73.16	73.75 73.85 73.75 73.47 73.49 73.84 73.80	78.37 78.26 78.20 78.52 78.59 78.94	74.98 74.96 74.97 75.61 76.18 76.25	74.86 74.65 73.89 73.58	73.51 74.53 74.73 74.53	71.62 71.59 71.54 72.56	72.42 72.63 72.65	71.50 71.50 71.37	70.28 70.28 70.30	70.28 70.30 70.30	2 4
8 73.16 73.16 7 73.17 9 73.21 73.36 1 73.14 3 73.16	73.75 73.85 73.75 73.47 73.49 73.84 73.80	78.37 78.26 78.20 78.52 78.59 78.94	74.96 74.97 75.61 76.18 76.25	74.65 73.89 73.58	74.53 74.73 74.53	71.59 71.54 72.56	72.63 72.65	71.50 71.37	70.28 70.30	70 • 30 70 • 30	4
7 73.17 9 73.21 0 73.36 1 73.14 3 73.16	73.75 73.47 73.49 73.84 73.80	78.20 78.52 78.59 78.04	75.61 76.18 76.25	73.89 73.58 73.59	74.73 74.53	71.54 72.56	72.65	71.37	70.30	70.30	
73.21 73.36 73.14 73.16	73.47 73.49 73.84 73.80	78.52 78.59 78.04	76 • 18 76 • 25	73.59	74.53	72456					5
0 73.36 1 73.14 3 73.16	73.49 73.84 73.80	78 • 59 78 • 04	76.25		74.00						
73.14 73.16	73.84	78 . 04				72.80	71.91	71.35	70.60	70.36	6
3 73.16	73.90			73.79	74.05	72.77	71.62	71.35	70.51	70.33	7
		70 27	76.21	74.45	73.97	72.64	71.72	71.38	70.36	70.26	8
2 73.40	73.80		76.21	74.43	74.57	72.64	71.95	71.35	70.31	70.26	9
	, , , , , , ,	78.28	76.07	72.91	75.40	72.42	71.80	71.37	70.42	70.25	10
3 73.52	73.85	78.49	75 • 61	72.01	75.63	71.57	71.70	71,37	70.60	70.24	11
0 73.62	73.86	78.39	75.62	71.08	76.11	71.53	72.59	72.49	70.55	70.26	12
9 73.78		78.26	75.63	70.91	76.69	71.51	74.35	71.89	70.38	70.25	13
8 74.59	73.70	76.59	75.58	70.62	76.85	71.51	73,43	71.42	70.32	70.24	14
0 74,40	74.24	74.70	75.40	70.64	77.44	71.48	72.67	71.46	70.31	70.23	15
9 73.96	74.26	74.62	74.91	70.96	77.12	71.51	73.55	71.09	70.30	70.30	16
5 73.52		74.56	74.91	70.74	75.82	71.63	73.90	70.68	70.30	70.30	17
3 74.80		74.45	74.90	70.91	75.62	72.61	72.84	70.41	70.42	70.29	18
75.15		74.45	74.90	70.84	75 • 60	72.55	71.80	70.34	70.39	70.29	19
9 75.19		74.44	74.88	70.75	75.03	72.65	71.69	70.33	70.32	70.34	20
0 75.10	74.13	74.52	74.83	70.60	74.95	72.79	71.87	70 • 35	70.29	71.51	21
74.94		74.53	74.89	70.53	74.93	72.83	73.80	70.74	70.29	71.69	22
74.81		74.51	75.48	70.50	74.93	73.74	73.89	70.54	70.28	71.71	23
6 74.19		74.43	75.62	70.58	74.74	73.69	73.92	70.32	70.29	71.61	24
9 74.03		74.74	75.61	71.33	74.53	73.37	73.95	70.28	70.28	72.08	25
7 73.72	78.37	75.87	75.03	71.36	74.62	72.21	73.50	70.20	70 21	72 00	36
											27
											28
			, 4.07								29
6 1 73.62											30
					, , , , , ,					16.43	31
7 2 2	73.59 73.63 73.62	73.59 78.44 73.63 78.51 73.62 78.70 73.65 78.57 78.57	73.59 78.44 75.74 73.63 78.51 75.28 73.62 78.70 75.25 73.65 78.57 75.24	73.59 78.44 75.74 74.94 73.63 78.51 75.28 74.87 73.62 78.70 75.25 73.65 78.57 75.24	73.59 78.44 75.74 74.94 71.31 73.63 78.51 75.28 74.87 70.61 73.62 78.70 75.25 70.61 73.65 78.57 75.25 70.61	73.59 78.44 75.74 74.94 71.31 74.35 73.63 78.51 75.28 74.87 70.61 73.63 73.62 78.70 75.25 70.61 73.17 73.65 78.57 75.24 71.35 71.81	73.59 78.44 75.74 74.94 71.31 74.35 72.04 73.63 78.51 75.28 74.87 70.61 73.63 71.95 73.62 78.70 75.25 70.61 73.17 71.61 73.65 78.57 75.24 71.35 71.81 71.53	73.59 78.44 75.74 74.94 71.31 74.35 72.04 74.01 73.63 78.51 75.28 74.87 70.61 73.63 71.95 74.03 73.62 78.70 75.25 70.61 73.17 71.61 73.78 73.65 78.57 75.24 71.35 71.81 71.63 72.98	73.72 78.37 75.87 75.03 71.36 74.52 72.31 73.58 70.28 73.59 78.44 75.74 74.94 71.31 74.35 72.04 74.01 70.30 73.63 78.51 75.28 74.87 70.61 73.63 71.95 74.03 70.31 73.62 78.70 75.25 70.61 73.63 71.95 74.03 70.32 73.65 78.57 75.22 71.35 71.81 71.63 72.98 70.32	73.72 78.37 75.87 75.03 71.36 74.52 72.31 73.58 70.28 70.31 73.69 78.64 75.74 74.94 71.31 74.35 72.04 74.01 70.30 70.29 73.63 78.51 75.28 74.87 70.61 73.63 71.95 74.03 70.31 70.29 73.62 78.70 75.25 70.61 73.63 71.95 74.03 70.31 70.29 73.65 78.57 75.24 71.35 71.81 71.55 72.98 70.32 70.29 73.65 78.65 78.57 75.24 71.35 71.81 71.55 72.98 70.32 70.29	73.72 78.37 75.87 75.03 71.36 74.52 72.31 73.58 70.28 70.31 72.08 73.59 78.44 75.74 74.94 71.31 74.35 72.04 74.01 70.30 70.29 72.09 73.63 78.51 75.28 74.87 70.61 73.63 71.95 74.03 70.31 70.29 72.19 73.62 78.70 75.25 70.61 73.17 71.61 73.78 70.32 70.29 72.64 73.65 78.57 75.24 71.35 71.81 71.53 72.98 70.32 70.22 70.28 72.69

CREST STAGES

E - ESTIMATED

NR - NO RECORD

NF - NO FLOW

DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
12-24-64	1920	78.94	6-13-65	1030	74.78						
4-15-65	1350	77.47									
5-24-65	0430	73.90				i					

	LOCATION	н	MA	XIMUM DISCH	ARGE	PERIOD O	F RECORD		DATU	M OF GAGE	
LATITUDE	LONGITUDE	1/4 SEC. T. & R.	OF RECORD			DISCHARGE	GAGE HEIGHT	PER	HOD	ZERO	REF.
CATITODE	LONGITUDE	M.D B &M	CFS	GAGE HT	DATE	DISCHARGE	ONLY	FROM	TO	GAGE	DATUM
37 38 10	120 45 14	NW34 3S 11E	59000	96.2	12-8-50	JUL 32-OCT 36 JAN 37-MAR 37		1932		0.00	uscas

JUL 37-FEB 38 JUL 38-DEC 38 MAR 39-DATE

Station located at Hickman-Waterford road bridge, immediately south of Waterford. Flow regulated by reservoirs and powerplants. Altitude of gage is approximately 80 feet, U. S. Coast and Geodetic Survey datum. In August 1964, this station was moved approximately one-quarter mile downstream to a point immediately upstream of the new Hickman-Waterford road bridge.

DAILY MEAN GAGE HEIGHT

WATER YEAR STATION NO. STATION NAME

1965 B04130 DRY CREEK NEAR MODESTO

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	68.55	68+23	67.81	73.54	68.15	67.86	69.58	68.77	68.62	59.27	60.45	68.66	1
2	68.57	68.10	67.81	70.97	58.10	67.82	59.10	68.74	68,87	69.00	69.58	68 • 65	2
3	68.49	67.97	67.81	70.01	69.08	57.82	58 • 62	68.81	69.39	69.33	60.48	68.60	3
4	68.59	67.89	67.87	70.06	68.06	67.83	68.79	68.88	69.27	5° 41	69.41	69.57	4
5	68.60	67.84	67.90	69.83	68.07	67.83	69.87	6º+71	69.27	69+37	69.30	68.59	5
6	68 • 66	67.82	67.93	70.46	68.05	67.82	59.20	68.86	69,57	69.50	68.96	69.471	6
7	68.51	67480	67.85	81.71	6º • 58	67.82	69.15	68.86	59.56	59.59	68.38	59+89	7
8	68 • 66	67.78	67.85	75 • 89	68.70	67.82	69.17	68.94	59.44	69.38	68.44	59.00	8 9
9	69.17	67.82	67.84	71.40	58.37	67.82	69.16	68.87	68.94	49.26	69.57	69.10	10
10	69.40	68.32	67.82	70.27	68.23	67.82	70 • 27	68 • 95	68.91	48.86	6º • 57	69.44	10
- 11	69.52	69.59	67.77	69.73	6º•16	67.97	75.50	68.91	59.39	68.54	68.79	60.41	11
12	69.63	69.24	67.72	69.40	68 • 12	68.17	72.40	68.94	69.53	68.58	69.21	59.47	12
13	69.54	69,20	67.73	69.18	68.06	75.73	70.49	69.25	69,65	58 • 52	60.33	69.46	13
14	69.47	69.19	67.74	69.03	68.03	72.29	72.29	68.86	69.63	68.38	68.99	69.32	14
15	69.48	69.41	67.79	68.88	60.00	69.34	70.32	68.63	60.00	48.24	48.84	60.47	15
16	69.21	68+83	67.76	68 4 75	67.98	68.83	69.65	68.07	69.51	48,28	68.63	40.52	16
17	68.84	68.41	67.74	68 • 67	67.96	68.46	69.27	59.72	69.48	68.24	69.68	70.10	17
18	68.77	68.22	67.72	68.62	67.95	68.27	69.06	68.72	60.46	c8.24	68.97	70.21	18
19	68.60	68.15	67.71	68.53	67.94	68.18	68.93	68.53	69.41	68.18	68.74	70.06	19
20	68 • 40	68.07	67.72	58.47	67.90	68.10	68.81	63.65	69.26	58427	63 - 65	67.26	20
21	68.26	68.00	67.72	68.49	67.90	68.08	68.77	68.71	60.33	68.42	66.83	69,22	21
22	68 • 19	67.95	67.85	68.54	67.89	68.07	68.74	68.73	69.28	48.38	68 • 61	69.05	22
23	68 • 15	67.92	70.12	68.46	67.88	6P • 25	69.73	68.90	69.40	68.35	68.60	69.04	23
24	68.21	67.87	79.90	68 • 43	67.87	68.31	69.05	69.33	69.45	68.20	68.66	68.95	24
25	48.24	67.80	80.67	69.19	67.86	68 • 44	68.96	65 • 2 R	69.44	68.32	68.69	69.13	25
26	68.23	67.76	72.61	69.04	67.85	68.58	68.69	68 • 58	69,40	68.47	68.62	69.10	26
27	68.15	67.79	75.90	68.67	67.85	69.06	68.34	68.48	69.78	69.11	68 • 52	69.48	27
28	68.14	67,80	74.89	68.47	67.84	69.45	68 • 41	68+/1	69,73	69.10	68,68	69.67	28
29	69.23	67.78	74.61	68.33		69.14	68 • 38	68.57	69.47	69.17	68.71	69.71	29
30	69.44	67.78	72.04	68 • 25		69.04	68.53	68.58	69.26	69.16	68.84	69+41	30
31	68.66		71.42	68.20		68.91		68.57		69 • 20	68.67		31

CREST STAGES

E - ESTIMATED

NR -- NO RECORD

NF - NO FLOW

DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	5TAGE
12-25-64 12-27-64 1- 7-65	0350 1540 1320		3-13-65 4-11-65	1430 1410	79.60 77.10						

	LOCATIO	М	MA	XIMUM DISCH	ARGE	PERIOD 0	F RECORD		DATU	M OF GAGE	
LATITUDE	LDHGITUDE	1/4 SEC. T. & R		OF RECORD		DISCHARGE	GAGE HEIGHT	PER	IOD	ZERO	REF.
LAIIIODE	EDNOTTODE	M.D B &M	CFS	GAGE HT.	DATE	DISCHARGE	ONLY	FROM	TO	GAGE	DATUM
37 39 26	120 55 19	SE24 3S 9E	7710	88.04	12-23-55	MAR 41-DATE		1941		0.00	USCGS

Station located 0.1 mile below Claus Road bridge, 4 miles east of Modesto. Tributary to Tuolumne River. Prior to March 1941, records available for a site 2.5 miles downstream. Station is operated under a cooperative agreement between the Department of Water Resources and the Modesto Irrigation District. Drainage area is 192.3 square miles.

DAILY MEAN GAGE HEIGHT

(IN FEET)

WATER YEAR STATION NO. STATION NAME 804120 THOLUMNE RIVER AT MODESTO

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	41.33	41.97	42.24	52.16	44.57	44.16	42.23	41.96	41.79	NR	41.41	41.34	1
2	41.34	41.94	42.38	51.74	44.38	44.17	42.47	41.91	41.92	119	41.43	41.33	2
3	41.34	41.96	42.23	51.35	44.35	44.15	42.74	41.90	42.30	NR	41.43	41.33	3
4	41.34	41.97	42.26	51.12	44.33	43.37	44.34	41.95	42.32	NR	41.40	41.34	4
S	41.35	41.97	42.30	51.00	44.90	42.86	44.39	41.99	42.32	PIR	41.39	41.38	S
6	41.33	41.99	42.12	51.25	45.99	47.76	43.76	42.34	42.22	NP	41.41	41.42	6
7	41.34	42.76	42.06	54.46	46.73	42.75	43.55	42.37	41.96	NR	41.40	41.41	7
8	41.34	42.03	42.24	53.30	46.79	43.34	43.58	42.33	41.94	NΩ	41.37	41.29	8
9	41.41	42.01	47.27	51.73	44.77	43.59	42.77	42.30	41.98	시유	41.37	41.38	9
10	41.44	42.10	42.25	51.53	46.80	42.98	45.17	47+29	10	118	41.35	41.61	10
13	41.44	42.25	42.28	51.89	45.91	42.11	47.00	42.02	NR	N.R	41.42	41.42	- 11
12	41.46	42.31	42.31	51.98	45.58	41.84	47.55	41.83	V10	NR	41.59	41.42	13
13	41.44	42.36	42.21	51.79	45.58	42.59	47.99	41.86	No	N-R	41.59	41.42	13
14	41.44	42.46	42 • 10	50.68	45.55	42.10	*; R	41.82	-10	410	41.45	41.40	14
15	41.51	42.86	42.44	46.00	45.48	41.50	4R	41.91	*1 D	,13	41.39	41.42	15
16	41.46	42.56	42.52	44.52	44.64	41.59	1/10	41.80	N/ Q	NR.	41.39	41.42	16
17	41.34	42.33	42.48	44.29	44.34	41.50	49	41.81	4.9	NR	41.37	41.50	17
18	41.32	42.21	42.46	44.14	44.31	41.53	NR	42.75	44	0.0	41.36	41.50	18
19	41.28	42.00	42.57	43.98	44.31	41.64	NP	-2.27	10	NF	4 . 34	41.50	19
20	41.27	43.31	42.50	42.89	44.29	41.50	of D	42.23	Mb	41.31	41.34	41.30	20
21	41.25	43.29	42.37	43.90	44.23	41.43	No	42.31	F, D	41.33	41.34	41.56	21
22	41.24	43.19	42.62	43.95	44.13	41.39	44.91	42.36	420	40.98	41.24	41.90	22
23	41.24	43.02	43.43	43.92	44.78	41.41	44.97	42.65	*, D	41.47	41.32	41.84	23
34	41.24	42.89	49.60	43.77	45.42	41.29	44.79	42.93	\ D	41.34	41.73	41.99	24
35	41.25	42.52	53×35	43.79	45.49	41.67	44.27	42.95	41 P	41.31	41.26	42.00	25
26	41.26	42.42	51.05	45.20	45.00	41.71	44.00	42.33	h, D	41.79	41.37	4:.07	26
27	41.57	42.21	51.42	46.03	44.39	41.02	43.93	42.78	NR	41.74	41.35	42.09	37
28	41.92	42.16	51.75	45.24	44.22	41.66	43.18	41.99	Ab	41.78	41.34	42.13	28
3.0	42.01	42.17	52.11	44.90		41.52	42.81	41.94	NR	41.37	41.33	42.24	29
30	42.01	42.18	51.94	44.94		41.6R	42.22	41.R4	NR	41.79	41.37	42.39	30
31	41.99		51.55	44.78		41.81		41.80		41.39	41.31		31

CREST STAGES

	DATE	TIME	STAGE									
E - ESTIMATED												
NR - NO RECORD												
NF - NO FLOW												

	LOCATIO	4	МА	XIMUM DISCH	IARGE	PERIOD OF	FRECORD		DATU	M OF GAGE	
		1 4 SEC. T. & R.		OF RECOR	D	DISCHARGE	GAGE HEIGHT	PER	RIOD	ZERO	REF.
LATITUDE	LONGITUDE	M.O.B &M	CFS	GAGE HT	DATE	o i schange	ONLY	FROM	то	GAGE	DATUM
37 37 38	120 59 20	SW33 3S 9E	57000	69.19	12-9-50	JAN 95-DEC 96	78~ 84	1940		.00	USCGS

Station located at U. S. Highway 99 Bridge. Records furnished by U. S. Geological Survey. Flow records are published by the U. S. Geological Survey report "Surface Water Records of California". Drainage area is 1,884 square miles. This station equipped with DWR radio telemeter.

DAILY MEAN GAGE HEIGHT

WATER YEAR STATION NO. STATION NAME

1965 B04105 TUOLUMNE RIVER AT TUOLUMNE CITY

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	22.64	25.65	26.48	37.82	31.27	30.28	26.58	26.85	25.87	27.98	24.49	24.10	1
2	23.65	25.58	26.84	37.91	31.14	30 - 24	27.07	26+62	25.82	27.75	24.51	24.15	2
3	23.64	25.54	26.72	37.60	30.90	30.21	29.10	26.48	26.90	26.31	24.50	24.12	3
4	23.64	25.59	26.60	37.35	30.75	29.75	30.20	26.39	27.22	26.10	24.41	24.11	4
5	23.58	25.59	26.72	37.16	30.96	29.21	30.14	26.40	27.29	25.88	24.40	24.17	5
	21.00	27.034	21.01.	7.010	,,,,,								
6	23.67	25.60	26.47	36.98	31.98	29.04	30.10	27.44	27.30	25.83	24.37	24.27	6
7	23.66	25 • 68	26.10	38.25	32.79	28.80	29.62	27.75	26.51	25.72	24.44	24.27	7
l á l	23.67	25.83	26.28	39.12	33.08	29.28	29.76	27.71	26.19	25.70	24.30	24.25	8
9	23.70	25.70	26.63	38.30	33.17	30.05	29.83	27.61	26.21	25.66	24.32	24.24	9
10	23.79	25.84	26.59	38.40	33.17	29.98	31.01	27.65	26.48	25.51	24.22	24.24	10
'0	23017	23,04	20411	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
11	23.85	26 • 28	26.62	38.71	32.50	28.21	32.66	27.26	26.47	25.45	24.36	24.29	11
12	23.87	26.52	26.70	38.73	31.85	27.28	34.00	26.40	26.50	25.59	24.70	24.28	12
13	23.90	26.58	26.58	38.53	31.75	27.30	34.56	26.25	28 • 04	26.55	24.91	24.31	13
14	23.96	26.93	26.24	38.04	31.75	28.22	35.33	26.18	29.81	26.00	24.69	24.25	14
15	24.00	28.03	26.65	39.79	31.78	26.14	35.87	26.08	28.97	25.50	24.38	24.21	15
1 13	24 . 1111	200113	20.00	37.67	710.0								
16	24.19	27.78	27.28	32,54	31.40	25.80	36.26	25.95	28.11	25.43	24.42	24.28	16
17		27.09	27.25	32.41	30.93	25.79	35.52	26.00	29.27	25.09	24.29	24.41	17
18	23.94		27.16	31.85	30.80	25.73	34.37	26.21	29.16	24.76	24.27	24.50	18
19	23.69	26.61	27.38	31.49	30.69	25.81	34.09	27.11	27.68	24.50	24.20	24.45	19
20	23.57		27.36	31.14	30.63	25.69	23.84	27.13	26.49	24.31	24.23	24.43	20
20	23.48	28.95	27.56	31.14	30.03	203	- 5,04	21413	2004				
21		20.01	27.15	30.71	30.55	25.41	32.88	27.25	26.26	24.29	24.25	NR	21
22	23.44	28.96		30.59	30.40	25.26	32.01	27.45	26.84	24.27	24.24	NR	22
23	23.47	28.84	27 • 40 29 • 38	30.47	30.71	25.19	31.63	27.90	29.68	24.51	24.15	NR	23
24	23.47	28.60	32 • 35	30.41	31.43	25.18	31.67	28 • 85	28.99	24.47	24.16	NR	24
25	23.43	28.32		30.46	31.62	25.23	21.53	28.81	29.09	24.31	24.19	NR	25
1 1	23.42	27.53	37.26	3.1.40	3:02	27023	1.075	2	1.000				
26	20.00	27 12	37.12	31.33	21.44	25.68	31.26	29.17	28.98	24.28	24.23	NR	26
27	23.38	27.13	36.85	32.73	30.64	25.84	30.97	26.98	28.89	24.31	24.21	NR	27
28	23.61		37.54	32.75	30.44	25.82	30.14	26.60	29.30	24.41	24.16	26.40	28
29	24.92	26.45	37.68	32.18	20.44	25.37	29.10	26.39	29.22	24.39	24.16	26.49	29
30	25 • 63	26.41		32.18		25.40	29.10	26.09	28.30	24.44	24.25	27.02	30
31	25.78	26.40	27.83			25.40	2.7 . 10	25.93	20.311	24.39	24.13	2.1.002	31
("	25 • 65		37.66	31.42		29411		20.93		24.37	24415		, T

CREST STAGES

STAGE DATE

30.04

26.70

STAGE

E - ESTIMATED

NR - NO RECORD

37.70 3-13-65 39.50 4-16-65 33.00 5-24-65 DATE TIME STAGE DATE TIME TIME 12-24-64 1- 8-65 30.23 6-14-65 36.32 7-13-65 28.81 1200 1800 0800 0300 1200 1-27-65 1900 0600

NF - NO FLOW

	LOCATIO	N	MAXIMUM DISCHARGE			PERIOD O	F RECORD		DATU	M OF GAGE	
LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECORD)	DISCHARGE	GAGE HEIGHT	PE	RIOD	ZERO	REF.
LATITUDE	LONGITUDE	M D B.&M	CFS	GAGE NT.	DATE	DISCHARGE	ONLY	FROM	то	GAGE	DATUM
37 36 12	121 07 50	NW 7 4S 8E		46.65	12-9-50	30-DATE		1960	1959	0.00	USED USCGS

Station located at highway bridge, 3.35 miles above mouth. Backwater at times, from the San Joaquin River, affects the stage-discharge relationship. Drainage area is 1,896 square miles. Records furnished by City of San Francisco.

DAILY MEAN GAGE HEIGHT (IN FEET)

WATER YEAR	STATION NO.	STATION NAME	-
1965	807040	SAN JOAQUIN RIVER AT MAZE ROAD BRIDGE	

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	15 • 28	16.67	16.68	29.75	23.20	20.91	18.71	21.26	17.96	18.38	14.86	15.08	1
2	15.33	16.69	16.88	29.62	23.48	20.69	19.39	20.84	17.91	18.32	14.96	15.23	2
3	15.24	16.41	17.00	29 • 40	23.29	20.57	20.18	20.73	18.50	17.26	14.95	15.24	3
4	15.29	16.08	16.77	29.04	22.74	21.24	21.08	20.92	19.20	16.72	14.86	15.21	4
5	15.30	16.00	16.85	28 • 39	22.38	21.92	21.39	20.85	19.56	16.70	14.80	15.38	5
6	15.33	15.95	16.77	27.75	22.87	22.16	21.31	20.74	20.39	16.94	14.82	15.47	6 7
7	15.33	15.92	16.53	27.96	23.73	21.80	21.08	20.90	20.78	17.03	14.87	15.50	2
8	15.24	15.98	16.42	29.97	24.28	21.87	21.40	20.92	20.85	17.08	14.90	15.58	9
9	15.24	15.93	16.58	31 • 19	24.60	22.57	21.88	21.16	21.06	17.18	14.95	15.51	10
10	15 • 27	15.98	16.53	31.35	24.59	22.86	22 • 84	21.53	21.47	17.37	14.96	15.41	10
11	15.28	16.21	16.54	31.53	23.95	22.19	24.19	21.47	21.81	17.42	14.91	15.50	11
12	15.20	16.46	16.61	31.83	23.10	21.45	25.69	21.00	21.95	17.57	15.36	15 • 63	12
13	15.26	16.50	16.62	31 • 59	22.71	21.26	26 . 76	20.76	22.42	17.06	15.87	15.68	14
14	15 • 36	16.70	16 . 43	30.93	22.55	22.07	27.43	20.51	23.41	16.71	15.98	15 • 58	15
15	15.37	17.49	16.34	29.70	22.94	20.58	27 • 58	19.89	23.39	16.06	15.85	15.38	13
16	15.39	18.11	16.73	27.98	23.35	20.24	27.72	19.11	22,66	15.85	15.79	15.39	16
17	15.22	17.88	16.78	26.53	23.13	20,55	27.85	18.58	22,33	15.64	15.38	15.56	17
18	15.05	17.41	16.72	25.67	22.76	20.62	27.63	18.23	21.83	15.34	15.17	15.81	18
19	14.97	17.73	16.80	25.16	22.39	20.66	27.35	18.52	20.21	15.18	14.98	15.87	19
30	14.83	18.34	16.92	24.56	22.08	20.51	27.15	18.61	18.69	15.06	15.08	15 +86	20
21	14.81	18.42	16.82	23.73	21.90	19.37	26 • 48	18.57	18,19	14.92	15.02	15.53	21
22	14.79	18.33	16.78	23.20	21.56	18.38	25.45	18.75	17.96	14.90	15.16	15.88	22
23	14.76	18.15	17.57	23.15	21.51	17.77	24.78	19.35	18.75	14.90	15.15	15.14	22
24	14.70	18.01	20.55	23.52	22.04	17.36	24.98	20.65	18,98	14.88	15.05	16.23	24
25	14.75	17.61	27.69	23.93	22.28	16.90	25.27	21.03	18.98	14.91	14.93	16.36	25
26	14.82	17.32	30 • 15	24.44	22.28	16.97	25.15	20.76	19.26	14.93	15.01	16.62	26
27	14.88	16.92	29.78	24.99	21.71	17.16	24.78	19.94	19.61	14.99	14.99	16.74	27
28	15.36	16.71	30.46	25.10	21.20	17.62	24.00	19.03	20.06	14.98	15.00	16.80	28
29	16.08	16.68	30.68	24.74		17.62	22.80	18.50	19.80	14.95	15.05	17.08	29
30	16.35	16.68	30.56	24.11		17.64	22.13	18.19	19.08	14.91	15.12	17.38	30
31	16.56		30.11	23.38		18.02		18.06		14.80	15.00		21

CREST STAGES

E - ESTIMATED

NR - NO RECORD

NF - NO FLOW

DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
12-29-64	1110	30.69									
1-12-65	1140	31.86									
4-17-65	0840	27.89									

	LOCATIO	H	MA	XIMUM DISCH	ARGE	PERIOD (F RECORD		DATUM	OF GAGE	
		1/4 SEC. T & R.		OF RECOR	0	DISCHARGE	GAGE HEIGHT	PE	RIOD	ZERO	REF.
LATITUDE	LDNGITUDE	M D 8.8M.	CFS	GAGE HT.	DATE	DISCHARGE	ONLY	FROM	то	GAGE	DATUM
37 38 28	121 13 37	SW29 3S 7E		39.8	12-9-50	JAN 50-MAR 52	SEP 43-DEC 49 APR 52-DATE	1943 1959 1959	1959	0.00 0.00 3.41	USED USCGS USED

Station located at State Highway 132 Bridge, 13 miles west of Modesto.

DAILY MEAN GAGE HEIGHT (IN FEET)

WATER YEAR STATION NO. STATION NAME 803175 STANISLAUS RIVER AT ORANGE BLOSSOM BRIDGE 1965

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1		2 20	2.06	10.38	7.01	5 • 65	5.26	9.29	3.02E	3.05	1.50	1.49	1
2	1.37	2.09	2.14	9.58	6.97	5.65	5 • 58	8 4 9 2	4.65E	3.58	1.54	1.54	2
3	1.38	2413	2.02	8.11	6.91	5.63	5 • 65	8 • 03	5.65	3.72	1.48	1.58	3
4	1.41	2.11	2.07	5.98	6,60	5 • 63	5 • 63	6.91	6,50	3.14	1.49	1.56	4
5	1.37	2.09	2.10	6.27	6.43	5.63	5.61	5.96	8,68	3.31	1.44	1.59	5
1	1.007	74.79	2.010	0 4 2 7	0.45	7.05	7 401						
6	1.37	2.08	1.97	11.05	6.47	5.65	5.56	5.79	9.25	4.15	1.46	1 • 64	6
7	1.41	2.19	2.04	16.49	6.50	5 65	5.38	5.94	9,20	3.83	1.46	1.60	7
8	1.40	2.08	2.06	14.40	6 • 53	5 . 64	5 • 65	6.86	9.11	3.07	1.47	1.54	8 9
9	1.43	2.16	1.97	11.45	6.53	5.60	6.37	7.43	9.04	2.50	1.49	1.46	10
10	1.56	2.34	1.91	10.55	6.53	5.26	7.07	7.38	8 4 9 2	2 4 0 2	1.50	I • 72	10
													11
- 11	1.49	2.14	1 .83	9.52	6 • 48	4.48	8 • 49	7.32	8 . 8 2	1.85	1.47	1.69	12
12	1.45	2.21	1.79	8 • 42	6 • 49	5.35	8 • 64	7.30	8 • 72	1.66	1.62	1 • 70	13
13	1 • 44	2.26	1.88	8.04	6.49	6.52	8 + 8 0	6.85	8.67	1.60	1.54	1.73	14
14	1.51	2.08	1.97	7.31	6.48	6.18	8.59	6.41	8.20	1.55	1.54	1 +84	15
15	1.90	2.04	1 4 9 4	7.02	6,45	6.12	8.71	4.89	7.23	I + 47	1.51	1 +88	12
													16
16	2.00	2.02	2.07	7.04	6.09	6.09	8.71	3.10	5 4 2 8	1.46	1.43	1.92	17
17	2.00	2.01	2 • 91	7.04	5 • 42	6.06	8 • 55	2 • 1 4	2.94	1.45	1.40	1.91	18
18	1.99	2.00	2 • 44	7.04	5 • 48	6.04	8 • 16	1.92	2.67	1.48	1.45	1.89	19
19	2.00	2.02	2.31	6 • 92	5 • 46	5.00	8.04	1.83	2.34	1.46	1.47	1.90	2D
20	1.98	2.03	2 4 3 6	6.94	5 4 4 4	5.98	8 • 31	1.82	2 • 20	1,47	1.43	1.92	10
									1				21
21	1.98	2.07	2.90	7.23	5 • 40	5.79	8 • 5 4	2 • 1 9	2.16	1.51	1.53	1.89	22
22	1.97	2.04	5 . 99	8 • 64	5 . 37	5.25	9 • 18	5 . 86	2.11	1.45	1.53	1.61	23
23	1.98	2 • 17	10.80	9.38	5 • 34	4 • 78	9.57	7.01	2.02	I a 44	1.51	1.49	24
24	2.05	2.16	22 • 21	9.75	5 • 38	4.13	9 • 22	6 • 6 9	2.99	1.51	1.49	1 • 45	25
25	2.06	1.97	18.59	8.11	5.58	3.89	8 • 8 5	6.47	5.06	1 4 4 9	1.47	1 • 46	25
										1 //	3 40	2 //	26
26	2.04	2 • 13	13.73	5 • 86	5 • 61	3.29	8 • 72	5.70	4.84	1 • 46	1.48	1.44	27
27	2.02	2.09	15 • 14	6.39	5 • 65	4.55	8 • 71	3.90	3.80	1.47	1.55		28
28	2.00	2.01	15.11	6.69	5 • 64	5.07	9.10	3.03	2.31	1.47	1.49	1 • 4 1	29
29	2.07	1.93	13.18	7.01		5.12	9.34	2.51	2.17	1.52	1.48	1.36	30
30	2 4 0 7	1.94	11.28	7.01	}	5.09	9.19	2.52	3.32	1.53	1.49	1.36	31
31	2 • 14		10.81	7.02		5.11		2 • 4 0		1 • 49	1.51		31

CREST STAGES

E - ESTIMATED

NR - NO RECORD

NF - NO FLOW

DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
12-24-64	1710	26.36	3-12-65	2150	8.17						
1- 7-65	0630	16.96	4-23-65	0840	9.78			1			
1-22-65	1730	10.26	6- 5-65	1700	9.32						

(LOCATIO	٧	MA	XIMUM DISCH	ARGE	PERIOD 0	F RECORD		DATU	N OF GAGE	
	LATITUDE	LONGITUDE	1/4 SEC. T. & R		OF RECOR	0	DISCHARGE	GAGE HEIGHT	PEF	IOD	ZERO	REF.
1	LATITUDE	LONGITODE	M.O.B.&M.	CFS	GAGE HT.	DATE	DISCHARGE	OHLY	FROM	TO	GAGE	DATUM
I	37 47 18	120 45 41	SW 4 2S 11E	52000	30.05	11-21-50	JUN 28-DEC 39				0.00	LOCAL
- {							APR 40-DATE					

Station located at bridge, 5.0 miles east of Oakdale. Flow regulated by reservoirs and powerplants. Drainage area is 1,020 square miles. Equipped with radio telemeter.

DAILY MEAN GAGE HEIGHT

STATION NAME		

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	72.70	73.58	73.29	83.45	79.44	77.95	77.41	81.53	74.69	75.24	72.99	72.95	1
2	72.68	77.51	73.74	82 • 65	79.40	77.95	77.76	81.40	76.36	75.69	73.12	72.97	2
2	72.65	73.55	73.68	81.42	79.34	77.93	77.85	80.57	77.58	76.13	73.74	77.74	2
4	72.64	73.55	73.47	79.24	79.12	77.92	77.83	79.51	783	75.65	72.95	73.08	4
5	72.71	73.54	73.67	78 • 69	78.81	77.90	77.80	78.39	80.07	75.44	72.95	73.09	S
6	72.73	73.53	73.60	81.84	78.84	77.89	77.83	78.14	81.37	76.95	72.92	77.04	6
7	72.75	73.52	73.41	88 • 18	78 • 86	77.91	77.60	78.11	81,42	78.74	772	73.03	7
8	72.73	73.50	73.61	88.05	78.89	77.90	77.68	78.80	81.37	75.5A	72.92	73.00	8
9	72.74	73.53	73.57	84.76	78.89	77.90	78 • 26	79.53	81.31	74.93	72.95	72.95	9
10	72.73	72.98	73.41	83.51	78.88	77.69	79.08	79.56	81.18	74.12	72.99	73.05	10
11	72.74	74.04	73.30	82.85	78.83	77.15	80 • 12	79.51	81.05	73.80	72.99	73.23	11
12	72.75	73.72	73.16	81.34	78 . 81	76.90	80.79	79.46	80.99	73.56	73.28	73.21	12
13	72.75	73.93	73.08	81.02	78.79	79.02	80.99	79.18	80.91	73.35	73.23	73.21	13
14	73.02	73.76	73.30	80.26	78.79	78.40	80.72	78.75	80.70	73.25	73.12	73.26	14
15	77.09	73.50	73.38	79.82	78 477	78.34	90.79	77.A2	79.82	73 • 16	73.14	72.40	15
16	73.28	73.41	73.35	79.76	78.68	78.30	80.82	76.22	78.32	73.15	73.29	72.45	16
17	73.35	73.39	74.37	79.72	77.86	78.26	80.78	74.57	76.11	73.10	72.97	73.51	17
16	73.32	73.36	74.41	79.68	77.90	78.23	80.37	74.12	75.24	73 - 17	72.98	73.48	18
19	73.33	73.33	74 • 1 1	79.61	77.88	78.21	80.09	77.92	74.74	73.10	72.99	73.53	19
20	73.34	73.35	74 • 11	79 • 51	77.86	78.17	80 . 44	73.86	74.36	73.02	73.02	73.62	20
21	73.32	73.38	74.07	79.64	77.82	78.07	80.46	73.84	74.30	73.06	73.02	73.63	21
22	73.33	73.42	77.37	80.41	77.81	77.61	81.12	76.69	74.17	73.06	73.15	73.51	22
22	73.33	73.37	81.27	82.16	77.76	77.25	81.90	78.99	74,01	73.03	73.04	73.19	23
24	73.36	73.86	91.89	81.37	77.72	76.59	81.58	78.97	74.03	73.06	73.10	73.04	24
25	77.44	73.43	93.36	81.05	77.93	76 • 40	81.25	78 • 5 7	76.87	73.07	73.09	73.08	25
26	73.44	73.56	96.64	79.63	77.98	76.02	81.00	78.44	77.24	73.10	73. 7	73.07	26
27	73.42	73.63	87.51	79.01	77.99	76.38	80.88	76.69	76.46	73.08	73.07	73.03	27
28	73.44	73.53	87.93	79.09	77.97	77.31	81.08	75.75	75.24	73.10	73.12	73.00	28
29	73.63	73.42	86.58	79.49		77.33	81.69	74.86	74.15	73.08	73.03	73.05	29
30	73.60	73.30	84.42	79.46		77.35	81.46	74.74	75.09	72.99	73.02	73.05	30
31	73.52		83.73	79.45		77.35		74.72		73.02	72.98		31

CREST STAGES

E - ESTIMATED

DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
12-24-64 1- 7-65 1-23-65	2240 1800 0540	89.11	3-13-65 4-23-65 6- 7-65	0450 1430 0630	79.82 82.04 81.45						

NR - NO RECORD

	LOCATIO	N	МА	XIMUM DISCH	IARGE	PERIOD O	F RECORD		DATU	M OF GAGE	
LATITUDE	LATITUDE LONGITUDE	1.4 SEC. T & R		OF RECOR	0	DISCHARGE	GAGE HEIGHT	PER	IOD	ZERO	REF
LATITUDE	LONGITUDE	M O.B.&M	CFS	GAGE HT	DATE		ONLY	FROM	TO	GAGE	DATUM
37 44 31	120 56 21	SW24 2S 9E	85800	103.18	12-23-55	JUL 40-DATE		1940		0.00	uscas

Station located at Burneyville Bridge, immediately north of Riverbank. Drainage area is 1,055 square miles.

DAILY MEAN GAGE HEIGHT (IN FEET)

WATER YEAR STATION NO. STATION NAME

1965 B03125 STANISLAUS RIVER AT RIPON

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1		37.66	37.56	54.22	48.03	44.82	44.55	51.93	40.11	41.17	37.63	37.57	1
2	37.19	37.65	37.55	53.77	47.99	44.82	44.72	52.01	40.79	40.94	37.47	37.52	2
3	37.06	37.62	37.88	52.90	47.89	44.81	45.28	51.56	43.47	41.60	37.52	37.65	3
4	37.04	37.63	37.80	50.43	47.68	44.80	45.47	50.09	44.89	41.78	37.45	37.92	4
5	36.98	37.64	37.66	47.30	47.09	44.80	45.44	47.80	46.73	41.20	37.36	37.82	5
3	30.40	37.04	77.00	4.00	4.407		.,,,,,						
6	37.01	37.62	37.81	48.06	46.87	44.80	45.68	46.45	49.82	41.39	37.39	37.99	6
7	37.00	37.62	37.72	54.23	46.88	44.79	45.49	46.17	51.21	42.22	37.52	37.90	7
8		37.63	37.61	57.56	46.90	44.78	45.09	46.61	51.49	41.65	37.87	37.78	8
9	37.13 37.19	37.66	37.74	56.07	46.92	44.91	45.89	48.12	51.57	40.64	37.77	37.90	9
10		37.74	37.69	54.60	46.91	44.89	47.49	48.81	51.58	39.79	37.51	37.81	10
10	37.13	37.14	37009	34.00	40071	14407	4.0.0						
11		38.43	37.59	53.91	46.82	44.01	48.77	48.69	51.36	39.30	37.42	37.74	11
	37.21	38.40	37.48	52.84	46.76	43.05	50.71	48.57	51.16	38.90	37.95	37.82	12
12	37.05	38 • 28	37.38	51.61	46.73	45.76	51.38	48.50	51.06	38.67	38 • 18	37.86	13
14	37.01	38 • 32	37.32	50.54	46.71	46.26	51.45	47.52	51.02	38.40	38.10	37.80	14
	37.03	38.00	37.48	49.31	46.67	45.81	51.12	46.59	50.25	38.22	37.96	37.78	15
15	37.24	38.70	37.40	47.31	40.07	47.01	21.012	4000	,,,,,,	,,,,,,,		1	
.,		-7 70	37.51	48.78	46.61	45.71	51.11	44.27	48.35	38.00	37.98	37.85	16
16 17	37.30	37.78	37.52	48.64	45.60	45.61	51.14	42.15	44.90	37.96	37.54	38.22	17
18	37.56	37.67	38.59	48.55	45.00	45.52	50.90	40.59	42.14	38.18	37.50	38.23	18
19	37.49	37.63	38.56	48.50	44.93	45.49	50.28	40.07	41.45	38 - 18	37.61	38 • 25	19
20	37.43	37.59 37.58	38.40	48.22	44.84	45.41	50.25	39.88	40.82	37.83	37.62	38.41	20
20	37.42	37.008	15040	40.22	44.04	47.41	1 ,000	3,,,,,					
21	37.41	37.58	38.37	48.21	44.76	45.35	50.51	39.63	40.57	37.75	37.57	38.47	21
22	37.41	37.60	39.11	48.83	44.66	44.88	50.92	40.52	40.11	37.70	37.58	38.13	22
23	37.39	37.62	44.14	51.18	44.57	44.20	51.86	45.87	39.72	37.67	37.52	38.02	23
24		37.60	51.86	52.05	44.43	43.30	52.33	47.44	39.64	37.56	37.42	37.74	24
25	37.40	38.05	60.80	51.51	44.60	42.43	52.12	46.90	41.25	37.59	37.47	37.91	25
23	37.44	3ו115	00.00	21.01	44.00	42.47	72.012	40000	41.627	7.477	3144.	2.4.1	
26	37.49	37.70	57.56	49 • 10	44.80	42.02	51.63	46.83	43.87	37.65	37.65	38.05	26
27	37.49	37.80	56.85	48.01	44.84	41.77	51.28	44.88	43.53	37.69	37.56	38.25	27
28	37.49	37.81	57.32	47.29	44.86	43.40	51.27	42.56	42.33	37.65	37.53	37.92	28
29		37.73	57.02	47.81	44,00	43.77	51.77	41.28	40.34	37.63	37.68	38.06	29
30	37.64		55.70	48.11		43.87	52.08	40.51	39.99	37.51	37.73	37.96	30
31	37.89	37.63				43.94	12.00	40.37	27.77	37.49	37.48	2	31
("	37.75		54.62	48.07		45.94		40.37		37.49	31.40		1 /

CREST STAGES

E - ESTIMATED

NR - NO RECORD

NF - NO FLOW

DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
12-25-64 12-28-64 1- 8-65	0600 1800 0600	62.26 57.42 57.66									

	LOCATIO	N	MA	XIMUM DISCH	ARGE	PERIOD 0	F RECORD		DATU	M OF GAGE	
LATITUDE	LATITUDE LONGITUDE	1/4 SEC. T. & R.		OF RECOR	D	DISCHARGE	GAGE HEIGHT	PER	IOD	Z ERO ON	REF.
LATITOUE	LONGITUDE	M.D.B &M.	CFS	GAGE HT.	DATE	DISCHARGE	ONLY	FROM	TO	GAGE	DATUM
37 43 50	121 06 35	SE29 2S 8E	62500	63.25	12-24-55	APR 40-DATE		1940		0.00	USGS

Station located 15 feet below the Southern Pacific Railroad Bridge, 1.0 mile southeast of Ripon. Records furnished by U. S. Geological Survey. Flow records are published in U. S. Geological Survey report "Surface Water Records of California". Drainage area is 1,075 square miles.

DAILY MEAN GAGE HEIGHT

WATER YEAR STATION NO. STATION NAME

1965 803115 STANISLAUS RIVER AT KOETITZ RANCH

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	27.55	28.02	27.93	43.83	38 + 06	35.19	35 • 17	41.67	31. 1	31.9	28.5	28.68	1
2	27.52	28.02	27.89	43.53	38.04	35.19	35.34		31.28	31.56	28.24	28.54	2
3	27.35	27.97	28 • 11	42.94	37.97	35.18	35.84	41.76	33.58	31.99	28.15	28.78	3
4	27.28	27.96	28.20	41.11	37.81	35.15	36.09	40.25	35.19	32.54	28.70	29.02	4
5	27.40	27.99	28.07	37.68	37.33	35.14	36.04	38.19	36,58	32.13	28.06	29.05	5
6	27.41	27.98	28 • 12	37.75	37.00	35.15	36 • 18	36.77	39.35	32.08	28.10	29.20	6
7	27.39	27.97	28.14	42.16	37.00	35.13	36.17	36.48	40.75	32.80	28.22	29 • 1 4	7
8	27.48	27.97	27.99	46.22	37.05	35.10	35.78	36 • 64	41.78	32.58	28 • 49	28 • 9 9	8
9	27.67	27.99	28.04	45.45	37.05	35.19	36.32	38.04	41.20	31.58	28.44	28.92	9
10	27.56	28.07	28.06	44.34	37.05	35.31	37.60	38.81	41.24	30.70	28.10	28 • 9 4	10
[27.61	20.40	27.95	43.69	37.00	34.62	38.77	20 70	41 00		20.11	28.79	11
11	27.61	28 • 48						38.70	41.09	30 • 1 9	28 • 14		12
12	27.50	28.77	27.88	43 • 10	36.92	33.70	40.41	38.59	40.97	29.78	28.69	28 • 87	13
13	27.47	28.59	27.79	41.90	36.91	35.61	41.15	38.53	40.81	29.28	28.95	28.80	14
14	27.61	28.65	27.71	40.79	36.87	36.74	41.42	37.80	40.80	28 • 97	28.91	28.74	15
15	27.68	28.47	27.80	39.51	36.85	36.32	41.21	37.01	40.30	28.76	28.79	28 • 51	13
16	27.72	28 . 21	27.86	38 . 85	36.83	36.12	41.15	35.03	38,79	28.61	28.78	28.91	16
17	27.87	28.09	27.95	38.67	36 • 11	35.98	41.17	33.07	35,95	28.58	28 • 45	29 • 13	17
18	27.89	28.01	28.48	38.56	35.32	35.99	41.05	31.63	33.97	29.01	28.18	29.15	18
19	27.74	27.97	28 4 98	38.49	35.24	35.84	40.53	30.90	32,30	28.99	28.27	28.99	19
20	27.66	27.94	28.71	38 • 25	35.16	35.90	40.30	30.84	31.70	28.73	28.23	29.32	20
													21
21	27.62	27.94	28.67	38.19	35.09	35.74	40.59	30.41	31.39	28.53	28.39	29.31	
22	27.59	27.94	28.93	38 • 65	34.94	35.41	40.79	30.74	30.95	28.54	28.46	28.97	22
23	27.63	27.95	33.03	40.32	34.86	34.78	41.49	35.31	30.47	28.31	28.21	28 • 82	23
24	27.69	27.94	39.20	41.76	34.77	34.10	42.09	37.40	30.24	28.43	28.10	28 • 73	24
25	27.76	28 • 22	48.26	41.36	34.88	33.16	41.99	37.22	31.19	28.41	28.19	28 • 81	25
26	27.81	28.16	46.44	40.25	35 • 17	32.95	41.59	37.07	34.19	28.35	28.27	29.05	26
27					35.22	32.59	41.20	35.74	34.29	28.27	28.22	29.03	27
28	27.81	28.08	45.71	38.20		33.93	41.08	33.44	33.31	28.17		28.95	28
	27.83	28.16	46.09	37.37	35 • 22						28.15		29
29	27.92	28.10	45.95	37.76		34.41	41.39	32.29	31.34	28 • 32	28.37	28 • 99	30
30	28 • 12	28.01	45 • 22	38.11		34.54	41.78	31.46	30.59	28.12	28.86	28 • 88	30
31	28.14		44.30	38 • 10		34.61		31.25		28.31	28.70		31

CREST STAGES

E - ESTIMATED

NR - NO RECORD

DATE	TIME	STAGE	DATE	TIME	STAGE	OATE	TIME	STAGE	DATE	TIME	STAGE
12-25-64	0710	49.81E	4-24-65	1200	42.14						
1- 8-65	1000	46.32	6- 9-65	2400	41.31						
1-24-65	0920	41.87									

NF - NO FLOW

	LOCATIO	N	MAXIMUM DISCHARGE			PERIOD	OF RECORD		DATU	M OF GAGE	
		1/4 SEC. T. & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PER	100	ZERO	REF
LATITUDE	LONGITUOE	M.D. 8.&M.	CFS	GAGE HT.	DATE	DISCHARGE	ONLY	FROM	то	GAGE	DATUM
37 41 57	121 10 08	SW 2 3S 7E				OCT 62-DATE	MAR 50-SEP 62	1950 1951 1951	1951	0.00	USED USED USCGS

Station located on left bank 9.35 miles above mouth 0.6 mile northwest of Bacon and Gates road junction, 3.7 miles southwest of Ripon.

DAILY MEAN GAGE HEIGHT

WATER YEAR STATION NO. STATION NAME

1965 B03105 STANISLAUS RIVER NEAR MOUTH

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1 2 3 4 5	15.52 15.53 15.28 15.11 15.04	16.15 16.14 16.08 16.01 16.01	16.03 16.04 16.12 16.17 16.15										1 2 3 4 5
6 7 8 9	15.09 15.19 15.20 15.34 15.53	15.98 15.97 15.99 15.99 16.04	16.12 16.10 16.01 16.03										6 7 8 9
11 12 13 14 15	15.72 15.69 15.66 15.77 15.76	16.20 16.57 16.50 16.54 16.66			STAT	TION DISCO	ONTINUED ?	AS OF					11 12 13 14 15
16 17 18 19 20	15.75 15.62 15.83 15.38 15.11	16.85 16.71 16.41 16.45 16.82				12-1	0-64						16 17 18 19 20
21 22 23 24 25	15.06 15.17 15.28 15.46 15.54	16.91 16.87 16.76 16.65 16.50											21 22 23 24 25
26 27 28 29 30 31	15.58 15.55 15.80 15.97 16.08 16.19	16.37 16.16 16.17 16.14 16.08											26 27 28 29 30 31

CREST STAGES

	DATE	TIME	STAGE									
E - ESTIMATED												
NR - NO RECORD												
NE NO FLOW												

	LOCATION MAXIMUM DISCHARGE			PERIOD C	DATUM OF GAGE						
	LONGITUDE	1/4 SEC. T & R	OF RECORD DISCHARGE GAGE HEIGHT		PERIOD		ZERO	REF.			
LATITUDE	LUNGITUDE	M.D.B.&M	CFS	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM
37 40 33	121 13 18	NE17 3S 7E				SEP 51-SEP 62	OCT 62-DEC 64	1951 1959	1959	1.11	USCGS

Station located 1.9 miles above mouth, 7 miles southwest of Ripon. Backwater from San Joaquin River at times affects the stage-discharge relationship. Prior records available at other sites. Drainage area is 1,091 square miles. Station discontinued as of 12-10-64. Altitude of gage is approximately 25 feet (from U. S. Geological Survey topographic map).

DAILY MEAN GAGE HEIGHT

WATER YEAR STATION NO. STATION NAME
1965 B07020 SAN JOACULA RIVER NEAR VERNALIS

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	11.56	12.99	13.01	26.55	20.18	17.09	15.97	40	14.80	15.27	11.47	11.62	1
2	11.59	13.02	13.15	26.35	20.41	17.68	16.53	NR	14.76	15.25	11.50	11.83	2
3	11.58	12.86	13.30	26.14	20.29	17.56	17.23	18.46	15.34	14.50	11.45	11.86	3
4	11.52	12.49	13.11	25.74	19.84	17.99	18.03	18.51	16.28	14.38	11.37	11.99	4
5	11.56	12.37	13.17	24.97	19.48	18.67	18.34	18.29	16.74	14.47	11.27	12.08	5
6		12.32	13.14	24.28	19.67	18.92	10.00		1.7.40				6
7	11.60		12.97	24.49	20.38		18.33	17.93	17.69	14.25	11.32	12.29	7
á	11.63	12.28	12.77	26.54	20.92	18.70	18.15	18.00	18.36	14.19	11.41	12.27	a a
9	11.54	12.33	12.91	27.93	21.24	19.19	18.69	18.02	18.46	14.21	11.56	12.40	9
10	11.56	12.30						NR	18.53	14.04	11.62	12.25	10
10	11.60	12.32	12.91	28.01	21.34	19.54	19.51	18.80	18.77	13.84	11.50	12 - 17	10
11	11.68	12.54	12.86	28.01	20.83	19.04	20.81	18.81	18.13	13.73	11.96	12.21	- 11
12	11.62	12.85	12.92	28.23	20.05	18.24	22.24	18.44	19.29	13.48	12.00	12.35	12
13	11.67	12.91	12.95	28.04	19.66	18.03	23.36	18.22	19.50	13.48	12.65	12.42	13
14	11.72	13.04	12.78	27.49	19.48	19.07	24.04	17.97	20.55	13.49	12.80	12.26	14
15	11.77	13.57	12.61	26.47	19.70	17.93	24.24	17.37	20.68	NR	12.69	11.99	15
16	11.78	14.27	12.98	24.94	20.12	1.7.42	24.32	16.54	19.97	NR	12.56	12.01	16
17	11.46	14.20	13.10	23.53	19.96	17.65	24.44	15.79	19.29	NR	12.06	12.26	17
18	11.48	13.78	13.09	22.62	19.54	17.72	24.33	15.22	18.65	NR	11.76	12.57	18
19	11.34	13.85	13.24	22.09	19.21	17.76	24.06	15.26	17.22	11.78	11.53	12.58	19
20	11.12	14.49	13.36	21.57	18.90	17.68	23.85	15.36	15.76	11.73	11.58	12.69	2D
	11.12	14.47	1	21.07	100//	17.90	23.00	13.30	13.70	111.75	11.50	12.07	
21	11.05	14.62	12.29	20.80	18.70	16.83	23.46	15.26	15.13	11.58	11.54	12.39	21
22	11.76	14.55	13.21	20.32	18.41	15.94	22.56	15.41	14.75	11.51	11.72	12.61	22
23	11.03	14.40	14.04	20.34	18.27	15.36	21.95	NR	15.20	11.55	11.77	12.85	23
24	11.04	14.26	16.64	20.80	18.69	14.95	22.07	17.74	15.49	11.53	11.57	12.88	24
25	11.08	13.96	23.91	21.14	18.95	14.43	22.38	NR	15.52	11.60	11.51	13.02	25
26								1					26
27	11.15	13.66	27.28	21.51	18.98	14.37	22.27	17.96	16.02	11.58	11.55	13.36	27
28	11.19	13.32	26.80	21.81	18.61	14.41	21.91	17.35	16.47		11.66		28
29	11.58	13.11	77.38	21.86	18.14	14.92	21.30	16.24	16.81	11.58	11.53	13.50	29
30	12.31	13.05	27.64	21.59	1	15.15	20.30	15.54	16.55	11.56	11.64	13.69	30
31	12.63	13.05	27.50	21.12		15.14	19.82	15 • 14	15.83	11.49	11.77	13.93	30
	12.85		27.01	20+45		15.43		14.97		11.41	11.67		41

CREST STAGES

E - ESTIMATED

NR - NO RECORD

NF - NO FLOW

DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
1-12-65	1300	28.27									

	LOCATION		МА	XIMUM DISCH	IARGE	PERIOD OF	DATUM OF GAGE				
		1 4 SEC. T & R	OF RECORD			DISCHARGE	GAGE HEIGHT	PERIOD		ZERO	REF
LATITUDE	LONGITUDE	M D B &M	CFS	GAGE HT	DATE	DISCHARGE	ONLY	FROM	TO	GAGE	DATUM
37 40 34	121 15 51		79000	27.75	12-9-50	JUL 22-DEC 23		1931		8.4	USED
	'		•	•		JAN 24-FEB 25					
						JUN 25-OCT 28			1959	5.06	USCGS
						MAY 29-DATE		1959		0.00	USCGS

Station located 30 feet above the Durham Ferry Highway Bridge, 3 miles below the Stanislaus River, 3.4 miles northeast of Vernalis. Records furnished by U. S. Geological Survey. Drainage area is approximately 14,010 square miles. This station equipped with DWR radio telemeter.

TABLE B-12

DAILY CONTENT

(IN THOUSANDS OF ACRE-FEET)

WATER YEAR STATION NO. STATION NAME

1965 B71100 MILLERTON LAKE AT FRIANT

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
			202.2	310.8	420.8	335.5	272.5	390 • 9	369•2	410.9	326.8	212.3	1
1 2	171 • 1	163.5		316.4	417.8	331.8	274.7	392.4	371.0	409.6	323.4	210.4	2
	170.7	164.2	203.6		414.6	327.8	276.9	393.5	370.9	409.6	319.5	209.2	3
3	169.6	164.9	204.7	322 • 2	411.6	325.0	278.9	394 • 2	372.3	409.4	315.2	208 • 4	4
4	168 • 4	165.5	206.3	328 • 4	411.6	321.5	281.0	394.5	377.3	409.1	310.9	207.7	5
5	167.8	166.0	207.5	337.9	4.0.9	321.0	201.00	274.7	311.02				
6	167.2	166.5	209.0	349.5	406.8	317.0	283.9	394.9	383.4	408 • 2	306.9	206.6	6
7	166.5	167•1	210.3	361.8	404.3	312.3	287.0	395.5	386.4	407.2	303.3	205.6	7
8	165.8	167.8	211.1	369.6	401.4	307.6	291.3	396.2	393.7	406.0	299.1	204.0	
9	165.4	169.0	212.3	375.2	308.9	303.2	297.6	396.6	396.5	404.3	294.6	201.1	9
10	164.7	171.1	213.1	380.6	396.3	299.1	305.4	396 • 8	398.8	402.4	290.0	197.8	10
10	10447	17141	210+1	300.0									
11	163.6	171.9	214.1	385 • 2	393.6	294.5	312.3	396.5	404 • 0	399.9	285 • 4	194.6	11
12	163.0	174.7	215.5	391.1	390.7	290.8	318.4	395.9	410.1	396.9	281.4	191.4	12
13	162.3	177.8	217.0	397.2	387.5	287.4	324.8	394.8	415 • 4	393.9	278 • 1	188.2	13
14	161.2	178.9	217.8	403 • 2	384.6	283.5	330.9	393.5	418.1	389.7	275.1	185.3	14
15	160.7	180.0	219.1	409.0	381.1	280.0	337.0	391.9	419.9	385.6	271.3	182.9	15
13	100.7	100,00	21701	1070	,,,,,,								
16	160.2	180.8	219.8	414.9	378.1	276.2	342.5	389.7	420 • 1	382.5	267.5	181.0	16
17	159 • 8	182.9	221.0	421.0	375.1	272.9	347.6	387.6	419.6	379.6	263.8	179.3	17
18	159.3	183.8	222.1	427.1	372.2	270.7	352.1	385.1	418.9	376.4	260.9	177.0	18
	158.9	185.2	223.3	433.1	369.2	269.3	356.2	382.3	417.9	373.2	257.2	175.3	19
19	158.4	186.8	226.0	438.9	366.1	269•1	360.6	379.6	418.2	369.7	253.9	173.9	20
20	158.4	186.8	220.0	418.7	300+1	207•1	, , , ,	31740	-10.45				1
21	158.9	188.0	228.1	443.7	363.3	269.0	364.5	377•1	419.9	366.4	250.8	173.6	21
22	158.9	189.4	230.5	445.3	359.7	266.8	368.2	374.7	421.5	363.0	247.6	173.5	22
23	159.3	191.0	241.7	445.7	355.9	268.2	371.8	372.2	422.3	359.2	243.4	173.5	23
24	159.6	192.6	254.4	445.5	352.7	267.5	374.9	369 • 8	421.7	355.9	239.5	173.6	24
25	159.0	194.1	263	443.3	349.2	267.0	377.5	367.4	420.8	352.3	235.8	173.1	25
23	137.0	17411	2000.	147,	2								
26	159.1	195.6	269.4	440.5	345.8	267.0	380.5	365 • 1	419.2	348.6	231.6	171.8	26
27	159.6	197.3	280.4	437.7	342.4	267.1	383.1	364.1	417.2	344.7	228.0	170.2	27
28	160.1	198.8	287.5	434.9	338.9	266.9	385.1	363.3	415.4	340.7	224.7	169.0	28
	161.0	199.7	292.6	431.9	.,,,,,	267.8	387.0	362.4	413.8	336.6	221.4	167.7	29
29	162.1	201.0	298.3	427.8		268.6	388.9	362.0	412.2	333.0	217.8	166.1	30
30		201.0		427.8		2711.8	758 • 9	365.3	412.2	329.8	214.4	100.1	31
31	163.0		304.9	423.6		2711.8		200.3		229.0	214.4		31
Month	nly -9.3	+ 38.0	+103.9	+118.7	- 84.7	- 68.1	+118.1	- 23.6	+ 46.9	- 82.4	-115.4	- 48.3	
Chang	je									,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			

E — ESTIMATED NR — NO RECORD

MEAN		MAXIMU	м				MINIM	J M		
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME	DISCHARGE	GAGE HT.	MO.	DAY	TIME

TOTAL	
ACRE FEET	
)

	LOCATION	1	MAXIMUM DISCHARGE		PERIOD OF RECORD		DATUM OF GAGE				
LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECOR	D	DISCHARGE	GAGE HEIGHT	PER	IOD	ZERO	REF.
LATITODE	LONGITUDE	M.D.B &M.	CFS	GAGE HT.	DATE	DISCHARGE	OHLY	FROM	TO	GAGE	DATUM
37 00 00	119 42 10	SW 5 11S 21E				OCT 41-DATE		1941		0.00	USCGS

Station located near center of Friant Dam on San Joaquin River, immediately above Cottonwood Creek, 0.9 mile northeast of Friant. Usable capacity, 503,000 acre-feet between elevations 375.4 and 578.0 feet above mean sea level. Not available for release, 17,400 acre-feet. Records furnished by U. S. Bureau of Reclamation. Drainage area is 1,633 square miles.

TABLE 8-13
REVISIONS TO PREVIOUSLY PUBLISHED REPORTS

		LOCATION OF ERROR		CHA	NGE
Page	Mile & Bank	Name	ITEM	From	To
149		Bulletin 23-62 Surface Water Flow for 1962 Table 135, Burns Creek at Hornitos	Maximum Discharge 1962 water year	4340E	9200E
188		Table 174, Tule River below Porterville Bulletin No. 130-63 Hydrologic Data 1963 Volume IV, San Joaquin Valley	Maximum Discharge of record Daily Mean Discharge May 4 May 5 Monthly acre-feet Water year total	365 416 25720 84130	9200E 450 450 25960 84370
8-31		Volume IV, San Joaquin Valley Table B-21, Burns Creek at Hornitos Bulletin No. 130-64 Hydrologic Data 1964 Volume IV, San Joaquin Valley	Maximum Discharge 1963 water year Maximum Discharge of record	1340E 4340E	2000E 9200E
66		Table B-4, Big Creek Diversion near Fish Camp	Daily Mean Discharge Jan. 13 Jan. 14 Jan. 15 Jan. 16 Jan. 17 Jan. 18 Jan. 19 Jan. 20 Jan. 21 Jan. 22 Jan. 23 Jan. 24 Jan. 25 Jan. 26 Jan. 27 Jan. 28 Jan. 29 Jan. 30 Jan. 31 Monthly acre-feet Water year total	10 144 18 22 21 30 23 6.6 5.3 22 51 156 54 48 40 41 41 35 24 1276 8722	5.5E 6.5E 5.0E 5.0E 3.5E 3.5E 3.5E 10E 5.0E 7.0E 7.0E 8.5E 12E 10E 10E 10E 437E 7883
80		Table B-4, 8urns Creek at Hornitos	Maximum Discharge 1964 water year Maximum Discharge of record	222 4340E	205 9200E
145	186.6L	Table B-6, San Luis Canal Company	DiversionsNov. Sept.	3486 18828	3489 15828
145	(0.4L)	Table B-6, Firebaugh Canal Company	DiversionsOct. Nov. Dec. Jan. Feb. Mar. Apr. May June July Aug. Sept. Total	835 117 20 0 1722 9956 11748 13440 14231 13765 5946 1203 72983	1720 89 12 389 2993 4965 9556 11450 12228 15043 14251 5472 78168
145		Table B-6, James Irrigation District	DiversionsTotal	4855	48550
146	264.08L	Table B-6, H. W. Ball	DiversionsJune July Aug. Sept. Total Total DiversionsOct. Mar. Apr. May June July Aug. Sept. Total	36 103 110 80 329 252 567 968 1114 1738 2710 2390 1240 11230	13 36 38 27 114 256 572 1012 1130 1753 2695 2360 1192 11220

APPENDIX C
GROUND WATER MEASUREMENTS

APPENDIX C. GROUND WATER MEASUREMENTS

Introduction

The Department of Water Resources cooperates with the U. S. Geological Survey, U. S. Bureau of Reclamation, irrigation and water storage districts, and other local agencies for the systematic observation of ground water levels. The Department obtains approximately 13,000 water level measurements annually on some 7,500 wells in the San Joaquin Valley. The period of record for these wells varies from one to over 40 years.

Because significant trends in water level fluctuations can be indicated by a representative sample, a selection was made of approximately 800 wells for reporting purposes.

This appendix presents ground water measurement data on these 800 wells for the period July 1, 1964, through June 30, 1965. These 800 wells were selected as representative wells of all the wells measured in the area and are designated as selected wells. They were selected on the basis of a number of factors, including areal distribution, length of water level record, frequency of measurements, conformity with respect to water level fluctuation in the ground water basin or area in a confined aquifer or in a zone of shallow depth, and availability of a log, mineral analyses, and production record. The area for which ground water level measurements of selected wells are made is designated as area IV on page iii.

Table C-1 presents the average change in ground water levels, spring 1964 to spring 1965. The average change in water level for each district or area was determined where possible by planimetering ground water contour maps by using all the spring measurements. In areas where insufficient data were available to define reliable contours, a numerical average was made using actual well measurements.

Table C-2 presents the change in average ground water levels from 1921 to 1951 and 1951 to 1965 in 18 ground water areas in the San Joaquin Valley.

Table C-3 presents ground water levels at wells. This table also shows other data, including the district or area where a well is located, well location within the district or area, date of measurement, water surface elevation, depth from ground surface, and the code number for the agency supplying the data.

Hydrographs of selected areas are shown in Figure C-1.

Hydrographs of selected wells are shown in Figure C-2.

Shown on Plate 5 are the districts or areas with a ground water level change of five feet or more in the unconfined or semiconfined aquifers. Plate 6 shows the area or districts with a change of five feet or more in the confined or pressure aquifers. Plate 7 shows the location of selected wells.

A profile of the ground water level in 19 areas for the years 1921, 1951, 1964, and 1965 and the locations of the 18 areas are shown on Plate 8.

Lines of equal elevation of water in wells for spring 1965, for both the unconfined and confined aquifers, are shown on Plate 9.

Measurement Techniques

Definitions

<u>Free ground water</u> is water in the interconnected interstices in the zone of saturation down to the impervious barrier, moving under the control of the water table slope.

Water table is the upper surface of the body of free water which completely fills all openings in the material sufficiently pervious to permit percolation. On fractured impervious rocks and in solution openings, it is the surface at the contact between the water body in the openings and the overlying ground air.

Confined ground water is a body of ground water overlain by material sufficiently impervious to sever free hydraulic connections with overlying ground water except at the intake. Confined water moves in conduits under pressure due to difference in head between intake and discharge areas of the confined water body.

Semiconfined ground water occurs when the vertical permeability is less than the horizontal permeability so that differences in head occur between aquifers during the periods of heavy pumping, but during periods of little draft, the water level recovers to a level coincident with the water table. These aquifers are subject to pressure effects for short periods, but the artesian head adjusts to equilibrium with the water table over long periods of time.

<u>Pressure surface</u> or <u>piezometric surface</u> is the level to which the water will rise in wells penetrating a confined aquifer.

<u>Perched ground water</u> is ground water occurring in a saturated zone separated from the main body of ground water by unsaturated material.

Methods and Procedures

The depth to water in most wells is usually determined by a direct measurement made with a steel tape; however, in some wells, especially deep ones, measurements are made by use of an electric well sounder, or where access is impossible for use of a tape or electric well sounder, an airline measurement is made by use of a pressure gage.

The Department of Water Resources strives to obtain complete coverage of ground water levels throughout the San Joaquin Valley in the spring of each year. This is done through cooperative efforts of the many local and governmental agencies in the area. The Department measures wells only in those areas which are outside the limits or jurisdiction of any other agency, or to assist in areas where the time element might be a factor, such as anticipated heavy pumping which would have considerable effect on ground water levels.

Ground water level measurements are exchanged among the various agencies, and the Department obtains a copy of all measurements made. These spring measurements are used to prepare a ground water elevation map of the area where sufficient data are available to do so.

Accuracy

Ground water occurs under confined and unconfined conditions in the San Joaquin Valley. In much of the western, central, and southeastern parts of the Valley, three distinct ground water reservoirs are present. This condition presents many problems as to accuracy of ground water level data being collected, as some wells tap only a single aquifer while others are perforated so as to draw water from two or more aquifers.

Coding and Numbering System

Explanation of Headings and Symbols Used in Appendix C

State well numbers used in this report are based on the township, range, and section subdivision of the Public Land Survey. They conform to the system used in all ground water investigations and for numbering of wells for which data are published or filed by the Department of Water Resources. In this report the number, which is assigned to a well in accordance with this system, is referred to as the "state well number".

Under the system, each 640-acre section is divided into 40-acre tracts lettered as follows:

D	С	В	A
E	F	G	Н
М	L	К	J
N	Р	Q	R

Wells are numbered within each 40-acre tract according to the chronological sequence in which they have been assigned state well numbers. For example, a well which has the number 16S/15E-17K1 M would be in Township 16 South, Range 15 East, Section 17, M.D.B. & M., and would be further located as the first well assigned a state well number in Tract K. In this report, well numbers are referenced to the Mount Diablo Base and Meridian (M) or the San Bernardino Base and Meridian (S).

Ground surface elevation represents the elevation in feet above mean sea level (U.S.G.S. and U.S.C. & G.S. datum) as determined from U.S.G.S. topographic maps.

Date is the date the depth measurement was made.

Ground surface to water surface in feet is the measured depth in feet from the ground surface to the water surface in the well. Certain of the depth measurements in the column may be followed with an asterisk superscript to indicate a questionable measurement. Depth to ground water measurements may be questionable for such reasons as: (a) well being pumped while undergoing measurement, (b) nearby pump in operation, (c) existence of a leaking or wet casing, (d) well having been pumped recently, (e) possible air gage measurement error, (f) recharge operation at well or nearby. The specific reason for any asterisk on any given measurement may be obtained from the San Joaquin District Office of the Department of Water Resources.

Other code symbols used in this column are as follows:

- 1 No measurement
- # Measurement discontinued
- @ Well has been destroyed

The words FLOW and DRY are shown in this column to indicate a flowing or dry well.

The word DISCONTINUED indicates records from this well will no longer be published.

<u>Water surface elevation</u> is the elevation in feet above mean sea level (U.S.G.S. and U.S.C & G.S. datum) of the water surface in the well. It was derived by machine computation by subtraction of the depth measurement from the reference point elevation.

Agency supplying data represents the code numbers for the agencies supplying water level data. The agency code consists of a five-digit number, the first digit represents the region number. Thus, 54200 refers to agency 4200 in Region 5. Because of the limitations of punch-card space, the agency code has been shown as a four-digit number without the region number.

In this list of water levels, the agency furnishing the measurement is noted. The agencies and code numbers assigned to them are as follows:

Agency Code	Agency
4200	City of Fresno
4520	Oakdale Irrigation District
4521	Modesto Irrigation District
4524	Turlock Irrigation District
4525	Merced Irrigation District
4636	Consolidated Irrigation District
4637	Alta Irrigation District
4640	Buena Vista Water Storage District
5000	U. S. Geological Survey
5050	Department of Water Resources
5120	Kern County Surveyor
5529	Poso Soil Conservation District
5631	Fresno Irrigation District
6001*	U. S. Bureau of Reclamation
7518	South San Joaquin Irrigation District
8700	Kern County Land Company

^{*}A large amount of data listed under this agency code has been gathered by irrigation and water districts and compiled by the Bureau of Reclamation for transmittal to the Department of Water Resources.

Figure C-I. FLUCTUATION OF AVERAGE WATER LEVEL IN SELECTED AREAS

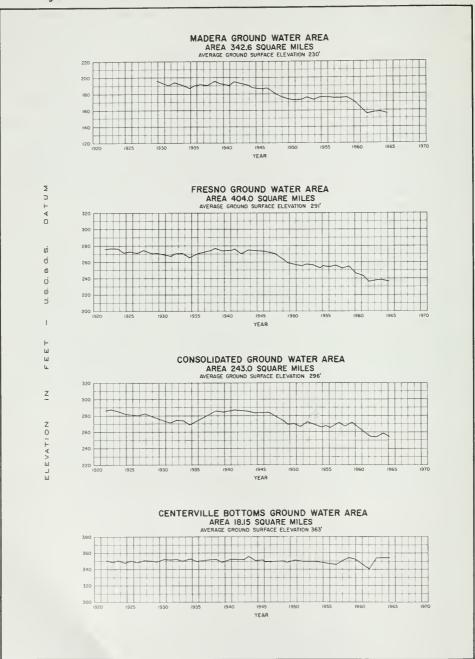


Figure C-I (Continued). FLUCTUATION OF AVERAGE WATER LEVEL IN SELECTED AREAS

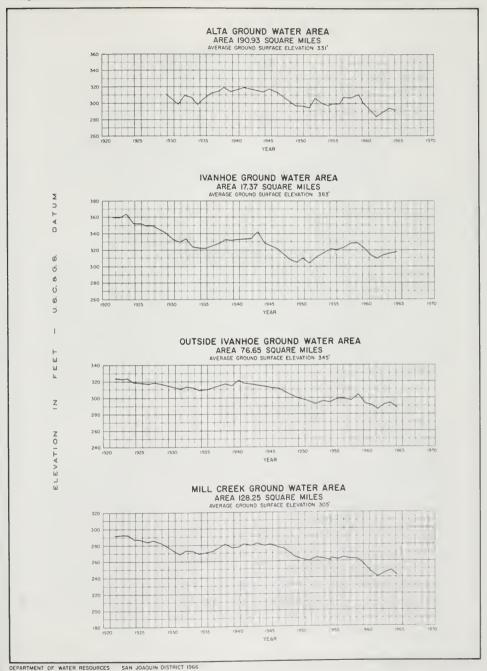


Figure C-I (Continued). FLUCTUATION OF AVERAGE WATER LEVEL IN SELECTED AREAS

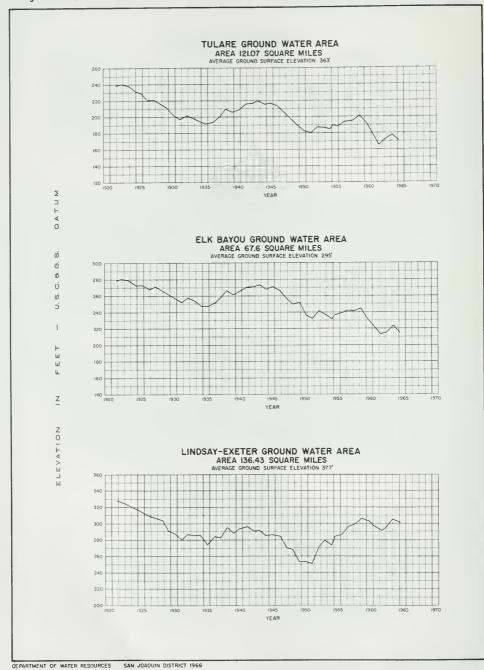


Figure C-I (Continued). FLUCTUATION OF AVERAGE WATER LEVEL IN SELECTED AREAS

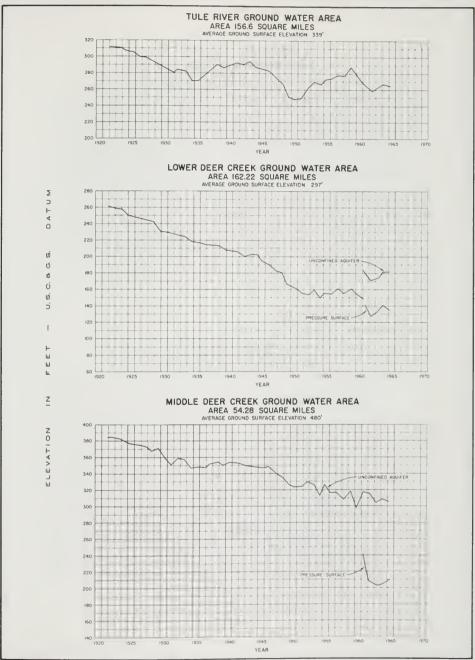


Figure C-I (Continued). FLUCTUATION OF AVERAGE WATER LEVEL IN SELECTED AREAS

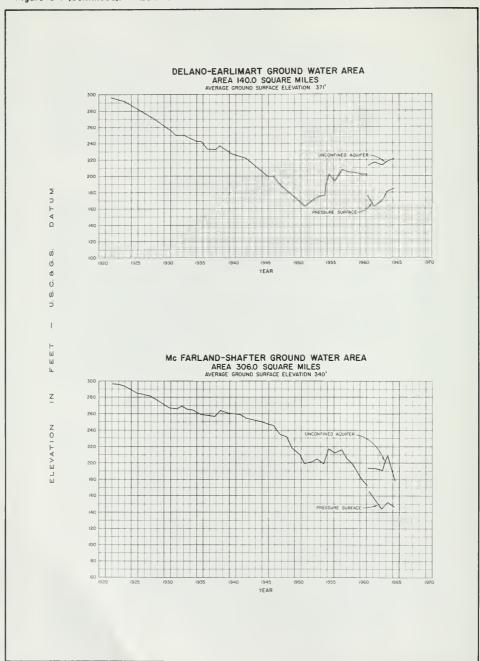
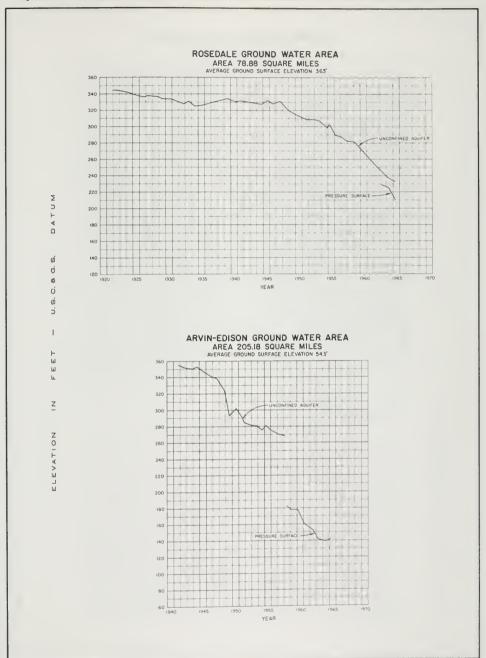



Figure C-I (Continued). FLUCTUATION OF AVERAGE WATER LEVEL IN SELECTED AREAS

DEPARTMENT OF WATER RESOURCES SAN JOAQUIN DISTRICT 1966

Figure C-2. FLUCTUATION OF WATER LEVELS IN SELECTED WELLS

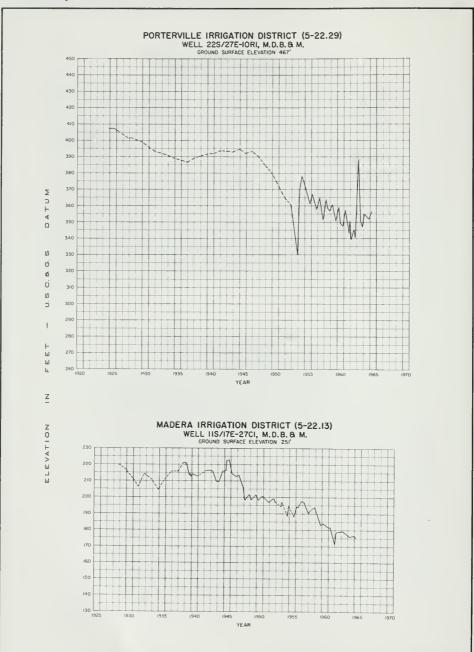


Figure C-2 (Continued). FLUCTUATION OF WATER LEVELS IN SELECTED WELLS

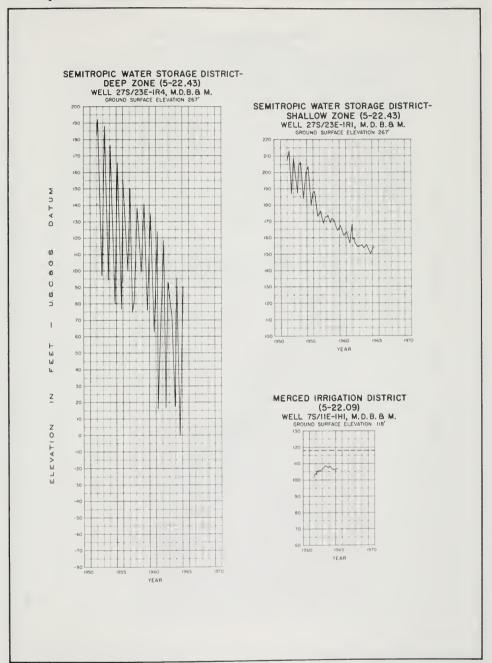


Figure C-2 (Continued). FLUCTUATION OF WATER LEVELS IN SELECTED WELLS



Figure C-2 (Continued). FLUCTUATION OF WATER LEVELS IN SELECTED WELLS

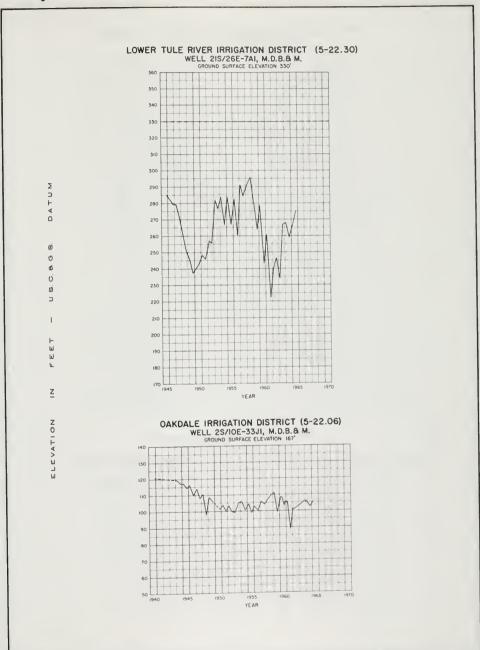


Figure C-2 (Continued). FLUCTUATION OF WATER LEVELS IN SELECTED WELLS

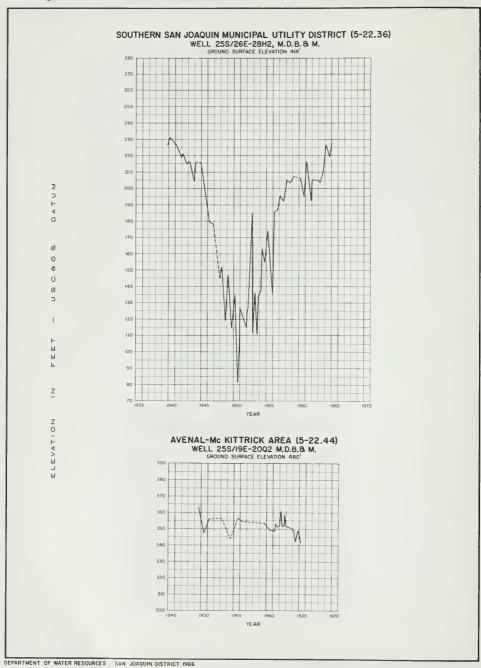


Figure C-2 (Continued). FLUCTUATION OF WATER LEVELS IN SELECTED WELLS

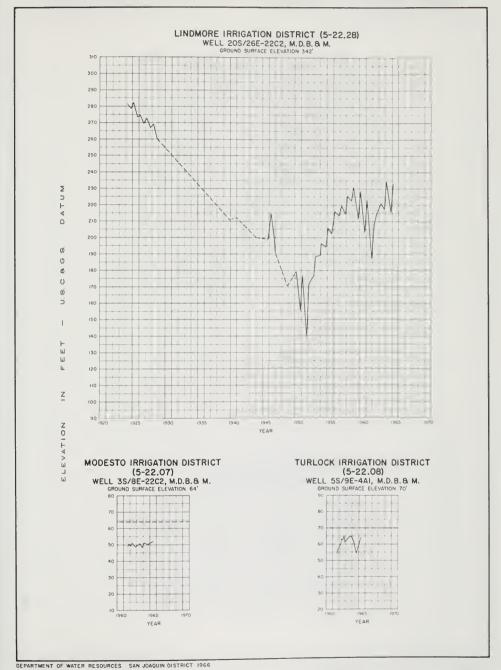


Figure C-2 (Continued). FLUCTUATION OF WATER LEVELS IN SELECTED WELLS

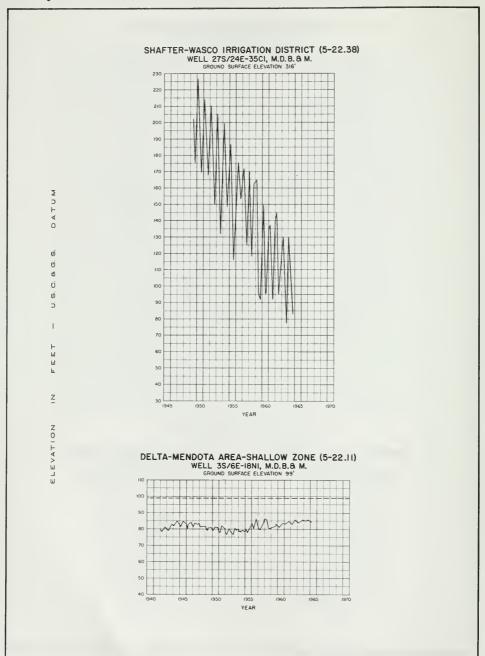


Figure C-2 (Continued). FLUCTUATION OF WATER LEVELS IN SELECTED WELLS

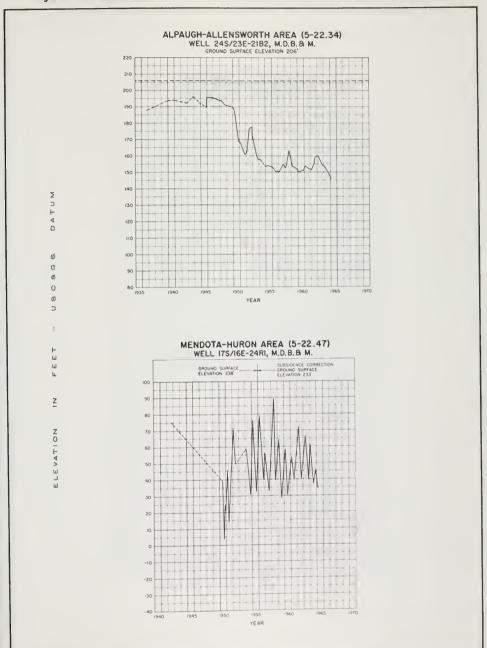


Figure C-2 (Continued). FLUCTUATION OF WATER LEVELS IN SELECTED WELLS

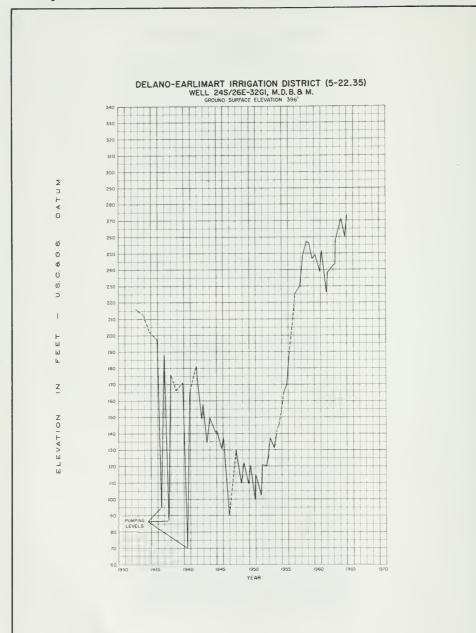
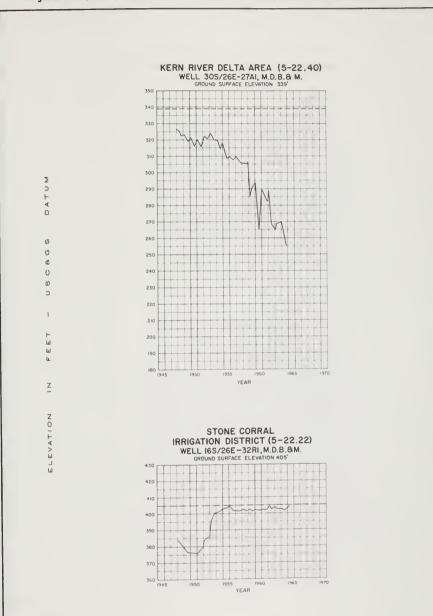



Figure C-2 (Continued). FLUCTUATION OF WATER LEVELS IN SELECTED WELLS

DEPARTMENT OF WATER RESOURCES SAN JOAQUIN DISTRICT 1966

Figure C-2 (Continued). FLUCTUATION OF WATER LEVELS IN SELECTED WELLS

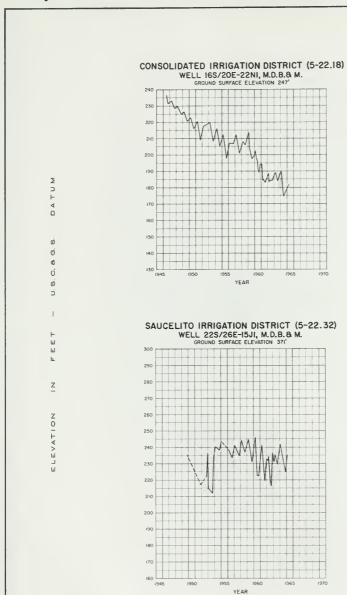
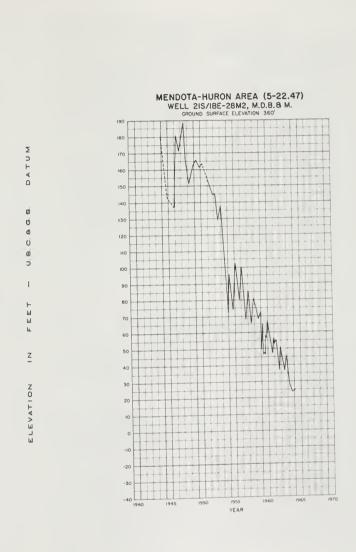



Figure C-2 (Continued). FLUCTUATION OF WATER LEVELS IN SELECTED WELLS

DEPARTMENT OF WATER RESOURCES SAN JOAQUIN DISTRICT 1966

Figure C-2 (Continued). FLUCTUATION OF WATER LEVELS IN SELECTED WELLS

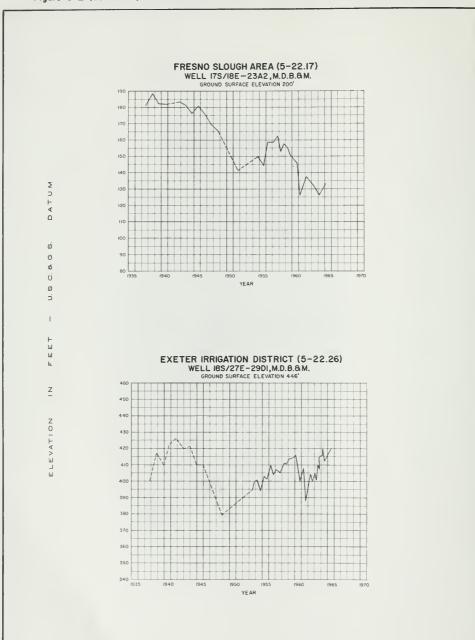


Figure C-2 (Continued). FLUCTUATION OF WATER LEVELS IN SELECTED WELLS

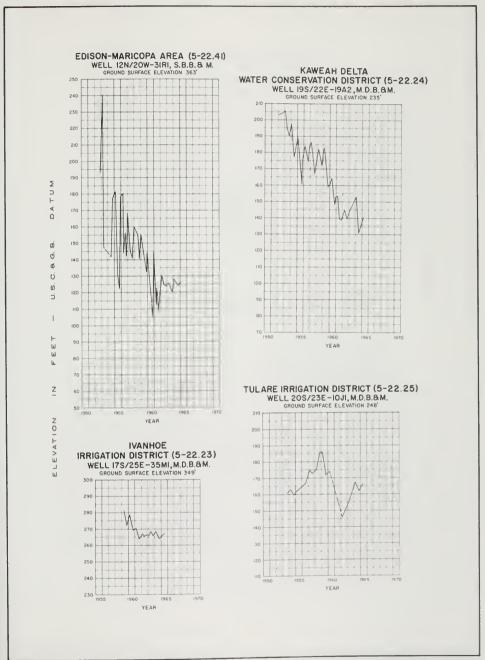


Figure C-2 (Continued). FLUCTUATION OF WATER LEVELS IN SELECTED WELLS

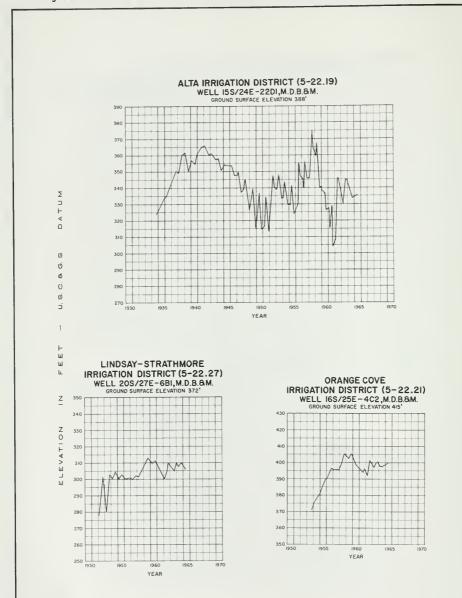


Figure C-2 (Continued). FLUCTUATION OF WATER LEVELS IN SELECTED WELLS

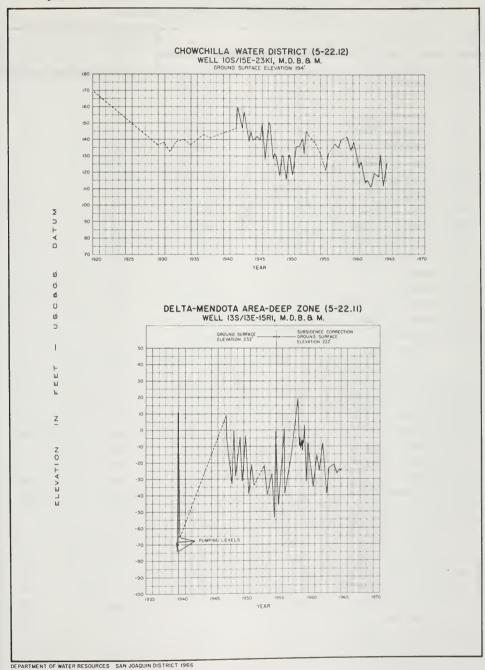


TABLE C-1

CHANGE IN AVERAGE GROUND WATER LEVEL IN DISTRICTS OR AREAS IN THE SAN JOAQUIN VALLEY Spring 1964 - Spring 1965

Ground Water Districts or Areas		Number of Wells Considered	Change in
Name	Number	in Analysis	Feet
San Joaquin Valley	5-22.00		
Tracy Area	5-22.04	17	+ 5.9
Oakdale Irrigation District	5-22.06	<u>a</u> /	- 0.5
Modesto Irrigation District	5-22.07	<u>a</u> /	- 0.6
Turlock Irrigation District	5-22.08	<u>a</u> /	0.0
Merced Irrigation District	5-22.09	<u>a</u> /	0.0
El Nido Irrigation District	5-22.10	<u>a</u> /	- 6.0
Delta-Mendota Area	5-22.11	575	+ 0.2
Chowchilla Water District	5-22.12	<u>a</u> /	- 4.4
Madera Irrigation District	5-22.13	<u>a</u> /	- 0.8
West Chowchilla-Madera Area	5-22.14	<u>a</u> /	- 1.5
Fresno Irrigation District	5-22.15	<u>a</u> /	- 2.3
City of Fresno	5-22.16	<u>a</u> /	- 3.3
Fresno Slough Area	5-22.17	<u>a</u> /	- 3.8
Consolidated Irrigation District	5-22.18	<u>a</u> /	- 4.7
Alta Irrigation District	5-22.19	<u>a</u> /	- 2.2
Lower Kings River Area	5-22.20		
Shallow Zone		<u>a</u> /	-12.9
Deep Zone		<u>a</u> /	-10.7
Orange Cove Irrigation District	5-22.21	<u>a</u> /	+ 2.0
Stone Corral Irrigation District	5-22.22	<u>a</u> /	- 3.1
Ivanhoe Irrigation District	5-22.23	<u>a</u> /	+ 1.2
Kaweah-Delta Water Conservation District	5-22.24	<u>a</u> /	- 1.4
Tulare Irrigation District	5-22.25	<u>a</u> /	- 7.2
Exeter Irrigation District	5-22.26	<u>a</u> /	- 3.7
Lindsay-Strathmore Irrigation District	5-22.27	<u>a</u> /	+ 4.8
Lindmore Irrigation District	5-22.28	<u>a</u> /	- 3.4
Porterville Irrigation District	5-22.29	<u>a</u> /	+ 4.8
Lower Tule River Irrigation District	5-22.30		
Shallow Zone		<u>a</u> /	- 5.5
Deep Zone		<u>a</u> /	-12.9
Vandalia Irrigation District	5-22.31	5	- 4.5
Saucelito Irrigation District	5-22.32		
Shallow Zone		<u>a</u> /	- 5.0
Deep Zone		<u>a</u> /	+16.0
Pixley Irrigation District	5-22.33		
Shallow Zone		<u>a</u> /	+ 0.9
Deep Zone		<u>a</u> /	-10.7

CHANGE IN AVERAGE GROUND WATER LEVEL IN DISTRICTS OR AREAS IN THE SAN JOAQUIN VALLEY Spring 1964 - Spring 1965

Ground Water Districts or Areas		Number of Wells	Change
Name	Number	Considered in Analysis	in Feet
San Joaquin Valley (Continued)			
Alpaugh-Allensworth Area	5-22.34		
Shallow Zone		<u>a</u> /	- 5.9
Deep Zone		<u>a</u> /	- 6.7
Delano-Earlimart Irrigation District	5-22.35		
Shallow Zone		<u>a</u> /	+ 6.7
Deep Zone		<u>a</u> /	- 0.9
Southern San Joaquin Municipal Utility District	5-22.36		
Shallow Zone		<u>a</u> /	+ 3.6
Deep Zone		<u>a</u> /	- 3.6
North Kern Water Storage District	5-22.37		
Shallow Zone		<u>a</u> /	- 0.1
Deep Zone		<u>a</u> /	-12.1
Shafter-Wasco Irrigation District	5-22.38		
Shallow Zone		<u>a</u> /	-16.4
Deep Zone		<u>a</u> /	- 5.6
City of Bakersfield	5-22.39	26	- 4.4
Kern River Delta Area	5-22.40		
Shallow Zone		<u>a</u> /	- 5.5
Deep Zone		<u>a</u> /	- 6.8
Edison-Maricopa Area	5-22.41		
Deep Zone		<u>a</u> /	+ 2.7
Buena Vista Water Storage District	5-22.42	<u>a</u> /	- 1.5
Semitropic Water Storage District	5-22.43		
Shallow Zone		<u>a</u> /	- 2.7
Deep Zone		<u>a</u> /	- 6.3
Avenal-McKittrick Area	5-22.44	34	-12.9
Tulare Lake-Lost Hills Area	5-22.45	8	-30.7
Corcoran Irrigation District	5-22.46		
Shallow Zone		<u>a</u> /	+ 3.3
Deep Zone		<u>a</u> /	-30.2
Mendota-Huron Area	5-22.47		
Deep Zone		<u>a</u> /	- 9.3 <u>b</u> /
Poso Soil Conservation District	5-22.48	<u>a</u> /	+ 3.3
San Luis Canal Company	5-22.49	<u>a</u> /	+ 2.3
Terra Bella Irrigation District	5-22.50	4	- 3.7
Merced Bottoms	5-22.54	<u>a</u> /	- 6.4
Centerville Bottoms Area	5-22.64	<u>a</u> /	- 9.0
Garfield Water District	5-22.65	19	+ 3.5

CHANGE IN AVERAGE GROUND WATER LEVEL IN DISTRICTS OR AREAS IN THE SAN JOAQUIN VALLEY Spring 1964 - Spring 1965

Ground Water Districts or Areas		Number of Wells Considered	Change in
Name	Number	in Analysis	Feet
San Joaquín Valley (Continued)			
Kings County Water District	5-22.66		
Shallow Zone		<u>a</u> /	- 3.3
Deep Zone		<u>a</u> /	- 0.6
Pleasant Valley Area	5-22.69	<u>a</u> /	- 3.0

a/ Average changes were determined by planimetering ground water contour maps. b/ Average change determined from water level measurements made during December 1963 and December 1964.

TABLE C-2

CHANGE IN AVERAGE GROUND WATER LEVEL FROM 1921 TO 1951 AND 1951 TO 1965 IN 18 GROUND WATER AREAS IN THE SAN JOAQUIN VALLEY

Name of Ground Water Area	Area in square miles	Irrigation and Other Water Districts Included in the Ground Water Area	Net change in water level 1921-51a in feet	Net change in water level 1951-65b/ in feet
Madera	342.6	Madera Irrigation District and Chowchilla Water District	- 24.1 <u>c</u> /	- 16.6
Fresno	404.0	Fresno Irrigation District and City of Fresno	- 22.4	- 18.4
Consolidated	243.0	Consolidated Irrigation District	- 19.0	- 1.5
Centerville Bottoms	18.1		+ 1.0	+ 4.3
Alta	190.9	Alta Irrigation District	- 17.2 ^c /	- 3.3
Ivanhoe	17.4	Ivanhoe Irrigation District	- 55.9	+ 15.4
Outside Ivanhoe	76.6	Stone Corral Irrigation District and a portion of Alta Irrigation District	- 28.5	- 6.1
Mill Creek	128.2	Portions of Kings County Water District and Kaweah Delta Water Conservation District	- 31.1	- 17.8
Tulare	121.1	Tulare Irrigation District	- 59.1	- 9.3
Elk Bayou	67.6	Portion of Kaweah Delta Water Conservation District	- 47.8	- 15.2
Lindsay-Exeter	136.4	Exeter Irrigation District, Lindsay- Strathmore Irrigation District, and Lindmore Irrigation District	- 77.7	+ 54.9
Tule River	156.6	Porterville Irrigation District, portions of Lower Tule River Irrigation District, and Saucelito Irrigation District	- 62.5	+ 22.1
Lower Deer Creek	162.2	Portions of Lower Tule River Irrigation District, Saucelito Irrigation District, and Delano-Earlimart Irrigation District	-106.7	- 1.8e/ - 5.4 <u>f</u> /
Middle Deer Creek	54.6	Terra Bella Irrigation District	- 61.8	- 12.4 ^e / - 30.9 <u>f</u> /
Delano-Earlimart	140.0	Portions of Delano-Earlimart Irrigation District and Southern San Joaquin Municipal Utility District	-133.8	+ 9.8 <u>e</u> / + 8.8 <u>f</u> /
McFarland-Shafter	306.0	North Kern Water Storage District, Shafter- Wasco Irrigation District, and a portion of Southern San Joaquin Municipal Utility District	- 99.0	- 15.3e/ - 21.1f/
Rosedale	78.9		- 36.3	- 61.4 - 17.99/
Arvin-Edison	205.2	Arvin-Edison Water Storage District	- 69.9 <u>d</u> /	- 18.5 <u>f</u> /

¹⁹⁵¹ was the first year of substantial deliveries from the Friant-Kern Canal. Fall 1951 to spring 1965.
Fall 1929 to fall 1951.
Fall 1941 to fall 1951.
Unconfined aquifer, spring 1961 to spring 1965, only one aquifer reported prior to 1961.
Pressure surface, spring 1961 to spring 1965, only one aquifer reported prior to 1961.
Pressure surface, spring 1963 to spring 1965, only one aquifer reported prior to 1963.

TABLE C-3

GROUND WATER LEVELS AT WELLS

AGENCY SUPPLYING DATA		4520					4520		4520											4 5 2 0	7530										4520		
WATER SURFACE ELEVATION IN FEET		61.7	62.1	62.2	61.2	29.4	1.076	95.3			90.5	93.3	6.46	94.8	95.1	95.0	95.0	95.1		107.8	72 2	4		75.3	78.0	81.2	6.08	80.0	79.7		107.2	106.0	106.0
GROUND SUR. FACE TO WATER SURFACE IN FEET	5-22.06	57.3	56.9	56.8	57.8	29.6	50.3	1.64	.0		26.0	53.2	51.6	51.7	51.4	51.5	51.5	51.4		85.2	a	ם י	D	56.7	0.4.0	0.00	51.1	52.0	52.3	0 0	78.3	19.5	78.5
DATE	ICT	12-01-64	2-01-65	4-01-65	5-04-65	6-02-65	10-00-64	3-00-65	7-02-64	8-03-64	9-01-64	10-01-64	12-01-64	12-31-64	2-01-65	3-01-65	5-101-65	6-02-65		3-00-65	7-00-64	8-03-64	9-01-64	10-01-64	11-02-64	12-31-64	2-01-65	3-01-65	4-01-65	5-04-65	7-02-64	8-03-64	10-01-64
GROUND SURFACE ELEVATION IN FEET	OAKDALE IRRIGATION DISTRICT	119.0					145.0		146.5											193.0	137 0	3									185.5		
STATE WELL NUMBER	OAKDALE IRRI	15/09E-16J01 M	,				15/09E-36A01 M		15/10E-19L01 M											15/10E-28J01 M	7c/09E_26E01 M										25/10E-04H01 M		
AGENCY SUPPLYING DATA				5050									5050									5050										06.34	
WATER SURFACE ELEVATION IN FEET				0.8	0.7	9.0	9.0	1.9	1 . 4	1.1	1.4	1.8	20.5	19.2	19.7	20.5	21.3	21.1	9.07	18.8	1.17	66.3	68.0	68.2	0 0 0	68.6	68.7	67.8	6.99	67.9		9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
GROUNO SUR. FACE TO WATER SURFACE IN FEET		5-22.00	5-22.04	8 • 4	3.3	4 4 0 m	3 . 4	2.1	2.6	2.9	2.6	2.2	11.5	12.8	12.3	11.6	10.7	10.9	7 · 1 ·	13.2	10.3	10.9	9.5	0.6	v 00	8.6	8.5	7.6	10.3	9 ° 9	5-22.06	50.2	500.4 500.4 500.4 500.4
DATE	REGION			8-05-64	9-03-64	10-05-64	12-04-64	1-05-65	3-05-65	4-07-65	5-05-65	6-03-65	8-05-64	9-03-64	10-05-64	12-05-64	1-05-65	2-01-65	2-60-6	5-05-65	0-03-03	8-05-64	9-03-64	10-05-64	12-03-04	1-06-65	2-01-65	3-05-65	4-01-65	5-05-65	CT	7-02-64	8-03-64 9-01-64 10-01-64
GROUND SURFACE ELEVATION IN FEET	CENTRAL VALLEY REGION	>		0 • 7									32.0	1								77.2									OAKDALE IRRIGATION DISTRICT	0.011) • •
STATE WELL NUMBER	CE	SAN JOAGUIN VALLEY	TRACY AREA	15/05E-31R02 M									25/05F-15N02 M									35/06E-06N01 M									OAKDALE IRRIC	M 101 41-101 M	

U		_	_	0										0											_	_			_	_	_
AGENCY SUPPLYING DATA		4521	4521	5050										5050									4.6.31	7 6 %	4521	4521		1766	4521	4521	4521
WATER SURFACE ELEVATION IN FEET		61.3	67.0	37.1	36.0	35.1	44.0	45.9	48.0	48.5	7 0 2 7	47.6		6.06	50.7	50.5	50.5	50.8	51.1	51.5	52.2 52.1	52.3	1 13	1 0 1 6	65.6	58.7		V = W 3	97.1	72.7	0.99
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.07	32.7	33.3	26.9	28.0	28.9	20.0	18.1	16.0	15.5	0 0 7 1	16.4		13.1	1303	13.5	13.5	13.2	12.9	12.5	11.8	11.7	0	6.77	56.9	40.5		38.6	36.0	46.5	67.0
DATE	CT	3-00-65	3-00-65	7-06-64	8-03-64	9-03-64	11-05-64	12-04-64	2-01-65	3-05-65	00-10-5	6-02-65		7-06-64	8-03-64	10-02-64	11-04-64	12-04-64	1-06-65	3-05-65	5-07-65	6-02-65	37 00	3-00-62	3-00-65	3-00-65	4	3-00-65	3-00-65	3-00-65	3-00-65
GROUND SURFACE ELEVATION IN FEET	ATION DISTRI	0.76	100.3	0.49										0.49									ř	0 • */	92.5	99.2	,	82.5	133.1	119.2	0
STATE WELL NUMBER	MODESTO IRRIGATION DISTRICT	25/08E-25P01 M	25/09E-31601 M	35708E-22C01 M										35/08E-22C02 M										35/08E-24C02 M	35/09E-05N01 M	35709E-21A01 M		35/09E-30P01 M	35/10E-06601 M	35/10E-29K01 M	
AGENCY SUPPLYING DATA		4520					4520		4520								_		4520		4520	4520									4 5 20
WATER SURFACE ELEVATION IN FEET		109.0	109.7	109.5	109.2	108.2	101.8	105.5	123.1	121.9	121.0	123.4	125.4	126.2	127.1	127.6	125.9	125.4	115.0		148.4			7.96	95.0	100.6	101.9	102.8	103.3		107.7
CROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.06	76.5	15.8	76.0	76.3	17.3	63.2	59.5	6.46	96.1	76.3	96.1	92.6	91.8	90.9	0 4	92.1	95.6	77.0)	41.6	b	a (57.3	57.0	53.7	50.1	49°2	48.7	0	54.3
DATE	LJ	12-01-64	2-01-65	3-01-65	5-04-65	6-02-65	10-00-64	3-00-65	7-02-64	8-03-64	79-10-6	10-01-64	12-01-64	12-31-64	2-01-65	4-01-65	5-04-65	6-02-65	3-00-65		3-00-65	7-02-64	8-03-64	10-01-64	11-02-64	12-01-64	2-01-65	3-01-65	5-04-65	6-02-65	3-00-65
GROUND SURFACE ELEVATION IN FEET	ATTON DISTRI	185.5					165.0		218.0										0.00	0.00	190.0	152.0									162.0
STATE WELL NUMBER	OAKDALE TRRIGATION DISTRICT	25/10E-04H01 M	CONT.				25/10E-33J01 M		25.11F-29B01 M										7 10015-311001		25/12E-31K01 M	35/10E-15A01 M									35/11E-18D01 M

AGENCY SUPPLYING DATA		4554	4554	4554	4524		4525	4525		4525	4525	2050								4525	4525	4525	4525	4 525	4525	4525
WATER SURFACE ELEVATION IN FEET		80.1	76.4	101.7	109.8		130.1	165.2		164.1	81.2	105.2	106.7	106.6	106.7	107.3	107.4	107.8	107.7	101.9	132.2	138.5	173.4		114.6	129.2
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.08	5 • 5	7.6	13.3	8.2	5-22.09	13.7	15.5	•	14.0	6.6	12.8	11.3	11.4	11.3	10.7	10.6	10.2	10.3	4.7	15.1	13.4	14.1	•	5.6	5 .8
OATE	LJ	3-01-65	2-00-65	3-01-65	3-02-65	-	3-02-65	10-28-64	4-00-65	3-00-65	3-00-65	7-03-64	8-04-64	10-05-64	11-05-64	2-02-65	3-05-65	4-09-65	6-04-65	3-00-65	3-00-65	3-00-65	3-00-65	3-00-65	3-00-65	3-00-65
GROUND SURFACE ELEVATION IN FEET	TURLOCK IRRIGATION DISTRICT	85.6	84.0	115.0	118.0	MERCED IRRIGATION DISTRICT	143.8	180.7		178.1	400	118.0								106.6	147.3	151.9	187.5	234.2	120.2	135.0
STATE WELL NUMBER	TURLOCK IRRI	65/10E-21A01 M	65/10E-21N01 M	65/11E-08R01 M	65/11E-09N01 M	MERCED IRRIG	65/12E-21N02 M	65/13E-19N01 M		65/14E-32NO1 M	75/10E-01N01 M	75/11E-01H01 M								75/11E-13N01 M	75/12E-12R01 M	75/13E-16N01 M	75/14E-16R01 M	75/15E-36NO1 M	85/12E-01001 M	85/13E-09R01 M
AGENCY SUPPLYING DATA		4554	4554	4554	4554	4554	4524	4554	4524	5050								4254	4554	4524	4554	4554	4524	4554	4524	4554
		7	0.19	97.1	94.5	116.0	0.70	-	3					·	۲,	64.2		10	7	S	4	~	2	5		54.4
WATER SURFACE ELEVATION IN FEET		46.7	9	6	6	11	101	46.1	42.3	62.1	53.9	61.0	61.6	61.7	62.7	6 4 9	. :	999	54.7	61.5	82.4	84.3	117.5	110.5		70
GROUND SUR. WATER SURFACE IN FEET	5-22.08	8.3 46.	15.0 6	11.9	14.5 9	15.0 116	23.0 107	6.9	7.7 42.	7.9 62.			8.4 61.6			5.8		8.2 66.	8.3 54.	7.5 67.	7.6 82.	7.7 84.	7.5 117.	9.5 110.	p	5.6 5.
-							_				16.1	0.6			7.3										5-00-65 п	
GROUND SUR. FACE TO WATER SURFACE IN FEET	TURLOCK IRRIGATION DISTRICT 5-22.08	8.3	15.0	11.9	14.5	15.0	23.0	6•9	7.7	7.9	16.1	0.6	4 C		7.3	ດ ທ ຈີ່ ໝີ		8.2	8 . 3	7.5	7.6	7.7	7.5	9.5		5.6

	AGENCY SUPPLYING DATA		6 00 1		6001	6 00 1	5050	6 00 1	8050	5050	5050	5050		5050	5050		5050	5050	5050		2050	5050	
	WATER SURFACE ELEVATION IN FEET		1.69			39.5	232.5	45.2	47.2	62.3	68.2	80.1	77.8	50.9	59.5	62.6	105.8	103.2	21.5	21.0	68.8	67.0	12.1
	GROUND SUR. FACE TO WATER SURFACE IN FEET	5-22-11	60.09		00	19.2	15.8	12.2	82.3 65.1	52.2	121.8	47.8	50.1	14.7	60	& &	17.4	69.6	53.5	18•0	6.2	8.0	2 • 3
	DATE		10-27-64		3-03-65	3-22-65	10-06-64	3-22-65	10-06-64	10-05-64	10-05-64	10-08-64	2-24-65	10-07-64	10-13-64	2-26-65	10-08-64	3-02-65	10-13-64	3-03-65	3-03-65	10-13-64	3-03-65
	GRDUND SURFACE ELEVATION IN FEET	A AREA	107.0		130.4	58.7	248+3	64.3	129.5	114.5	190.0	127.9		9.59	4.89		123.2	172.8	15.0		75.0	75.0	
	STATE WELL NUMBER	DELTA-MENDOTA AREA	55/07E-13K01 M		55/07E-14D01 M	55/08E-06K01 M	65/07E-12P01 M	65/08E-12L01 M	65/08E-16M01 M	65/08E-27J01 M	65/08E-29J01 M	75/08E-22L01 M		75/09E-04P01 M	75/09E-26N01 M		85/08E-01N01 M	85/08E-15J01 M	85/09E-26H01 M		85709E-26H03 M	85/10E-21L04 M	
	AGENCY SUPPLYING DATA		4525		1009	6 00 1		6001	1009	6001	6 00 1	6001	6001	6 00 1	6001	6 00 1	6 00 1	6001	6 00 1	6 00 1	6001	1009	6001
	WATER SURFACE ELEVATION IN FEET		185.0		52.1	83.0		70.07	61.8	60.3	52.8		70.4	88.1	87.5	23.3	84.7		47.1		43.8	7.27	
:	GROUND SUR. FACE TO WATER SURFACE IN FEET	5-22.09	11.8	5-22.10	80.9	0.69	5-22-11	8.0	18.6	126.7	23.2		125.3	118.9	124.6	56.1	12.8	D	116.2	D	24.2	107.7	'n
	DATE	1	3-00-65	CT	2-09-65	5-09-65		10-00-64	3-00-64	3-00-64	3-00-64	3-00-65	3-00-65	3-00-65	3-04-65	3-04-65	3-04-65	3-04-65	3-02-65	3-02-65	3-05-65	3-03-65	10-25-64
	GROUND SURFACE ELEVATION IN FEET	TION DISTRIC	196.8	IRRIGATION DISTRICT	133.0	152.0	AREA	78.0	90.6	187.0	76.0	195.7	195.7	207.0	212.1	80.0	99+3	63.5	163.3	166.3	68.0	185.4	157.4
	STATE WELL NUMBER	MERCED IRRIGATION DISTRICT	85/14E-01A01 M	EL NIDO IRRIG	95/13E-14R01 M	95/14E-20801 M	DEL TA-MENDOTA	25/04E-16H01 M	28/04E-25J01 M	25/04E-28A01 M	25/05E-32A01 M	35/05E-08R01 M	35/05E-08R02 M	35/05E-25001 M	35/05E-26K01 M	35/06E-16001 M	35/06E-18N01 M	35/06E-25001 M	45/06E-04H01 M	45/06E-09R01 M	45/07E-27M01 M	45/07E-31001 M	55/07E-05001 M

AGENCY SUPPLYING DATA		5050	5050	5050	5050	2050	6 00 1	2 000	6001	6001	1009	6 00 1		6 00 1	1009		
WATER SURFACE ELEVATION IN FEET			101.5	112.3	101.0	101.0	134.3	40.6	112.2	165.8 165.8	139.5	128.0		111.7	95.5	129.7	128.5
GROUND SUR. FACE TO WATER SURFACE IN FEET	5-22.11	D	4.5	1.9	18.0	31.0	3.7	127.4 126.8	64.8	11.2	4 • 5 DRY	26.0	5-22-12	73.3	121.0 119.0	117.5 86.8 87.6	95.5
DATE	:	3-09-65	10-16-64 3-10-65	10-16-64	10-16-64 3-10-65	10-16-64	10-22-64	10-12-64 2-08-65	10-18-64 2-25-65	10-18-64 2-25-65	10-22-64	10-22-64 2-25-65		10-13-64	7-28-64 8-29-64 9-21-64	11-25-64	1-25-65
GROUND SURFACE ELEVATION IN FEET	A AREA	246.8	106.0	114.2	119.0	132.0	138.0	168.0	177.0	177.0	0.441	154.0	CHOWCHILLA WATER DISTRICT	185.0	216.5		
STATE WELL NUMBER	DELTA-MENDOTA AREA	115/10E-22001 M CONT.	115/11E-02J02 M	115/11E-22K01 M	115/11E-22003 M	115/12E-31C01 M	125/12E-04001 M	125/12E-16H05 M	125/12E-25001 M	125/12E-25002 M	125/13E-10N01 M	125/14E-30C01 M	CHOWCHILLA W	95/14E-25R01 M	95/15E-22R02 M		
AGENCY SUPPLYING DATA		2050	5050	2050	5050	9090	5050	2050	2050	2050	9090	5050	5050	9090	5050	2050	5050
WATER SURFACE ELEVATION IN FEET		184•1	119.9	29.6	80.6	26.9	81.9	40.2	137.4	88.2	78.6 82.4	84.3	46	91.6	35°9 45°3	101.3	107.0
GRDUND SUR- RACE TO WATER SURFACE IN FEET	5-22.11	17.5	33.7	70.4	3.4	60.1	9 • 1 9 • 5	50.3	9*6	78.8	20.9	22.3	1,56	7.4	65.4	56.0	139.8
DATE		3-04-65	10-19-64	3-05-65	3-03-65 +	3-05-65	10-20-64	10-20-64	10-19-64	10-19-64	10-20-64	10-20-64	10-19-64	10-15-64	10-15-64	3-09-65	10-15-64
GROUND SURFACE ELEVATION IN FEET	A AREA	201.6	153.6	100.0	84.0	87.0	91.0	90.5	147.0	167.0	6.66	106.6	191.1	0.66	101.3	157.3	246.8
STATE WELL NUMBER	DELTA-MENDOTA	95/08E-13001 M	95/09E-18N01 M	95/09E-23L01 M	95/10E-19B01 M	95/10E-23J01 M	95/11E-16H01 M	95/11E-20J01 M	105/09E-06A01 M	105/09E-08B01 M	105/10E-02R01 M	105/10E-11R01 M	105/10E-31G01 M	105/11E-23D01 M	105/11E-27E02 M	115/10E-11J01 M	115/105-22001 M

AGENCY SUPPLYING DATA		6001			6001	6001			6001					9009	
WATER SURFACE ELEVATION IN FEET		4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	77.4	73.9	1111.9	100.5	106.8	105.5		143.5	152.0	144		121.3	
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22-12	85.6 80.1 77.6 74.5	72.6 75.9 73.5	76.1	83.6	83.5	79.7	78.5	D D	101.7 n 88.5	77.3	87.6		88.2	
DATE		9-21-64 10-28-64 11-24-64 12-22-64	1-20-65 2-24-65 3-23-65 4-27-65	5-25-65	10-05-64	7-28-64 8-26-64 9-21-64	10-28-64 11-24-64 12-22-64	2-24-65 3-23-65 4-27-65 5-25-65	6-22-65	8-26-64 9-21-64 10-28-64	12-22-64	3-23-65	5-25-65	10-07-64	
GROUND SURFACE ELEVATION IN FEET	CHOWCHILLA WATER DISTRICT	150.0			195.5	184.0			232.0					209.5	
STATE WELL NUMBER	CHOWCHILLA WA	105/14E-08B03 M CONT.			105/15E-23K01 M	10S/15E-27D03 M			105/16E-09E01 M					10S/16E-29R01 M	
AGENCY SUPPLYING DATA		6 00 1	6001	6001		-		6 00 1				6 00 1	6001	6001	6001
WATER SURFACE ELEVATION IN FEET		110.1	180.6	158.1	132.6	156.7 167.3 161.5 169.4	172.0 171.7 167.2	221.7 222.2 222.0 221.6	222.6 222.5 221.9	221.7	224.1	214.5	240.7	313.0	62.0
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.12	106•4	49.4	6.9	85.8 74.2	35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	33.00 34.00 34.00	444 445 450 450 440 440	44.64 45.5	2 t t t t t t t t t t t t t t t t t t t	42.0	105.5	79.3	52.0	88.0
DATE		3-24-65 4-28-65 5-26-65 6-23-65	10-08-64	7-28-64	10-28-64	1-25-65 2-25-65 3-24-65	4-28-65 5-26-65 6-23-65	7-27-64 8-26-64 9-21-64 10-28-64	11-25-64 12-23-64 1-25-65	3-24-65	6-23-65	10-06-64	10-06-64 2-08-65	10-06-54	7-28-64
GROUND SURFACE ELEVATION IN FEET	ATER DISTRICT	216.5	230.0	205.0				267.0				320.0	320.0	365.0	150.0
STATE WELL NUMBER	CHOWCHILLA WA	95/15E-22R02 M CONT.	95/15E-25J02 M	95/15E-33B01 M				95/16E-22P01 M				95/17E-21L01 M	9S/17E-35J01 M	95/18E-33001 M	105/14E-08B03 M

				200	Y 7 IEV	GROOM WATER LEVELS AT W	VELLS				
STATE WELL NUMBER	GROUND SURFACE EL EVATION IN FEET	DATE	GROUND SUR. FACE TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA	STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GROUND SUR. FACE TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
MADERA IRRI	MADERA IRRIGATION DISTRICT	ICT	5-22-13			MADERA IRRIGATION DISTRICT	ATION DISTRI	CT	5-22.13		
105/18E-20B01 M	326.0	10-05-64	73.2	252.8 255.8	6001	115/18E-27M01 M CONT.	284.0	3~24~65	888 81.65	195.4	6 00 1
105/19E-16D01 M	387.0	10-05-64	22.0	365.0	6001			6-23-65	82.0	202.0	
115/16E-06A01 M	196.0	7-27-64	0.47	122.0	6001	115/20E-22M01 M	416.0	10-07-64 2-10-65	110.5	305.5	6001
		9-21-64	76.8	119.2		125/16E-23A01 M	205.0	2-05-65	71.6	133.4	6 001
		11-24-64	72.5	123.5		125/17E-08G01 M	230.0	7-27-64	86.5	143.5	6001
		1-26-65	69.1	126.9				9-22-64	000	141.5	
		3-23-65	70.1	128.1				11-24-64	87.2	142.8	
		4-27-65	70.4	125.6				12-22-64	81 ° 9	148.2	
		5-25-65	71.8	124.2				1-26-65	79.4	150.6	
		6-22-65	71.1	124.9				2-26-65	80.6	149.4	
115/16E-10N01 M	205.0	7-27-64	73.7	131.3	6 00 1			2-63-65	82.6	147.4	
		8-25-64	n					5-25-65	85.0	144.5	
		9-21-64	27. 1	0 00				6-22-65	87.2	142.8	
		10-2/-04	72.2	130.9							
		12-22-64	71.7	13303		125/17E-20P01 M	218.0	1-21-64	1 70	121.0	1000
		1-26-65	70.6	134.4				9-22-64	1 0 0	16107	
		2-24-65	69.7	135.3				10-27-64	87.7	130.3	
		3-23-65	71.3	133.7				11-23-64	75.8	142.2	
		4-27-65	71.3	133.7				12-22-64	74.7	143.3	
		6-22-65	73.1	133.6				1-26-65	68.7	149.3	
	6		6					3-23-65	п		
115/1/E-2/C01 M	75000	12-31-64	7303	1/60/	6001			4-27-65	n		
		C0-+0-2	7.4.7	173.8				5-25-65	90.2	127.8	
115/18E-20N01 M	272.5	2-15-65	78.2	194.3	6 00 1						
115/18F=27M01 M	0. 486	7-27-64	1.08	90106	1004	125/17E-21H01 M	228.0	2-18-65	63.9	164.1	1009
	1	B-25-64	82.6	201.7	1000				, ,	, , , ,	1004
		9-22-64	82.5	201.5		125/17E-26C01 M	235.0	9-25-64	4.10	168.4	1000
		10-28-64	86.7	197.3				9-52-04	0 • 0 • 0	160.0	
		11-25-64	85.3	198.7				10-27-64	65.4	169.6	
		12-23-64	85.2	198.8				11-24-64	68.5	166.5	
		1-27-65	83.6	200.4				12-22-64	62.8	172.2	
		69-67-7	0.00	198.0				1-26-65	62.1	172.9	

AGENCY SUPPLYING DATA		6 00 1	6001		6 00 1		6 00 1		6001											4001												6001				
WATER SURFACE ELEVATION IN FEET		188.6	222.0		94.7		97.0		101.8	100.2	100.0	101.1	98.2	7	0 0 0	000	0.201	1000	101.9				63.8	76.6	82.7	85.4		80.1	72.4	1		116.4	116.0	121.6	122.1	0 000
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22-13	78.4	85.5	5-22.14	24.3)	73.1		29.5	30.00	31.0	29.9	32.8	31.0	36.4	2000	29.0	0 0 0	7 3 . 1	С	ı t	0 0	87.2	74.4	68.3	65.6	וכ	70.9	78.6			18.6	19.0	13.4	12.9	0
DATE	_	6-22-65	10-07-64 2-09-65	E A	10-07-64		10-12-64		7-28-64	9-21-64	10-28-64	11-24-64	12-22-64	1-26-65	57-56-6	C0=67=6	60-17-5	2-62-6	69-77-9	7-29-64	79-32-0	9-21-64	10-28-64	11-24-64	12-22-64	1-26-65	20-57-7	4-27-65	5-25-65	6-22-65	1	7-27-64	8-26-64	10-27-64	11-24-64	
GROUNO SURFACE ELEVATION IN FEET	MADERA IRRIGATION DISTRICT	267.0	307.5	WEST CHOWCHILLA-MADERA AREA	119.0		177.0		131.0											0 151	0.101											135.0				
STATE WELL NUMBER	MADERA IRRIGA	125/18E-21HO: M CONT.	125/19E-28A01 M	WEST CHOWCHIL	105/13E-22R01 M		105/14E-01R01 M		10S/14E-31H01 M											100000000000000000000000000000000000000	103/145-33/101 m											115/14E-33L01 M				
AGENCY SUPPLYING DATA		6001		6001									6001												1009	6001									_	
AG SUPP D		•		9									9												٥	9										
WATER AG SURFACE SUPP ELEVATION D			170.2	168.0 6	171.9	175.9	177.0	177.5	174.9	174.6	172.0		205.6 6	20,02	20.4.00	20102	7.802	5.000	2000	208.5	208.7	207.3	207.2		190.6	188.8		188.2	183.4	181.0	174.3	191.1	191.0	192.5	191.3	
WATER SURFACE ELEVATION IN FEET	5-22.13					_		-	59.1 174.9		62.0 172.0		205.6		80 5 207 5					78.5 20%.5							188.3	-							75.7 191.3	
		170.8	64.8	168.0	62.1	58.1	57.0	56.5	~ -	2000	62.0		82.4 205.6		03.6	000	0 0 0	1061	0.67		70.7	80.7	80.8		190.6	188 . 8	78.7 188.3	78.8	83.6	86.0	92.7	75.9		74.05		
GROUND SUR. FACE TO SUR ACE SUR FACE SUR FACE SUR FACE ELEVATION IN FEET	MADERA IRRIGATION DISTRICT 5-22-13	64.2 170.8 65.4 169.6 64.0	64.8	66.0 168.0	62.1	58.1	57.0	56.5	59.1	2000	62.0		82.4 205.6	80.0	03.6	000	0 0 0	1061	0.67	700,0	70.7	80.7	80.8		14.4 190.6	78.2 188.8	8=25=64 78=7 188=3	78.8	83.6	86.0	92.7	75.9	76.0	74.05	75.7	

STATE WELL NUMBER	GROUND SURFACE EL EVATION IN FEET	DATE	GROUND SUR- FACE TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA	STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GROUND SUR. FACE TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
WEST CHOWCHI	WEST CHOWCHILLA MADERA AREA	AREA	5-22.14			WEST CHOWCHILLA MADERA AREA	LA MADERA AR	ΕA	5-22.14		
115/14E-33L01 M	135.0	1-26-65 2-24-65 3-23-65 4-27-65 5-25-65 6-22-65	12.7 15.2 16.7	122.3 119.8 118.3	6001	135/16E-02C01 M CONT.	195.0	1-26-65 2-24-65 3-23-65 4-27-65 5-25-65 6-22-65	664.2 664.2 666.9 72.0 72.0	137.5 132.8 130.8 128.1 126.8	6001
115/15E-33E01 M	158.0	10-08-64 2-11-65	43.2	114.8	6001	FRESNO IRRIGATION DISTRICT	TION DISTRIC		5-22.15		
115/15E-33P01 M	158.0	7-27-64	40.6	117.4	6001	125/20E-14A01 M	360.0	9-23-64 2-11-65	94.0	262.6	0009
		9-22-64 10-27-64 11-24-64 12-22-64	104 104 107 107 107 107 107 107 107 107 107 107	106.8 116.1 121.4 113.6		125/21E-34D01 M	387.7	7-28-64 8-26-64 10-01-64 10-26-64	59.4 63.3 62.2	326.3 324.4 325.5	5631
		1-26-65 2-24-65 3-23-65 4-27-65 5-25-65	35.9 51.7 54.5 65.3	122.1 106.3 103.5 112.7 97.5				11-27-64 12-30-64 2-01-65 2-26-65 4-01-65 5-04-65	0.000000000000000000000000000000000000	327.8 326.0 331.2 331.7 332.0	
12S/14E-25H01 M	150.0	7-27-64 8-25-64 9-22-64 10-27-64	14 0 B	135.2	6001	125/22E-21E01 M	473.0	5-28-65 6-28-65 10-09-64 2-11-65	55.8 56.8 27.8	331.9 330.9 445.2 453.4	6001
		12-22-64 1-26-65 2-24-65 3-23-65 4-26-65 5-25-65	25.00 25.00 25.00 25.00 25.00 25.00 25.00	136.0 134.0 124.0 133.0 133.0 125.0		135/17E-22B01 M	220.8	7-29-64 8-25-64 9-26-64 10-28-64 11-28-64 12-31-64 2-03-65	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	178.4 177.9 177.3 176.8 176.9 177.3	5631
125/15E-14L01 M 135/16E-02C01 M	165.1	10-08-64 2-12-65 7-27-64	43.7	121.4	6 00 1			2-26-65 4-01-65 5-04-65 5-26-65 6-29-65	4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	178.3 178.1 177.5 181.7	
		9-22-64 10-27-64 11-23-64 12-22-64	81.7 71.8 70.0 63.6 60.1	123.2 125.2 125.0 131.4		135/17E-33001 M	212.0	7-27-64 8-24-64 9-23-64 10-26-64	61.7 61.1 61.9 60.5	150.3 150.9 150.1 151.5	6 00 1

	AGENCY SUPPLYING DATA		5631	6001			5631			5631		5631
	WATER SURFACE ELEVATION IN FEET		217°7 221°9 219°4 220°5 221°5	214.5	214.0 213.8 213.8	214.1 205.0 212.5 209.9 215.7	249.6	255.9	257.1 255.5 248.7 251.7 253.5 254.9	333.1 326.6 321.6 321.8 323.3	3228 3224 322	375.0
	GROUND SUR. FACE TO WATER SURFACE IN FEET	5-22-15	40.05 66.03 67.05 7.05	75.5	76.2	75.9 85.0 77.5 80.1	67.1 80.0 087	B0.8	79.6 81.2 88.0 85.0 83.2	330 347 547 567 567 567 567 567 567 567 567 567 56	35.9 34.2 36.4 32.0 28.7	31.5
	DATE		2-26-65 4-01-65 5-04-65 5-26-65 6-29-65	7-27-64	7-23-64 10-26-64 11-23-64 12-21-64	1-27-65 2-23-65 3-22-65 4-26-65 5-24-65	7-28-64 8-26-64	10-26-64	1-28-65 2-27-65 4-01-65 5-04-65 5-28-65 6-28-65	7-28-64 8-26-64 9-30-64 11-25-64 12-30-64	1-28-65 2-26-65 4-01-65 5-04-65 5-27-65 6-28-65	3-01-65
VELLS	GROUND SURFACE ELEVATION IN FEET	FRESNO IRRIGATION DISTRICT	288.2	290•0			336•7			364.0		406.5
WAIER LEVELS AI WELLS	STATE WELL NUMBER	FRESNO IRRIG	135/19E-09001 M CONT.	135/19E-16K01 M			135/20E-02L01 M			135/21E-23D01 M		135/23E-31P01 M
Y Y I L Y	AGENCY SUPPLYING DATA		6 0 0 1		6001			1009	6001		5631	
DNOON	WATER SURFACE ELEVATION IN FEET		156.7 1490.0 158.9 154.0	159.8 155.4	201.0	203.2 202.9 198.1 203.0 201.1 204.0	202.2	197.0	181.1 174.9 182.3 182.0 178.6 174.2	178.3 179.2 177.5 177.5	222.0 219.6 221.6 220.6 220.0 219.7	0
0	GROUND SUR. FACE TO WATER SURFACE IN FEET	5-22-15	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	51.6 52.2 56.6	57.0 57.1 53.8	\$ 1 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0.00 0.00 0.00 0.00 0.00	56.0	63.9 70.1 62.7 63.0 70.6	6666 667 67 67 67 67 67 67	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	9 0 0
	DATE	_	111-23-64 12-21-64 1-27-65 2-23-65 3-22-65	4-26-65 5-24-65 6-21-65	7-27-64 8-24-64 9-23-64	10-26-64 11-23-64 12-21-64 1-27-65 2-23-65 3-22-65	4-26-65 5-24-65 6-21-65	10-07-64	7-27-64 8-24-64 9-23-64 10-26-64 11-23-64 12-21-64	2-23-65 3-22-65 4-26-65 5-24-65 6-21-65	7-29-64 8-26-64 9-26-64 10-28-64 11-28-64 12-31-64	5011017
	GROUND SURFACE ELEVATION IN FEET	ATION DISTRIC	212.0		258.0			253.0	245.0		288.2	
	STATE WELL NUMBER	FRESNO IRRIGATION DISTRICT	135/17E-33D01 M CONT.		135/18E-10PO1 M			135/18E-16D01 M	135/18E-34D01 M		135/19E-09D01 M	

	AGENCY SUPPLYING DATA		5631	5631		5631	4 200
	WATER SURFACE ELEVATION IN FEET		289.7 290.4 287.1 289.6 287.4	347 353.8 353.8 353.1	1	2440 2440 2440 2410 2410 2410 2410 2410	223.4 231.0 2330.2 2330.5 2340.6 2340.6 2340.6
	GROUNO SUR. FACE TO WATER SURFACE IN FEET	5-22.15	4 444 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
	OATE		2-01-65 2-25-65 4-01-65 5-04-65 5-27-65 6-30-65	7-29-64 8-26-64 9-29-64 10-27-64	2-01-65 2-01-65 2-26-65 4-01-65 5-27-65 6-30-65	7-28-64 8-28-64 10-29-64 11-28-64 12-28-64 12-28-64 12-28-64 3-01-65 5-27-65 6-30-65	3-01-65 7-01-64 7-30-64 8-26-64 9-29-64 11-25-64 12-29-64 1-27-65
*****	GROUND SURFACE ELEVATION IN FEET	TION DISTRIC	334.0	397.0		282.5	310.0 325.0
	STATE WELL NUMBER	FRESNO IRRIGATION DISTRICT	145/21E-14A01 M CONT.	145/22E-01P01 M		155/20E-13E02 M	135/20E-23B01 M
	AGENCY SUPPLYING DATA		5631		5631	6 9.1 1.1	5631
	WATER SURFACE ELEVATION IN FEET		155.9 145.2 151.2 153.1	152.5 152.5 160.4 158.7	193.4 184.2 186.4 188.0 189.5 190.2	192.0 192.0 192.0 192.0 192.0 192.0 213.0 213.0 213.0 213.0 213.0 213.0 213.0	289.3 287.2 287.6 287.6 288.2 288.2
	GROUND SUR. FACE TO WATER SURFACE IN FEET	5-22-15	71.65 72.00 82.00 76.02 74.33	6 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	6633 6633 635 635 635 635 635 635 635 63	6666 63566 636666 636666 63666	4444466684666844666844666844666844666446664646646
	OATE	-	7-29-64 8-26-64 9-28-64 10-30-64 11-28-64	2-27-65 4-01-65 5-04-65 5-26-65 6-29-65	7-29-64 8-26-64 9-28-64 10-29-64 11-28-64 12-28-64 1-29-65	2-27-65 4-01-65 5-07-65 5-26-65 6-30-65 10-29-64 11-28-64 11-38-64 1	5-04-65 5-27-65 6-30-65 7-30-64 9-26-64 10-27-64 11-25-64
	GROUND SURFACE ELEVATION IN FEET	FRESNO IRRIGATION DISTRICT	227.4		247.2	2 8 8 5 ° 5	8 % % % % % % % % % % % % % % % % % % %
	STATE WELL NUMBER	FRESNO IRRIG	145/18E-08J01 M		145/19E-20B02 M	145/20E-06H01 M	145/21E-14A01 M

E SUPPLYING ON DATA		4 2 0 0						0			6001	2	1003			10	_	.0		0.0	• 0"	3 60	n an		6 00 1	6	6-	4 (5		. 0	80	3	3			6001	→ (0	
WATER SURFACE ELEVATION IN FEET		208.1	211.1	211.4	213.7	210.2	207.7	205.0				131.2		93.0	106.4	120.5	127.7	124.6	133.7	1120	1100	103	100			184.9	184.9	185.4	185.5	185.9	185.8	185.3	185.3			124.8	120001	135.0	
FACE TD WATER SURFACE IN FEET	5-22-16	83.3	80.3	80.0	72.7	81.2	83.7	86.4		11.77-6	c c	30.8		72.5	500	45.0	37.8	6.04	31.8	23.5	1 . 70	4200	7 - 74	,	р	20.1	20.1	10.6	5.0	19.1	19.2	19.7	19.7	0	0	35.2	7 0 0	75.00	0.03
DATE		11-28-64	12-28-64	1-28-65	3-02-65	4-79-65	5-26-65	6-30-65			10-05-64	2-08-65		7-27-64	8-24-04	10-26-64	11-23-64	12-21-64	1-27-65	2-23-65	3-22-6	6-24-65	2-24-65	7770	1-21-64	8-24-64	9-23-64	10-26-64	11-23-04	1-27-65	2-23-65	3-23-65	4-26-65	5-24-65	6-21-65	7-27-64	8-24-64	10-24-64	10-26-64
GRDUND SURFACE ELEVATION IN FEET	9	201.4								H AREA	162.0			165.5											205.0											160.0			
STATE WELL NUMBER	CITY OF FRESNO		I 45/20E-IUMUI M							FRESNO SLOUGH AREA		135/15E-28HU1 3		135/15E-35D02 M											M 106/17E-17401 M											145/15E-25H02 M			
AGENCY SUPPLYING DATA]		0027			000	*										4200											6	0074							4 200			
WATER SURFACE ELEVATION IN FEET			234.5	233.6	232.1		216.8	715.5	215.5	215.8	215.4	218.2	218.5	219.3	216.7	61402	218.0	215.2	215.9	218.1	219.4	219.6	222.9	224.0	222.5	222.0	219.5	1	223.1	221.6	223 6	26290	226.1	227.1	3	210.1	204.6	213.3	5.400
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.16		90.5	91.4	92.9		60 9	82.8	83.8	83.5	83.9	81.1	80.8	80.0	82.6	8 4 4 8	87+3	90.1	4.68	87.2	85.9	85.7	82.4	01.0	82.9	0 00	00 00		80.8	82.3	82.5	900	77.8	16.8		81.9	86.8	78.1	2 40
DATE			3-02-65	4-28-65	5-27-65		7-03-64	1-31-04	10-30-64	11-30-64	12-28-64	3-02-65	3-29-65	4-28-65	5-26-65	6-30-65	7-02-64	7-31-64	8-28-64	9-30-64	10-30-64	11-30-64	12-28-64	1-28-65	3-02-65	0-12-07 0-78-65	5-28-65		7-02-64	7-30-64	8-27-64	6-28-64	10-28-64	12-28-64	1-00-65	7-01-64	7-30-64	8-26-64	77 00 0
GROUND SURFACE ELEVATION IN FEET		2	325.0				299.3										206.3	2000											303.9							201.4			
STATE WELL NUMBER	ON U.S.	CITY OF PREST	135/20E-23801 W	- LNOU			135/20E-28E01 M											135/20E-35H02 M											145/20E-01001 M								10001-202/541		

AGENCY SUPPLYING DATA		6 00 1		6001	6 00 1		6001		6001	5631
WATER SURFACE ELEVATION IN FEET		142.9 142.9 142.9 142.6 142.6	141.9	92•2 105•7	88 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	98.7 90.8 93.5 100.8 104.9	111.8 112.2 111.5 107.2 108.0	106.3 108.4 111.7	118.1
GROUND SUR. FACE TO WATER SURFACE IN FEET	5-22.17	28 8 • 1 27 • 4 27 • 5 28 • 4 30 • 0	29.5 29.5 30.2	94.8	99.00	9 8 8 9 9 9 8 9 9 9 8 9 9 9 9 9 9 9 9 9	105.3 113.2 110.5 103.2 99.1	92.2 91.8 92.5 96.8	97.7 97.4 94.1	109.2
DATE		9-23-64 10-26-64 11-23-64 12-21-64 1-28-65 2-23-65	5-24-65 6-21-65	10-02-64	7-27-64 8-24-64 9-23-64 10-26-64 11-23-64	1-28-65 2-23-65 3-22-65 4-26-65 5-24-65 6-21-65	7-27-64 8-24-64 9-23-64 10-28-64 11-23-64	1-28-65 2-23-65 3-22-65 4-26-65 5-24-65	6-21-65 9-24-64 2-01-65	10-29-64
GROUND SURFACE ELEVATION IN FEET	H AREA	171.0		187.0	182.0		204•0		205.8	227.3
STATE WELL NUMBER	FRESNO SLOUGH AREA	155/16E-12C03 M CONT.		155/17E-22R01 M	15S/17E-35NO2 M		15S/18E-07A02 M		155/18E-16G01 M	155/19E-29C01 M
AGENCY SUPPLYING DATA		6 00 1	6 00 1			6 00 1		6001	6001	6001
WATER SURFACE ELEVATION IN FEET		1399 1349 1349 1369 1369 1399	130.0	132.2	135.00 135.00 135.00 125.00 125.00	123.0 124.4 124.8 132.5 137.0	140.0 134.0 123.8 124.3	137.4 141.0 110.9	124.7	142.5
GROUND SUR. FACE TO WATER SURFACE IN FEET	5-22.17	200 200 200 200 200 200 200 200 200 200	1 6 6 6 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	43.8 37.0	4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	25.00 27.00 44.00 10.10 10.10 10.10	25.6 22.0 100.1	86.3 43.5 39.6	28.5 28.6
DATE		12-21-64 1-28-65 2-23-65 3-22-65 4-26-65 5-24-65	7-27-64	9-23-64 10-26-64 11-23-64	12-21-64 1-27-65 2-23-65 3-22-65 4-26-65 6-21-65	7-27-64 8-24-64 9-23-64 10-26-64 11-23-64	12-21-65 2-23-65 3-22-65 4-26-65 5-24-65 6-21-65	9-29-64 2-08-65 9-24-64	2-10-65 9-29-64 1-29-65	7-27-64
GROUND SURFACE ELEVATION IN FEET	4	160.0	176.0			165.0		163.0	171.0	171.0
SUR	FRESNO SLOUGH AREA	, i	1							

STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GROUND SUR- FACE TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING OATA	STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GROUND SUR- FACE TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
FRESNO SLOUGH AREA	H AREA		5-22.17			FRESNO SLOUGH AREA	H AREA		5-22.17		
165/17E-23N01 M	185.0	9-25-64	159.1	25.9	6001	1/5/18E-23A02 M	200.0	2-05-65	0.99	134.0	5050
2 10 60 10 10	0.400	74-76-2			0503	CONSOLIDATED IRRIGATION DISTRICT	IRRIGATION	DISTRICT	5-22.18		
		8-26-64				145/22E-22N01 M	355 • 7	7-01-64	34.0	321.7	4636
		9-28-64	00					7-30-64	3 79 4 80 14	321.9	
		11-24-64	0.96	110.0				40-16-0	34.46	221.3	
		12-30-64	95.5	110.5				11-05-64	33.6	322.1	
		1-29-65	6.86	107.1				12-03-64	33.4	322.3	
		3-03-63	200	102.4				1-04-60	22.0	322 1	
		5-05-65	105.7	100.3				3-01-65	33.0	322.0	
		6-01-65))				4-02-65	940	32107	
		6-25-65	B					4-29-65	33.5	322.2	
		4			(5-27-65	33.5	322.2	
165/18E-27C01 M	198.0	2-03-65	7005	101.8	0404			6-30-65	33.1	322.6	
165/18E-31002 M	191.0	7-24-64	100.3	90.7	5050	155/19E-24N01 M	245.7	7-01-64	81.6	164.1	4636
		8-26-64	118,8	72.2				7-30-64	83.3	162.4	
		9-28-64	128.3	62.7				8-31-64	82.1	163.6	
		10-27-64	105.8	85.2				9-30-64	81.6	164.1	
		11-24-64	101.	7 • 6 0				11-05-64	81.5	164.2	
		12-30-64	10000	21.5				12-03-64	80.5	165.2	
		20-67-1	125.8	65.2				1-04-65	79.1	166.6	
		4-07-65	119.8	71.2				2-01-65	7.07	167.7	
		5-05-65	131.0	0.09				4-02-65	83.6	162.1	
		6-01-65	111,8	79.2				4-29-65	83.2	152.5	
		6-25-65	101.5	89.5				5-27-65	86.3	159.4	
16 C / 10F = 34 D / 1 M	220.0	7-24-64	99.5	120.5	5050			6-30-65	88.0	157.7	
	3 4	8-26-64	0.66	121.0		155/20E-28A01 M	264.8	7-01-64	58.0	206.8	4636
		9-28-64	95.6	124.4				7-30-64	58.9	205.9	
		10-27-64	95.8	127.2				8-31-64	6.99	207.9	
		11-24-64	90.3	129.7				9-30-64	55.6	209.2	
		12-30-64	0.00	1210				11-05-64	56.0	208.8	
		1-29-65	• [133.0				12-03-64	55.0	209.8	
		4-07-65	93.5	126.5				2-04-02	0.40	210.2	
		5-05-65	8066	120.7				3-01-65	54.7	210.1	
		6-01-65	п					4-02-65	58.6	206.2	
		6-25-65	D					4-29-65	58.6	206.2	
	0				0			5-27-65	59.3	205.5	
175/17E-12H01 M	199.0	2-05-65	156.7	6.543	2020			6-30-65	8.09	204.0	

GROUND SURFACE ELEVATION IN FEET	DATE	GRDUND SUR. FACE TO WATER SURFACE IN FEET	WATER SURFACE ELEYATION IN FEET	AGENCY SUPPLYING DATA	STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GRDUND SUR. FACE TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
 CONSOLIDATED IRRIGATION DISTRICT	DISTRICT	5-22.18			CONSOLIDATED	CONSOLIDATED IRRIGATION DISTRICT	ISTRICT	5-22.18		
301.2	7-01-64 8-30-64 9-30-64 11-05-64 11-05-64 1-04-65 3-01-65 4-02-65	WW 4 W W W W W W W W W W W W W W W W W	266 4 4 5 2 2 2 2 6 6 3 3 6 5 5 6 6 7 4 6 7 5 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7	4 6 3 6	165/195-14A01 M CONT•	2.35.5	9-30-64 11-05-64 12-03-64 12-03-64 2-01-65 3-01-65 4-02-65 4-29-65 5-27-65 6-30-65	88888888888888888888888888888888888888	14666 1480 15420 15420 15420 1524 14728 14662 14338	4636
337.0	5-27-65 6-30-65 7+01-64 7-30-64 8-31-64	33 33 35 35 35 35 35 35 35 35 35 35 35 3	264.0 263.5 300.2 300.1	4636	165/20E-22N01 M	247.7	7-01-64 7-30-64 8-31-64 9-30-64 11-05-64	68 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	179.5 176.8 174.8 178.2 179.6	4636
	11-05-64 11-05-64 12-03-64 1-04-65 2-01-65 3-01-65 4-02-65	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	301-6 301-6 300-8 300-6 301-0 299-2				21-04-65 21-04-65 31-01-65 41-02-65 41-02-65 61-27-65 61-27-65	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	181000 18200 18200 18200 1800 1780 1780	
321.9	5-27-65 6-30-65 7-01-64 7-30-64 9-31-64 9-30-64 11-03-64 1-04-65	000000 mm/c	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 636	165/21E-22N01 M	271.0	7-01-64 8-31-64 9-30-64 9-30-64 11-05-64 12-03-64 12-03-64 12-03-64 1-04-65 2-01-65 3-01-65 4-02-65	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	219.0 215.2 215.2 215.9 216.2 220.2 220.9 2210.3 220.5	4 6 3 6
235.5	2-01-65 3-01-65 4-02-65 4-29-65 5-27-65 6-30-65	8 30 00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	281.6 281.7 280.7 280.8 281.2 282.3	4636	165/22E-23R01 M	297.5	4-29-65 5-27-65 6-30-65 7-01-64 7-30-64 8-31-64 9-30-64	2000 0000 0000 0000 0000 0000 0000 0000	218.6 216.3 214.3 269.0 269.0 268.9	4636
	7-30-64	91.0	144.5				11-05-64	36.4	251.1 268.8	

AGENCY SUPPLYING DATA		4637						1	4631													4637													4631											
WATER SURFACE ELEVATION IN FEET		302.9	304 - 1	296.9	299.7	299.5	303.7		34707	340.4	336.8	333.6	334.3	334.5	335.6	340.9	338.7	338.6	345.9	352.4		281.8	280.9	281.1	281.0	281.4	281.1	281.8	281.8	280.0	279.7	280.5	282.2		297.2	291.8	290.6	291.1	291.9	292.9	293.4	2.44.2	240.1	202.5	6 700	7.0.7
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22-19	55.1	53.9	61.1	58.3	58.5	54.3		6.04	47.6	51.2	54.4	53.7	53.5	52.4	47.1	49.3	7.64	42.1	35.6		32.2	33.1	32.9	33.0	32.6	32.3	32.2	32.2	34.0	34.3	33.5	31.8		38.8	44.2	45.4	6.44	4401	43.1	42.6	41.8	45.0	6.44	40 e	39.8
DATE		30.00	2-26-65	3-30-65	4-28-65	5-29-65	6-30-65		7-30-64	8-31-64	9-53-64	10-29-64	11-30-64	12-31-64	1-28-65	2-23-65	3-30-65	4-29-65	5-27-65	6-20-65		7-29-64	8-26-64	9-26-64	10-27-64	11-27-64	12-30-64	1-29-65	2-25-65	3-29-65	4-27-65	5-31-65	6-28-65		79-17-1	8-25-64	9-25-64	10-26-64	11-27-64	12-28-64	1-27-65	2-23-65	3-26-65	4-26-65	5-29-65	6-26-65
GROUND SURFACE ELEVATION IN FEET	ION DISTRICT	6	358.0						388.0													214.0	0 1 4 0												336.0											
STATE WELL NUMBER	ALTA IRRIGATION DISTRICT		155/23E-23A02 M	· LNO					100000	155/246-22001 H													165/23E-23E01 M												2 10 10 10 10 10 10 10 10 10 10 10 10 10	165/245-21301 4										
AGENCY SUPPLYING DATA			4636								4636															,	4631													4631	1.4.3.7	000				
WATER SURFACE ELEVATION IN FEET			268.1	268.7	268.6	268.5	268.5	268.4	268.3		256.8	554.4	255.1	256.0	254.9	256.3	256.6	257.0	257.1	255.5	256.6	258.6	263.7							350.2	324.4	325.3	326.5	332.2	36100	330.2	5 30 6 4	345.9	1	337.6		1 700	7 + 0 6 7	200.1	0.100	302.2
GRDUND SUR. FACE TO WATER SURFACE IN FEET	91 22 3	01.77-6	28.8	28.8	28.9	29.0	29.0	29.1	29.5		29.5	31.6	30.9	30.0	31.1	29.7	29.4	29.0	28.3	30.5	29.4	27.4	22.3		5-22-19		а	a	a	10.8	9.99	65.7	64.5	58.85	0.49	60.8	24.0	48.1		57.4		en (610	3 a		55.8
DATE		DISTRICT	1-04-65	2-01-65	3-01-65	4-02-65	4-29-65	5-27-65	6-30-65		7-01-64	7-30-64	8-31-64	9-30-64	11-05-64	12-03-64	1-04-65	2-01-65	3-01-65	4-02-65	4-29-65	5-27-65	6-30-65				7-28-64	8-29-64	9-29-64	10-26-64	11-28-64	12-31-64	1-28-65	2-26-65	3-30-65	4-28-65	5-29-65	6-30-65		2-25-65		7-28-64	8-29-64	9-53-6	10-22-01	11-28-64
GROUND SURFACE ELEVATION IN FEET		RRIGATION DI	207 6								286.0														ON DISTRICT		391.0													395.0		358.0				
STATE WELL NUMBER		CDNSOLIDATED IRRIGATION		165/22E=23KUI M	CONI						M LOSCOSSION														ALTA IRRIGATION DISTRICT		M 10038F-36001 M	14372323												145/24E-31P01 M		155/23E-23A02 M				

AGENCY SUPPLYING OATA		6 00 1	4637	4637	5050	5050		η Ο η			5050	5050	5129
WATER SURFACE ELEVATION IN FEET		266.9 267.7 262.9 265.0 256.6	286+3	251.9	147.9	144.1 126.6 147.6 149.0	1568 1550 1550 1550 1550 1550 1550 1550 155	148.5	211.9 211.9 211.5 211.5 217.8 217.8	713.0	204.0	223.0	164.4
GROUND SUR. FACE TO WATER SURFACE IN FEET	5-22.19	2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	48.7	69.1	69.1	7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	65.0 63.0 70.5 74.5	74°5	t 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0 • II II	0.9	7.0	9.68
DATE		2-01-65 2-24-65 3-22-65 4-24-65 5-27-65 6-21-65	2-22-65	2-22-65	2-05-65	7-24-64 8-26-64 9-28-64 10-27-64 11-24-64	12-30-64 1-29-65 3-03-65 4-07-65 5-05-65	6-01-65	10-24-64 9-28-64 10-27-64 11-24-64 12-30-64 1-00-65 3-03-65	5-05-65 6-01-65 6-25-65	2-08-65	2-08-65	8-02-64
GROUND SURFACE ELEVATION IN FEET	ALTA IRRIGATION DISTRICT	302.0	335.0	321.0 RIVER AREA	217.0	223.0			000		210.0	230.0	254.0
STATE WELL NUMBER	ALTA IRRIGAT	175/24E-15A03 M CONT.	175/25E-10C01 M	175/25E-18R01 M 321.0 LOWER KINGS RIVER AREA	175/19E-14J01 M	175/20E-20D01 M			E 1002111		185/19E-26E01 M	185/20E-16A01 M	185/21E-10R01 M
AGENCY SUPPLYING OATA		4637			4637			4637		6001			
WATER SURFACE ELEVATION IN FEET		298 304 0 305 0 307 0	308.5	303.8 305.3 310.4	227.2	232.7 236.1 237.7 238.7 239.5	232.0 237.9	234.9	23333333333333333333333333333333333333	250.0	253.4	261.0	
GROUNO SUR- FACE TO WATER SURFACE IN FEET	5-22-19	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	55.5	50.7 58.7 53.6	n 47.8	4 W W W W W W W W W W W W W W W W W W W	24 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	40.1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	52.0	48.6 50.1	41.0	
OATE		7-27-64 8-25-64 9-25-64 10-26-64 11-27-64 12-28-64	2-23-65	4-26-65 5-31-65 6-26-65	7-29-64	9-26-64 10-27-64 11-25-64 12-28-64 1-25-65	2-24-65 3-29-65 4-27-65 5-27-65 6-28-65	7-29-64 8-26-64 9-26-64	10-27-64 11-25-64 12-28-64 1-25-65 2-24-65 3-29-65 5-27-65	7-28-64	9-28-64	11-23-64	
GROUND SURFACE ELEVATION IN FEET	ALTA IRRIGATION DISTRICT	364.0			275.0			275.0		302.0			
STATE WELL NUMBER	ALTA IRRIGAT	165/25E-29A01 ™			175/22E-25A01 M			175/22E-25J01 M		175/24E-15A03 M			

AGENCY SUPPLYING DATA		6 0 0 1	6 00 1	6001	6 0 0 1
WATER SURFACE ELEVATION IN FEET		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	471.0	380.2 380.2 380.6 380.6 380.6 380.9 385.7 385.7	
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.21	1155 1120 1120 1120 1120 1120 1120 1120	39.0	24 6 8 8 8 6 7 6 6 6 7 6 7 6 8 8 8 8 7 6 7 6	117.00 118.00 118.00 118.00 118.00 118.00 118.00
DATE	STRICT	7-02 9-04-64 11-02-64 11-02-64 12-01-64 12-01-64 12-01-65 2-01-65 3-01-65 5-04-65 5-04-65	9-30-64	7-01-64 9-03-64 9-03-64 10-01-64 11-02-64 12-01-64 12-01-65 9-02-65 9-02-65 9-03-65 9-03-65 9-03-65	7-03-64 9-05-64 9-03-64 10-03-64 11-03-64 12-01-64 12-01-65 1-04-65 1-04-65 1-05-65
GROUND SURFACE ELEVATION IN FEET	ORANGE COVE IRRIGATION DISTRICT	0.644	510.0	O + 50 4	415.0
STATE WELL NUMBER	ORANGE COVE	145/24E-20801 M	145/25E-30001 M	155/24E-14D01 M	165/25E-04C02 M
AGENCY SUPPLYING DATA		5129	5050	9090	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
WATER SURFACE ELEVATION IN FEET		172.0 181.9 184.3 182.8 188.0 193.8 193.9 183.9	204.7	900.2 103.0 88.5 81.0 81.0 99.0	1776.1 1776.5 1776.5 1776.6 1776.6 1776.0 1776.0 1776.0 1776.0
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.20	112.1 71.2.1 71.2 66.0 57.0 60.0 64.0 70.1	3 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	128 - 2 1 1 1 2 8 8 9 1 1 1 2 8 8 9 1 1 1 2 8 8 9 1 1 1 2 8 8 9 1 1 1 2 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
DATE		8-29-64 10-01-64 11-21-64 11-24-64 12-30-64 12-30-65 3-03-65 5-02-65 5-02-65	2-08-65	9-1-2-1-6-4 10-2-7-6-4 112-30-6-4 12-30-6-5 3-03-6-5 4-0-7-6-5 3-03-6-5 6-01-6-5 6-01-6-5 6-01-6-5 6-01-6-5 6-01-6-5	10-24-64 9-26-64 10-27-64 11-24-64 12-30-64 12-30-64 12-30-64 12-30-64 12-30-64 12-30-64 12-30-64 12-30-64 12-30-64 13-3
GROUND SURFACE ELEVATION IN FEET	RIVER AREA	254.0	208.0	2 0 6 • 0	2 11 .0
STATE WELL NUMBER	LOWER KINGS R	185/21E-10R01 M	195/19E-25A01 M 195/20E-09R01 M	205/20E-09C01 M	205/22E-19M02 M

AGENCY SUPPLYING DATA		. 00 ,	1000											6001												6001											100,	000						
WATER SURFACE ELEVATION IN FEET		0	2007	6.202	0000	707	286.3	288.0	289.1	230.0	289.0	6.062	7887	372.9	371.9		375.0	3/30/	0 0 0 0	377.5	0 0 1 1 1	37307	374.0	377.0			315.9	21400	314 0	315.5	316.3	317.1	318.0	318.3	316.1	318.5		35201	3450	348.0	345.0	34343	301.00	22400
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.23		7.50	0.00	0 * 7 0	0 0 0	180	17.0	75.9	1400	76.0	1 • 5/	15.3	21.1	22.1		19.0	20.3	21.0	21.5	2102	2019	0.00	17.0	•		69.1	71.0	70.2	69.5	68.7	6.19	67.0	1.99	68.8	66.5	4	63.0	7.19	68.0	71.0	10,19	7.40	61.0
DATE	CT	;	1-31-04	9-03-64	10016	11-03-04	11-25-64	1-06-65	2-01-65	2-26-65	4-05-65	5-04-65	6-01-65	7-03-64	8-04-64	9-00-6	10-01-64	11-03-64	11-25-64	12-21-64	2-60-7	2-26-65	F 05 - 45	4-00-65		7-03-64	8-04-64	49-40-6	11-04-64	11-25-64	1-06-65	2-03-65	5-56-65	4-05-65	2-02-65	6-08-65		7-03-64	8-03-64	9-04-6	10-01-64	11-03-64	11-22-64	1-06-65
GROUND SURFACE ELEVATION IN FEET	SATION DISTRI		365.0											394.0												385.0												416.0						
STATE WELL NUMBER	IVANHOE PRIGATION DISTRICT		175/25E-36G01 M	CONT										175/26E-21E01 M												175/26E-32N01 M												175/26E-34D01 M						
AGENCY SUPPLYING DATA		1003	1000												6001													6001	•		6001												4001	200
WATER SURFACE ELEVATION IN FEET				402.4	1000	0.704	20804	40301	7.707	0.00	403.4	4000	402.8		355.8	356.1	356.0	356. 7	254.4	356.3	356.2	356.2	357.6	357.6	357.5			755.1	261.0			265.1	20402	264.0	0.497	264.5	244	0.002	2007	2020	20102	50707	284.5	7 - 107
GROUND SUR. FACE TO WATER SURFACE IN FEET	5-22.22	,	600	2.5	,,	** 7	0 0	K • 1	9.		9.7	0.0	2 * 5		8.2	7.9	0 -	· ·	4.0	7.7	00	7.8	4.9	7.9	6 • 5		67.77-6	6*76	89.0			200	0 4 0 0	95.0	32.0	0.4.00		0 0 0	62.0	7.70	01.0		3.08	
DATE	ISTRICT	7 30 56	10-07-0	0-20-64	10-26-01	10-55-04	11-53-64	17-71	2-03-65	60-47-7	3-22-65	00-17-1	6-21-65		7-28-64	8-25-64	49-87-6	11-23-64	12-23-04	2-01-65	2-24-65	3-22-65	4-24-65	5-27-65	6-21-65	,	5	9-30-64	2-26-65		7-02-64	1-31-64	40-60-6	9-30-64	11-03-64	11-25-64	2 - 0 - 6	27 76 6	60-07-7	4-00-40	7-04-67		7-02-64	
GROUND SURFACE ELEVATION IN FEET	IRRIGATION DISTRICT	0 30 7													364.0												IGALION DISTRICT	350.0			349.0												365.0	•
STATE WELL NUMBER	STONE CORRAL	M 10000-3401341													175/26E-07R01 M												IVANHOE IRKI	175/25E-27R01 M			175/25E-35M01 M												175/25F=36G01 M	

AGENCY SUPPLYING DATA		0001		6001		5129	6001	6001	6001	6001	6001		
WATER SURFACE ELEVATION IN FEET		145.2 150.5 153.9 156.3	151.0 151.3 150.2	214.9 210.4 213.5 217.2	221.1 222.8 225.1 225.4 222.5 223.8	148.1	239.7	307.7	296.5	363.6	340°1 337°7 337°4	337.3 337.1 338.3	341.9
GROUND SUR. FACE TO WATER SURFACE IN FEET	5-22.24	99.8 94.5 91.1 88.7 87.9	94.0 93.7 94.8	67.6 72.1 69.0 65.3	59.0 57.0 57.0 57.0 59.0 59.0	122.9	72.8	55.3 51.4	41.5	26.4	26.9	29.7	25.1 23.3 23.4
DATE	v DIST	11-03-64 12-02-64 1-04-65 1-29-65 3-01-65	4-07-65 5-03-65 6-02-65	7-27-64 8-24-64 9-28-64 11-03-64	12 1 0 2 1 6 4 1 1 1 0 4 1 6 5 3 1 1 1 0 4 6 5 4 1 1 1 6 5 5 1 0 3 1 6 5 6 1 0 3 1 6 5	9-03-64	9-28-64	10-01-64	9-28-64 2-03-65	10-08-64	7-27-64 8-24-64 9-28-64	11-02-64	3-01-65
GROUND SURFACE ELEVATION IN FEET	WATER CONSER	245.0		282.5		271.0	312.5	363.0	338.0	390.0	367.0		
STATE WELL NUMBER	KAWEAH DELTA WATER CONSERV DIST	185/22E-36P01 M CONT.		185/23E-12H01 M		185/23E-34A01 M	185/24E-26A01 M	185/25E-12001 M	185/25E-33F01 M	185/26E-27E01 M	185/26E-30N01 M		
AGENCY SUPPLYING DATA		6001		6001		6001				1609	6 00 1	6001	1009
WATER SURFACE ELEVATION IN FEET		355.0 356.0 356.0 356.0		258.4 254.2 251.9 253.7 254.5	250.3 252.4 258.8 258.8 258.5	233.7	242.1 242.3 245.5	252.2 241.0 240.4	241.3 245.5 236.0	369.5	457.0	164.6	143.0
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22-23	56 59 59 50 50 50 50 50 50 50 50 50 50 50 50 50	5-22-24	44444444444444444444444444444444444444	47.5 45.1 38.7 39.0 34.1	106.3	97.9	87.8 99.0 99.6	98.7 94.5 104.0	15.5	16.0	86.4	102.0
OATE	 	2-265		7-27-64 8-25-64 9-28-64 11-03-64	1-04-65 1-29-65 3-01-65 4-07-65 5-03-65	7-28-64 8-25-64 9-28-64	10-26-64	2-01-65 2-24-65 3-22-65	4-24-65 5-27-65 6-21-65	9-28-64	9-29-64	9-25-64	7-27-64 8-24-64 9-29-64
GROUND SURFACE ELEVATION IN FEET	ATTON DISTRI	416.0	WATER CONSERV	297.5		340.0				385.0	473.0	251.0	245.0
STATE WELL NUMBER	IVANHOE IRRIGATION DISTRICT	175/26E-34D01 M CONT.	KAWEAH DELTA	175/24E-34801 M		17S/25E-15P01 M				175/26E-17P02 M	175/27E-34P01 M	185/22E-29A01 ₩	185/22E-36P01 M

AGENCY SUPPLYING DATA		6001			6 00 1	6001		6001		6 00 1	6 00 1
WATER SURFACE ELEVATION IN FEET		219.0	232.8	246.7 247.0 232.0	85.5	187.0 187.2 204.0 210.6	218.9 220.8 225.1 208.0 203.2 217.3 215.0 208.0	177.5	175.8 177.3 179.0 179.0 180.0 205.1 173.3	142.9	182.8
GROUND SUR. FACE TO WATER SURFACE IN FEET	5-22.24	122.0	106.9 108.2 88.2	94.3 94.0 109.0	140.5	117.5 117.3 100.5 93.9	1001 1001 1001 1001 1001 1001 1001 100	5-22.25	94.2 92.7 91.0 90.1 90.0 87.8	107.6	107.2
DATE	7 015T	8-24-64	11-23-64 12-21-64 2-01-65	2-24-65 3-22-65 4-24-65 5-28-65 6-21-65	9-29-64	7-27-64 8-24-64 9-28-64	11-23-64 12-21-64 2-01-65 2-24-65 3+22-65 4-24-65 5-28-65		10-01-04 10-01-04 110-01-04 110-07-04 1-06-65 1-06-65 1-06-65 1-06-65 1-06-65 1-06-65 1-06-65 1-06-65 1-06-65 1-06-65	10-01-64	7-28-64
GROUND SURFACE ELEVATION IN FEET	KAWEAH DELTA WATER CONSERV DIST	341.0			226.0	304.5		TULARE IRRIGATION DISTRICT 3E-14R01 M 270.0		250.5	290•0
STATE WELL NUMBER	KAWEAH DELTA	195/26E-34R02 M CONT.			205/22E-10C01 M	205/25E-14F01 M		TULARE IRRIG 195/23E-14R01 M		195/23E-32H01 M	195/24E-16P01 M
AGENCY SUPPLYING DATA		6001	6001	6001			6001		6001		6 00 1
WATER SURFACE ELEVATION IN FEET		340.3 341.4	168.8 168.5	133.1 131.8 132.2 132.9	138°3	134.0 139.7 134.3 137.0	128 0 128 0 125 0 124 0 124 0 125 0 125 0	125.4 123.7 123.5	26636 26108 26108 266108 266105 266300	269.3	
GROUND SUR. FACE TO WATER SURFACE IN FEET	5-22.24	26.7	76.2	101.9 103.2 102.8 102.1	96.7 93.6 93.3	101.0 95.3 100.7 98.0	106.0 107.3 109.0 109.3 109.3 109.9	110.3 110.5		50.7	
DATE	V 01ST	5-03-65	9-29-64	7-27-64 8-24-64 9-25-64 10-26-64 11-23-64	12-21-64 2-02-65 2-24-65	3-22-65 4-24-65 5-28-65 6-21-65	7-27-64 8-24-64 9-25-64 10-26-64 11-23-64 12-21-64 2-02-65 2-24-65	5-28-65 5-28-65 6-21-65	7-27-64 8-25-64 9-29-64 11-02-64 12-02-64 1-04-65 1-29-65 3-01-65	5-03-65	7-27-64
GROUNO SURFACE ELEVATION IN FEET	WATER CONSERV DIST	367.0	245.0	235.0			234.0		320•0		341.0
STATE WELL NUMBER	KAWEAH DELTA	185/26E-30N01 M CONT.	195/22E-01N02 M	195/22E-19A01 M			195/22E-36E01 M		195/25E-07K01 M		195/26E-34R02 M

)	20000							
STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GROUND SUR. FACE TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA	STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GROUND SUR- FACE TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
ARE 1881	THE ARE TRRIGATION DISTRICT		5-22-25			TULARE IRRIGATION DISTRICT	ATION DISTRIC	-	5-22-25		
195/24E-16P01 M	290.0		0 t		6001	20S/23E-08B02 M CONT.	241.0	6-03-65	112.5	128.5	6 0 0 1
• - - -		10-29-64 12-07-64 12-07-65 2-02-65 3-09-65 4-01-65 4-26-65	94.9 102.0 92.3 106.2 88.0	195.1 201.8 188.0 197.7 193.8 190.2 202.0		205/24E-16H01 M	273.0	7-28-64 8-27-64 9-29-64 10-29-64 12-07-64 1-06-65 3-01-65	132.0 1116.3 1112.0 95.5 102.6	141.0 156.7 161.0 177.5 177.5 169.4 169.4 169.8	1009
195/24E-27001 M	290.0	7-28-64 8-27-64 10-01-64	107.2 106.7 97.8	182.8 183.3 192.2	6 00 1			4-01-65	103.2 97.6 117.0	175.4	
		12-07-64 12-07-64 12-07-64 12-07-64 12-07-64 12-07-64 12-07-64 12-07-64 13-08-65 13-	995.0 90.0 90.0 90.0 91.0 90.4	195.0 200.0 201.9 192.2 196.3 198.5 199.6		205/24E-30J02 M	250.0	7-28-64 8-27-64 9-29-64 10-29-64 12-07-64 12-07-64 1-06-65 2-03-65	1113 0 1118 0 1104 0 5 1104 0 7 126 0 6 99 0 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 0 0 1
195/25E-17J01 M	327.0	7-28-64 8-27-64 9-28-64			6001			4-01-65	105.5 111.1 107.5	144.5	
		10-29-64 12-07-54 12-01-65 2-06-65 3-09-65 4-01-65 6-03-65	653.0 662.0 660.1 69.0 69.7	265.0 265.0 266.3 266.9 260.0 260.3 260.3		215/23E-05R01 M	222.0	7-28-64 8-27-64 9-30-64 11-06-64 12-07-64 1-96-65 3-09-65	1113.3 1113.3 1113.0 1103.5 1001.8	108.7 106.9 118.5 1120.2	6001
205/23E-08802 M	241.0	7-28-64 8-27-64 9-30-64 10-29-64 12-07-64	124.6 124.8 113.7 113.2	116.4 116.2 127.3 127.8	6 00 1	EXETER IRRIC	EXETER IRRIGATION DISTRICT	4-91-65 4-26-65 6-03-65	101.0 101.0 99.8 5-22.26	121.0	
		1-06-65 2-03-65 3-09-65 4-01-65 4-26-65		131.5 132.0 132.0 131.8		185/26F-25K01 M	436.0	7-27-64 8-24-64 9-28-64 10-26-64 11-23-64	60.5 62.9 63.1 64.8	375.5 373.1 372.9 371.2	6 00 1

AGENCY SUPPLYING DATA		6 00 1		6 0 0 1	6 00 1		6 00 1								6001		6001										6001		
WATER SURFACE ELEVATION IN FEET		306.8	308.5	362.1 366.9	355.7		242.0	250.6	270.5	275.4	267.5	273.0		266.3	216.5	233.8	276.6	2//05	281.9	284.7	288.0	288.6	285.8	289.4	287.3		190.8	191.9	200.8
GROUND SUR. FACE TO WATER SURFACE IN FEET	5-22-27	65°2 63°5	63.5	51.9 47.1	50 • 3 4 5 • 3	5-22.28	118.0 n 122.9	109.4	89.5	84.6	92.5	87.0		93.7	124.5	107.2	85.9	85.0	80.6	77.8	74.5	73.9	1,601	74-7	75.2		140.7	139.6	130.7
DATE	0157	3-22-65	6-21-65	10-06-64 2-01-65	10-06-64	10.1	7-27-64 8-24-64 9-28-64	10-26-64	12-21-64	2-01-65	2-24-65	4-24-65	5-28-65	6-21-65	10-02-64	2-02-65	7-27-64	9-24-64	10-26-64	11-23-64	2-22-64	2-25-65	3-22-65	4-24-65	6-21-65		7-27-64	8-24-64	9-28-64
GROUND SURFACE ELEVATION IN FEET	LINDSAY-STRATHMORE IRRIG DIST	372.0		414.0	406.0	LINDMORE IRRIGATION DISTRICT	360.0								341.0		362.5										331.5		
STATE WELL NUMBER	L INDSAY-STRAI	205/27E-06B01 M CONT.		208/27E-21F01 M	20S/27E-29J01 M	LINDMORE IRR	20S/26E-01P01 M								205/26E-22C02 M		205/26E-24K01 M										205/26E-32A01 M		
AGENCY SUPPLYING DATA		6 00 1	6001					6001									6 00 1				6001		1009	_	_				
WATER SURFACE ELEVATION IN FEET		376.5	413.8	415.9 415.9 413.0	413.9 415.8	415.0	419.9		274.0	274.3	267.9	284.2	285.3	283.8	277.2		251+3	566.5			297.7	0 + 0 + 0	310.2	310.9	309.5	309.5	309.6	307.5	307.7
GROUND SUR. FACE TO WATER SURFACE IN FEET	5-22.26	59.5	33.2	31.1	33.1 32.2 32.0	32.0	33.0	11 (101.0	100.7	107.1	90.08	89.7	91.2	8-70		107.7	92.5	5-22.27		87.9	707,	61.8	61.1	62.0	62.5	62.4	64.5	64.3
DATE	1	12-21-64 2-01-65	7-27-64	9-28-64	11-23-64 12-21-64 2-01-65	3-22-65	5-27-65	7-27-64	9-28-64	10-26-64	11-23-64	2-01-65	2-24-65	3-22-65	5-28-65	6-21-65	9-30-64	2-00-65	DIST		10-05-64	69-10-7	7-27-64	8-24-54	9-78-94	11-23-54	12-21-64	2-01-65	2-24-65
GROUND SURFACE ELEVATION IN FEET	EXETER IRRIGATION DISTRICT	436.0	447.0					375.0									359.0				385.0		372.0						
STATE WELL NUMBER	EXETER IRRIG	185/26E-25K01 M CONT.	185/27E-29D01 M					195/26E-14E01 M									195/26E-23E01 M		LINDSAY-STRATHMORE IRRIG		195/27E-29D01 M		20S/27E-06B01 M						

	AGENCY SUPPLYING DATA		6001		6001											6001												6001			009 6				* 0			,	2
	WATER SURFACE ELEVATION IN FEET		393.2 398.7 396.5		319.1	304.2	302.6	303.5	309.6	311.0	311.0	308.6	31101	313.3	310.7	370.3	340-1	369.3	370.4	371.5	371.9	373.0	374.2	374.9	376.3	377.0	316.8	201.3	307.5		389.9	387.7	389.7	399.5	367.0	390.6	3.00.0	398.7	398.5
	GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.28	35 • 8 30 • 3 32 • 5	5-22-29	54.9	69.8	7104	8.07	4.44	0 9 6 9	63.0	65.4	65.9	60.7	63.3	20.7	0 0	39.3	300	37.5	37.1	36.0	34 0 8	34.1	32.7	32.0	32.2	61.7		000	30.1	32.3	30.3	20.7	30.6	29.62	21.6	21.3	21.5
	DATE	RICT	4-26-65 5-25-65 6-21-65	ISTRICT	7-20-64	8-20-54	9-22-64	10-20-64	13 30 44	2-01-65	3-01-65	3-23-65	4-21-65	6-02-65	6-23-65	77 24 1	10-17-1	8-24-64	10 25 64	11 22 64	12-23-64	2-02-65	2-25-65	3-22-65	4-26-65	5-25-65	6-21-65		40-82-6	69-70-7	7-21-64	8-20-64	9-22-64	10-20-64	12-01-64	12-29-64	29-10-2	3-23-65	4-21-65
	GROUND SURFACE ELEVATION IN FEET	GATION DIST	429.0	IRRIGATION D	0 724											6	0.607												436.0		0.004	2 2 2							
	STATEWELL	LINDMORE IRRIGATION DISTRICT	215/27E-02E01 M CONT.	PORTERVILLE IRRIGATION DISTRICT		215/26E-23NU1 M											215/27E-21C01 M												215/27E-23N01 M										
	AGENCY SUPPLYING DATA		6 00 1						6001												1009											6001							
	WATER SURFACE ELEVATION IN FEET		204.9 213.1 221.8	226.1	210.0	212.4	217.0				334.9	336.6	335+2	2000	340.7	340.0	341.0	340.1			259.7	4000	2002	293.2	296.4	299.4	298.6	291.9	298.9	279.5	0 0 0 1 7	393.3	394.5	393.3	392.2	391.8	391.7	391.2	393.3
) 4	GROUND SUR. FACE TO WATER SURFACE IN FEET	5-22.28	126.6 118.4 109.7	105.4	121.5	119.1	114.1		0	п	57.1	55.4	56.8	52.5	51.03	52.0	51.0	51.9	0		112.3	117.6	91.00	000	75.6	72.6	73.4	80.1	73.1	92.5	7.16	35.7	34.5	35.7	36.8	37.2	37.3	37.8	35.7
	DATE	RICT	10-26-64 11-23-64 12-21-64	2-01-65	3-22-65	4-54-65	5-25-65		7-27-64	8-24-64	9-28-64	10-26-64	11-23-64	12-22-64	2-01-65	3-22-65	4-26-65	5-25-65	6-21-65		7-27-64	8-24-64	9-28-64	11-23-64	12-21-64	2-02-65	2-25-65	3-22-65	4-26-65	5-25-65	6-21-65	7-27-64	8-24-54	9-28-64	10-26-64	11-23-64	12-22-64	2-02-65	2-25-65
	GROUND SURFACE ELEVATION IN FEET	GATION DIST	331+5						392.0												372.0											0.00.0							
	STATE WELL NUMBER	I NOWORE TRRIGATION DISTRICT	205/26E-32A01 M						20S/27E-29E01 M												215/26E-01001 M												10320-3/2/612						

	AGENCY SUPPLYING DATA		6 00 1		6001	6001				6001			6001	
	WATER SURFACE ELEVATION IN FEET		155.2	160.8 160.3 160.9 159.5 159.3	162.0	237.0 230.2 234.5 232.9	231.8 232.5 242.5	243.9	244.7 250.5 251.2	207.5	20000 2000 22507 23305 23502 23501 21007	228.4 228.4 230.2	279.2	279.4 279.4 280.1 280.7 279.3
	GROUND SUR. WATER SURFACE IN FEET	5-22.30	95.8	90°2 90°7 90°1 91°5 91°7	123.0 81.2	54.0 60.8 56.5 58.1	59.0 58.0 58.0 5.0	47.1	46.3 40.5 99.8	114.5	122.0 115.0 96.3 88.5 86.8 86.9	93.6 93.6 91.8	85.2 70.8	000 000 000 000 000 000 000
	DATE	ION DIST	12-06-64	1-29-65 3-08-65 4-02-65 5-03-65 6-02-65	9-22-64	7-07-64 8-03-64 9-02-64 9-24-64	11-04-64 12-06-64 1-08-65	3-08-65	4-02-65 5-03-65 6-02-65	7-07-64	9-02-64 9-22-64 11-04-64 12-06-64 1-08-65 1-29-65	4-01-65 5-03-65 6-02-65	9-02-64	12-06-64 12-06-64 1-08-65 1-29-65 3-08-65
	GROUND SURFACE ELEVATION IN FEET	IVER IRRIGATI	251.0		285.0	291.0				322.0			350.0	
	STATE WELL NUMBER	LOWER TULE RIVER IRRIGATION DIST	215/24E-35M01 M CONT.		215/25E-08H01 M	215/25E-16A01 M				215/26E-06G02 M			21S/26E-10E01 M	
	AGENCY SUPPLYING DATA		6001	6001			6001		6 00 1	6001	6001			6001
	WATER SURFACE ELEVATION IN FEET		399.7	292.3 295.3 303.3	312.4	309.4 294.3 307.3	353°4 357°1		106.0	189.1	144 144 144 144 144 144 144 144 144 144	145.0	147.1	155.0 156.0 155.1 154.3
)	GROUND SUR. FACE TO WATER SURFACE IN FEET	5-22.29	20.3	102.7 99.7 91.7 87.3 84.0	82.0 82.0	85.6 100.7 87.7	113.6	5-22.30	115.5	63.9	88888888888888888888888888888888888888	8 8 9 6 6 6 6 9 9 9 9 9 9 9 9 9 9 9 9 9	82.9	96.0 95.9 95.9
	DATE	STRICT	5-25-65 6-23-65	7-20-64 8-20-64 9-21-64 10-20-64	12-29-64 2-01-65 3-01-65	3-23-65 4-21-65 6-02-65 6-23-65	11-30-64 2-01-65	ON DIST	9-29-64	9-24-64	7-07-64 8-03-64 9-01-64 9-24-64 11-03-64	1-29-65 3-08-65 4-02-65	5-03-65	7-07-64 8-03-64 9-01-64 9-24-64
	GROUND SURFACE ELEVATION IN FEET	IRRIGATION DI	420.0	395.0			467.0	RIVER IRRIGATION DIST	221.5	253.0	230.0			251.0
	STATE WELL NUMBER	POPTERVILLE IRRIGATION DISTRICT	215/27E-28E01 M CONT.	225/26E-01J01 M			225/27E-10R01 M	LOWER TULE RI	215/23E-22J01 M	215/24E-15H01 M	215/24E-31D01 M			215/24E-35M01 M

AGENCY SUPPLYING OATA		6001				6001										6001												6001		6001	
WATER SURFACE ELEVATION IN FEET		192.7	206.9	209.4		387.7	382.6	392.0	393.9	40000	401.1	399.3	394.6	394.9		392.2	397.3	401.0	277.6	42205	426.9	428.7	425.1	425.3	409.2	395.7		278.3	281.6		224.9
GROUND SUR. FACE TO WATER SURFACE IN FEET	5-22.30	138.3	124.1 124.6 131.7	122.6	5-22.31	136.3	141.4	132.0	130.1	124.0	122.9	124.7	129.4	129.1		142.8	137.7	134.0	130.0	112.5	108.1	106.3	109.9	109.7	125.8	139.3	5-22+32	117.7	114.4	ŋ	146.1
DATE	ON DIST	11-04-64	1-29-65	5-03-65 6-02-65	ICT	7-27-64	9-28-64	10-26-64	11-23-64	2-02-65	2-25-65	3-22-65	5-25-65	6-21-65		1-21-64	8-24-64	9-28-64	11-23-64	12-22-64	2-02-65	2-25-65	3-22-65	4-26-65	5-55-65	6-21-65	1CT	9-22-64	2-01-65	7-27-64	8-24-64
 GROUND SURFACE ELEVATION IN FEET	LOWER TULE RIVER IRRIGATION DIST	331.0			VANDALIA IRRIGATION DISTRICT	524.0										535.0											SAUCELITO IRRIGATION DISTRICT	396.0		371.0	
STATE WELL NUMBER	LOWER TULE R	225/26E-06F04 M CONT.			VANDALIA IRR	225/28E-07001 M										225/28E-18A01 M											SAUCELITO IRR	225/26F=12B02 K		225/26F-15J01 M	
AGENCY SUPPLYING DATA		6001	6001	6001							1004	1000		6001											100	1000	6001		6001		
WATER SURFACE ELEVATION IN FEET		282.5		108.5	116.0	123.0	129.6	128.9	125.1	127.5		108.2		179.5	181 • 4	180.6	180.0	183.0	184.7	186.1	186.2	186.2	188.2	188.4		171.1	198.9	210.0	181.5	182.3	184.6
GROUND SUR. FACE TO WATER SURFACE IN FEET	5-22+30	67.5	n &	a 135.5 128.8	128.0	121.0	114.4	115.1	118.9	116.5	2000	143.3		116.5	114.0	1.00	112.6	113.0	111.3	109.9	109.8	109.8	10/.8	10/.6	1 30	129.4	138.1	127.0	149.5	148.7	146.4
DATE	ON DIST	5-03-65	7-07-64	7-07-64 8-03-64 9-01-64	9-24-64	12-06-64	1-29-65	3-08-65	5-03-65	6-02-65	0 37 47.	1-25-65		7-07-64	8-03-64	9-02-64	11-04-64	12-06-64	1-07-65	1-29-65	3-08-65	4-02-65	5-03-65	69-20-9		1-25-65	10-06-64	2-03-65	7-07-64	7-20-64	9-23-64
GROUND SURFACE ELEVATION IN FEET	LOWER TULE RIVER IRRIGATION DIST	350.0	359.0	244.0							361 6	65162		296.0											4	•	337.0		331.0		
STATE WELL NUMBER	LOWER TULE RI	215/26E-10En1 M CONT.	215/26E-10H01 ₩	225/24E-09A01 M							M 106431-3464366			225/25E-10E01 M													225/26E-06A01 M		225/26E-06F04 M		

AGENCY SUPPLYIN		0009	6003	009		0009	9	9
WATER SURFACE ELEVATION IN FEET		1111 123.0 113.0 113.0 113.0 103.0 103.0		88888999999999999999999999999999999999	90.7	80.7 105.1 114.5 113.2 1101.9 115.0 105.0	234.7	
GROUND SUR. FACE TO WATER SURFACE IN FEET	5-22.33	198.1 193.0 186.6 192.5 196.9 196.9 206.6	0 0	134.6 135.0 135.0 128.0 128.5 128.5 127.7	131.3	DRY DRY DRY DRY 1172.9 163.5 164.8 176.1 176.1 173.9	65.3	
DATE	C1	11-23-64 12-21-64 2-01-65 2-24-65 3-22-65 4-26-65 5-25-65 6-21-65	9-25-64	7 - 28 1 -	6-22-65	7-27-64 9-24-64 10-26-64 11-23-64 11-23-64 11-23-64 12-21-65 3-22-65 3-22-65 4-26-65 5-24-65 6-25-65	9-24-64	7-27-64 8-24-64 9-24-64 10-26-64
GROUND SURFACE ELEVATION IN FEET	TION DISTRI	310.0	207.0	222*0		278.0	30000	291.0
STATE WELL NUMBER	PIXLEY TRRIGATION DISTRICT	225/25E-25N01 M	235/23E-02B01 M	235/24E-16R01 M			235/25E-14C01 M	235/25E-15J02 M
AGENCY SUPPLYING DATA		6001	6 00 1		6001	6001		6 001
WATER SURFACE ELEVATION IN FEET		227.05 234.06 234.05 234.05 234.05 234.05	120.8	126.8 131.6 137.6 137.6 1392.3 146.9 146.7	230.7	176 1896 1916 2056 2038 2038 2036 2036 2036 2036 2056 2056 2056 3		91.7 87.5 96.8 100.9
GROUND SUR. FACE TO WATER SURFACE IN FEET	5-22.32	146.5 136.5 136.5 136.5 136.6 136.6 136.0 136.0	218.2	212.2 207.6 201.0 201.5 1199.7 1197.1 203.4 203.4	166.3	204.0 1910.2 1890.3 175.1 175.1 1810.0 179.6 179.6 175.7	5-22-33	218+3 222-5 213+2 209+1
DATE	RICT	10-26-64 11-23-64 12-21-64 2-01-65 2-25-65 3-25-65 4-26-65 6-21-65	7-27-64	9-29-64 10-26-64 11-21-64 2-01-65 3-22-65 4-26-65 5-25-65 6-21-65	10-07-64	7-27-64 8-24-64 9-24-64 10-26-64 11-23-64 12-25-65 2-25-65 5-24-65 6-22-65		7-28-64 8-24-64 9-29-64 10-26-64
GROUND SURFACE ELEVATION IN FEET	SAUCELITO IRRIGATION DISTRICT	371.0	339.0		397.0	6.	PIXLEY IRRIGATION DISTRICT	310.0
STATE WELL NUMBER	SAUCELITO IRE	225/26E-15JO1 M	225/26E-32E01 M		235/26E-02R01 M	235/26E-03R01 M	PIXLEY IRRIGA	225/25E-25N01 M

AGENCY SUPPLYING DATA		\$ 000	6 00 1								6 00 1										6001										6001
WATER SURFACE ELEVATION IN FEET		166.4	148.5	150.4	157.2	156.6	159.9	162.9	158.8			80.0	95.1	108.3	000	93.0	74.0	11102	72.3		196.1	196.2	196.0	195.9	0.00	196.0	196.2	196.3	196.6	1,40.7	132.3
GROUND SUR. FACE TO WATER SURFACE IN FEET	5-22-33	102.6	196.5	194.6	187.6	188.4	185.1	182.1	186.2	5-22.34		114.2	6.66	86.7	100.1	102.0	121.0	00.00	122.1		13.9	13.7	14.0	14.1	0.41	3.6	13.8	13.7	13.4	1507	11.1
DATE		5-05-65	7-27-64	9-29-64	12-21-64	2-24-65	3-22-65	5-24-65	6-22-65		7-28-64	8-26-64	10-27-64	11-24-64	1-29-65	2-24-65	3-23-65	60-87-4	6-22-65		7-28-54	8-26-64	10-27-64	11-24-64	1-20 45	59-47-1	3-23-65	4-28-65	5-24-65	69-77-9	9-25-64
GROUND SURFACE ELEVATION IN FEET	PIXLEY IRRIGATION DISTRICT	569.0	345.0							NSWORTH AREA	195.0										210.0										210.0
STATE WELL NUMBER	PIXLEY IRRIG	235/25E-17003 M CONT.	235/26E-08R01 M							ALPAUGH-ALLENSWORTH AREA	225/23E-28L01 M										235/23E-33A01 M										225/23E-33A04 M
																								_							
AGENCY SUPPLYING DATA		6 00 1			0005									2000										2000							
WATER AGENCY SURFACE SUPPLYING ELEVATION DATA			119.0	107.7			2.49	91.8	115.4	98.2	96.2	102.8		005 2.651	160.2	162.3	163.6	165.4	165.7	165.4	165.7	164.0			161.1	163.4	164.8	165.8	166.0	166.3	166.0
WATER SURFACE ELEVATION IN FEET	5-22.33			183.3 107.7 183.0 108.0	0.00			171.2 91.8			·	168.9 94.1	6				99.4 163.6				97.3 165.7								103.0 166.0		103.0 166.0
		112.5	172.0		263.8		198.8	-	147.6		166.8		6	7.661	102.8	100.7		97.6	97.3	97.6		0.66		161.9	107.9	105.6	104.2	103.2		102.7	103.0
GROUND SUR. WATER FACE TO SURFACE SURFACE SURFACE IN FEET	PIXLEY TRRIGATION DISTRICT 5-22.33	178.5 112.5 188.0 103.0	172.0	183.3	263.8	8-17-64	198.8	171.2	147.6	164.8	166.8	168.9		105.8 159.2	102.8	100.7	7.66	97.6	97.3	97.6	97.3	0.66		107.1 161.9	107.9	105.6	104.2	103.2	103.0	102.7	103.0

AGENCY SUPPLYING DATA		6 00 1	6001	6001						6 001		6 00 1	6001	6 00 1	000
WATER SURFACE ELEVATION IN FEET			184.0		136.5	144.6	139.1	140.1	101.0	80.1		191.0	156.0	112.5	216.0 2176.0 2187.7 2188.7 2188.7 2207.5 2207.5 2188.1 2188.1
GROUND SUR. FACE TD WATER SURFACE IN FEET	5-22.34	n n	51.0		112.5	104.4	109.9	108.9	148.0	145.9 148.5	5-22.35	105.0	200.5	420.8# 338.5	103.5 102.0 101.6 101.6 101.6 101.5 102.5 102.5 102.0
DATE		6-22-65	9-24-64	7-28-64 8-26-64	10-27-64	12-21-64	2-24-65	4-28-65	5-24-65	7-28-64 8-26-64 9-24-64	DIST	9-29-64	9-30-64	9-24-64	7-27-64 9-24-64 9-24-64 10-26-64 11-23-64 12-21-64 12-21-64 12-21-65 2-24-65 3-23-65 4-28-65 6-22-65
GROUND SURFACE ELEVATION IN FEET	SWORTH AREA	218.0	235.0	249.0						226.0	MART IRRIG DI	296.0	356.5	533.3	320*0
STATE WELL NUMBER	ALPAUGH-ALLENSWORTH AREA	24S/24E-20R01 M CONT.	245/24E-23001 M	245/24E-25F01 M						245/24E-32K04 M	DELANO-EARLIMART IRRIG	235/25E-27J02 M	235/26E-29P01 M	235/27E-28J01 M	245/25E-02H01 M
AGENCY SUPPLYING DATA		6001	6 00 1					500	T000	6 00 1				6001	6001
WATER SURFACE ELEVATION IN FEET		133.5	83.7	80.4 123.1 131.5	132.3	133.5	133.3	0	146.0	119.9 119.0 119.3	115.2	119.0	120.3	13.0	- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
GRDUND SUR. FACE TD WATER SURFACE IN FEET	5-22.34	76.5	123.7	129.6 86.9 78.5	77.7	76.5	76.7) t	58.0	85.1 86.0 85.7	89.8 87.8	90.7	84.7 86.1 86.7	193.0	2 2 2 2 2 3 2 2 2 2 3 3 3 3 3 3 3 3 3 3
DATE		1-29-65	7-28-64 8-26-64 9-25-64	10-27-54	1-29-65	3-23-65	5-24-65		9-24-64 1-28-65	7-28-64 8-26-64 9-29-64	10-27-64	1-28-65 2-24-65 3-23-65	4-28-65 5-24-65 6-22-65	9-24-64	7-28-64 8-26-64 9-24-64 11-24-64 12-21-64 12-21-64 12-21-64 12-21-64 12-21-64 12-21-64 12-21-65 3-23-65 3-23-65
GROUND SURFACE ELEVATION IN FEET	NSWORTH AREA	210.0	210.0					4	204.0	205.0				206.0	218.0
STATE WELL NUMBER	ALPAUGH-ALLENSWORTH AREA	23S/23E-33A04 M CONT.	235/23E-33A05 M						24S/23E-21B02 M	245/23E-22E01 M				245/23E-34R01 M	245/24E-20R01 M

STATE WELL CORDUNG STATE WITH STATE WITH CORDUNG STATE WITH STATE WIT				7 2 0								
M 376.0 10-20-64 151.5 152.5 6001 255.726E-01002 M 500.5 6-18-64 502.6 22.9 29.9 8 9.8 8 9.8 8 9.8 9.8 9.8 9.8 9.8 9.	STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GROUND SUR. FACE TO WATER SURFACE IN FEET		AGENCY SUPPLYING DATA	STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET		GROUND SUR. FACE TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING OATA
M 396.0 9-29-64 151.5 152.5 6001 255.76E-01A02 M 505.5 8-16-64 80.00 2.0	DEL ANO-EARL	ART IRRIG	151	5-22-35			DELANO-EARLIM	ART IRRIG DIS	ST	5-22.35		
## 376.0 10-02-64 82.0 220.45 82.0 220.45 82.0 220.45 82.0 220.45 82.0 220.45 82.0 220.45 82.0 220.45 82.0 8		304.0	9-29-64	151.5	152.5	6001		505.5	9-16-64	502.6 418.7	86.8	2 000
M 378.0 10-01-64 189.0 187.0 6001 M 378.0 10-02-64 219.0 187.0 6001 M 378.0 10-02-64 219.0 187.0 6001 M 401.0 1-22-64 162.8 238.2 5000 255/26E-10803 W 430.0 10-05-64 533.5 5148 M 401.0 1-22-64 162.8 238.2 5000 255/26E-10803 W 430.0 10-05-64 533.5 5148 M 401.0 1-22-64 191.4 239.0 26.1 1 1-26-65 116.0 25.2 3 1-26-65 116.0 3 1-26-65 11		291.5	9-24-64	82.0	209.5	6001			11-13-64	345.6	125.5	
м 401.0 22-64 202.0 176.0 6001 6001 6001 6002 255/26E-10B03 м 430.0 10-05-65 340.0 155.7 340.0 150.2 6 6 102.6 214.0 6001 601.0 10-05-65 140.0 150.2 6 102.6 214.0 100.0 10-05-65 140.0		376.0	10-01-64	189.0	187.0	6001			2-11-65	329.1 345.7	176.4	
M 401.0 7-22-64 162.8 238.2 5000 255/26E-10B03 M 430.0 10-06-64 233.5 196.5 24.5 515.5 24.5 510.6 4 151.4 249.6 151.4 249.6 151.4 249.6 151.4 249.6 151.4 249.6 151.4 249.6 151.4 249.6 151.4 249.6 151.4 249.6 151.4 249.6 151.4 249.6 151.4 249.6 151.4 249.6 151.4 249.6 151.4 249.6 151.4 249.6 151.4 249.6 151.4 249.6 107.6 256.3 24.6 107.6 256.4 107.6 256		378.0	10-02-64	202.0	176.0	6001			4-09-65 5-05-65 6-02-65	349.6 351.8 346.0	153.7	
10-20-64 13-4 25-23 255/26E-16PO1 W 388.0 7-22-64 109.6 27944 10-20-64 10-20-64 107.0 26-21-64 107.0 270-11 270-21-64 270-21 270		401.0	7-22-64 8-24-64	162.8	238.2	2000		430.0	10-05-64	233.5	196.5	6001
12-21-64 134.7 264.8			10-20-64	148.7	252.3			388.0	7-22-64	109.8	278.2	2000
1-26-65 136-7 264-1 1			11-17-64	144.2	256.8				8-24-64	108.6	279.4	
2-2-65 146.7 2564.3			1-26-65	136.9	264.1				10-20-64	107.0	281.0	
4-19-65 139.9 261.1 1-25-65 113.2 278.1 1-25-65 113.2 278.1 1-25-65 113.2 278.1			2-23-65	136.7	264.3				11-17-64	106.9	281.1	
## 396.0 5-10-65 144.0 257.0 ## 396.0 2-30-64 136.5 259.5 6001 ## 4465.0 7-23-65 112.2 278.4 ## 4465.0 7-23-64 136.5 259.5 6001 ## 4465.0 7-23-64 136.5 259.5 6001 ## 4465.0 7-23-64 136.5 259.5 6001 ## 4465.0 7-23-64 136.5 259.5 6001 ## 4465.0 7-23-64 136.5 259.5 6001 ## 4465.0 7-23-64 136.5 259.5 6001 ## 4465.0 7-23-64 136.5 211.3 278.4 ## 4465.0 7-23-64 136.5 211.3 278.4 ## 4465.0 7-23-64 136.5 211.3 278.4 ## 526.5 10-02-64 452.5 74.0 6001 ## 526.5 7-23-65 111.0 - 5.5 5000 ## 556.5 7-23-65 111.0 - 5.5 5000 ## 556.5 7-23-65 111.2 ## 556.5 7-23-65 111.2 ## 556.5 7-23-65 111.3 ## 556.5 7-23-65 111.3 ## 556.5 7-23-64 136.5 74.0 6001 ## 556.5 7-23-65 77.0 77.0 6001 ## 766.4 77.0 6001 ## 766.4 77.0 6001 ## 766.4 77.0 6001 ## 766.4 77.0 6001 ## 766.4 77.0 6001 ## 766.4 77.0 6001 ## 766.4 77.0 6001 ## 766.4 77.0 6001 ## 766.4 77.0 6001 ## 766.4 77.0 6001 ## 766.4 77.0 6001 ## 766.4 77.0 6001 ## 766.4 77.0 6001 ## 766.4 77.0 6001 ## 766.4 77.0 6001 ## 766.4 77.0 6001 ## 766.4 77.0 6001 ## 766.4 77.0 6001 ## 766.4 77.0 7			3-22-65	141.5	259.5				12-21-64	108.9	279.1	
5-15-65 144.0 200.0 6-21-65 144.0 273.4 9-30-64 136.5 259.5 6001 2-04-65 122.5 141.1 273.4 2-04-65 122.5 141.1 273.4 2-04-65 122.5 141.1 273.4 2-04-65 122.5 141.1 273.4 9-16-64 274.2 146.9 5000 255/27E-22H01 M 750.0 9-24-64 01.5 348.5 10-13-64 255.5 189.5 179.7 201.3 1-11-64 24.5 231.1 207.9 201.1 189.5 111.3 6 122.64 01.5 348.5 1-11-65 231.1 207.9 201.1 111.3 6 122.64 01.5 111.3 6 122.64 1-11-65 231.1 207.9 11.3 207.9 11.3 11.3 6 120.64 2-10-65 233.7 200.3 11.3 11.2 11.2 6 10.5 11.3 6 10.5 1			4-19-65	139.9	261.1				1-25-65	112.2	275.8	
M 445.0 123-5 122.5 259.5 6001 255/27E-22H01 M 750.0 214-64 273.4 274.4 270.4 270.4 270.4 270.4 270.4 270.4 270.4 270.2 270.4 270.2			5-19-65	1400	257.0				3-22-65	114.1	273.9	
M 396.0 9-30-64 136.5 259.5 6001 M 445.0 7-23-64 298.6 146.4 5000 255/27E-22H01 M 750.0 9-24-64 01.5 348.5 111.9 276.1 1			•						4-19-65	114.6	273.4	
M 445.0 7-23-64 298.6 146.4 5000 255/27E-22H01 M 750.0 9-24-64		396.0	9-30-64	136.5	259.5	6 00 1			5-19-65	113.6	274.4	
## 44250 1-25-04 298.1 165-9 255/27E-22H01 M 700.0 7-25-04 348.5 10-13-64 298.1 165-9 10-13-64 265.3 110-13-64 265.3				4 000	3.4.4.	0000		6	77 70 0	C		1009
0-16-64 277.2 167.8 SOUTHERN SAN JOAGULIN MUD S-22.36 10-13-64 255.3 199.7 203.3 255/24E-12A02 M 253.0 2-22-64 10-12-65 231.1 207.9 203.3 255/24E-12A02 M 253.0 2-22-64 10.6 142.4 20.6 233.7 201.3 20.6			8-17-64	298.1	146.9			0.067	1-28-65	401.5	348.5	
10-13-64 255-5 189-5 1			9-16-64	277.2	167.8							
12-14-64			10-13-64	265.3	179.7					5-22.36		
1-12-65 23.1 2073 255/24E-12A02 M 253.0 7-22-64			11-13-64	255.5	189.5							0
2-11-65 233-7 201-7 9-21-64 110-6 2-11-65 233-7 200-7 9-21-64 110-6 3-15-65 234-7 200-7 110-20-64 110-20-64 110-20-64 110-20-64 110-20-65 110-20-6			12-14-64	241.7	203+3			253.0	7-22-64			000
3-15-65 238-3 206-7 10-20-64 10-3 10-20-64 10-3 10-20-64 10-3 10-20-64 10-3 10-20-64 10-3 10-20-64 10-3 10-20-64 10-3 10-20-64 10			69-21-1	10167	20102				50=57=0	3 011	14.2.4	
4.09-65 239-6 205-4 5-05-65 244-8 200-2 6-02-65 244-8 200-2 1-26-65 90-8 1-26-65 9			3-15-65	233.1	206.7				10-20-64	0 0 0	1 0 1	
5-05-65 244.8 200.2 12-21-64 86.6 2-73-65 92.6 2-73-65 93.6 2-73-65 92			200-7	239.6	205.4				11-17-64		150.3	
6-02-65 244.8 200.2 M 526.5 10-02-64 452.5 74.0 6001 M 556.5 2-06-65 382.5 144.0 6001 M 555.5 7-23-64 511.0 - 5.5 5000			5-05-65	234.7	210.3				12-21-64		166.4	
M 526.5 10-02-64 452.5 74.0 6001 3-22-65 94.5 2-06-65 382.5 144.0 6001 4-19-65 87.1 5-19-65 87.1			6-02-65	244.8	20002				1-26-65		160.4	
2-06-65 382-5 144-0 4-19-65 87-1 5-5 5000 6-21-65 6-21			10-02-64	452.5	74.0	6001			3-77-65	94.5	158.5	
505.5 7-23-64 511.0 - 5.5 5000 5-21-65			2-06-65		144.0				4-19-65	87.1	165.9	
			7-23-64	511.0		2000			6-21-65	םכ		

AGENCY SUPPLYING DATA		2000	2000	6 00 1	0000 \$	0000
WATER SURFACE ELEVATION IN FEET		201.1	109.9 1116.9 121.8 132.8 134.9 136.5 130.5 130.5 125.6	124.2	1114. 110. 110. 1214. 121. 131. 148. 148. 144. 144. 144.	16.9 59.3 93.8 1116.8 127.8 67.8
GROUND SUR. FACE TO WATER SURFACE IN FEET	5-22.36	134.9 138.0	3993.1 386.8 381.2 370.8 370.8 370.9 370.9 370.9 370.9 371.0 371.0	318.8	2966.8 3006.3 2796.3 2796.3 273.4 268.3 265.7 265.7 265.7 265.7	5-22.37 281.4 239.0 239.0 101.5 170.5 170.5 230.5
DATE		5-19-65 6-21-65	7-22-64 8-19-64 10-20-64 11-17-64 12-21-64 12-23-65 3-22-65 5-19-65 6-21-65	9-22-64	7-22-64 8-19-64 10-20-64 11-17-64 112-21-64 1-221-64 1-221-64 1-221-64 1-221-64 1-221-64 1-221-65 2-23-65 2-23-65 4-19-65 5-19-65	7-22-64 8-24-64 8-24-64 10-20-64 11-11-12-164 12-21-64 12-23-65 2-23-65 4-19-65
GROUND SURFACE ELEVATION IN FEET	SOUTHERN SAN JOAQUIN MUD	336.0	503.0	443.0	0 . 11	MORTH KERN WATER STORAGE D 4E-12R01 M 298.3
STATE WELL NUMBER	SOUTHERN SAN	265/25E-02001 M CONT.	265/26E-10R01 M	265/26E-16P01 M	265/26E-29C01 M	NORTH KERN W
AGENCY SUPPLYING DATA		009	0000	6001	0000	0000
WATER SURFACE ELEVATION IN FEET		177.7	53.3 46.8 56.8 811.8 104.2 1124.6 1124.6 1122.2	162.4	220.3 218.0 226.8 220.8 231.0 231.0 231.1 231.2 230.2 223.6 223.6 223.6	219.5 228.0 125.0 130.6 156.8 166.8 166.8 173.6 173.2 207.6 199.0
GROUND SUR. FACE TO WATER SURFACE IN FEET	5-22.36	81.3	232.7 239.2 2204.2 204.2 181.8 1159.0 1162.6 1162.6 1161.4 1156.6 1163.8	217.2	173.7 1175.0 1176.0 173.2 1173.2 1163.0 1162.9 1162.9 1163.0 1165.0 1165.0 1165.0 1165.0	194.5 186.0 211.0 205.4 179.2 179.2 160.4 151.1 162.8 137.0
DATE		9-21-64	7-22-64 8-24-64 10-20-64 11-17-64 11-22-64 12-21-64 12-21-64 12-21-64 12-21-64 12-21-64 12-21-65 5-19-65 6-21-65	9-21-64	7-22-64 9-24-64 9-24-64 10-20-64 11-17-64 12-21-64 12-21-64 12-21-64 12-21-64 12-21-64 12-21-64 12-21-64 12-21-64 12-21-65 5-19-65 6-21-65	9-22-64 1-27-65 1-27-65 1-22-64 19-21-64 11-17-64 12-21-64 12-21-64 12-21-64 13-22-65 4-19-65
GROUND SURFACE ELEVATION IN FEET	JOAQUIN MUD	259.0	0.988	322.0	0.446	414.0
STATE WELL NUMBER	SOUTHERN SAN	255/25E-06H01 M	255/25E-22D01 M	255/25E-35P01 M	255/26E-28E01 M	255/26E-28H02 M

AGENCY SUPPLYING DATA		2000			8 700	6001	8 700	9000							4	0000											
WATER SURFACE ELEVATION IN FEET		141.3	129.8				165.0		160.5	142.8	190.5	180.7		198.5		222.0	217.8	217.5	217.3	217.4	218.1	219.8	221.0	213.6			
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22-37	304.2 298.1 308.6	315.7	0 0	а	00	196.1*	0	22925	247.2	199.5	209.3	םם	191.5		166.0	170.2	4.071	170.7	1,0.6	169.9	168.2	167.9	174.4			
DATE	0157	12-21-64 1-26-65 2-23-65	3-22-65	5-19-65	9-10-64	9-23-64	9-22-64	7-22-64	8-24-64	10-20-64	12-21-64	2-73-65	3-22-65	5-19-65		7-22-64	9-21-64	10-20-64	11-17-64	12-21-64	2-23-65	3-23-65	4-19-65	5-19-65			
GROUND SURFACE ELEVATION IN FEET	NORTH KERN WATER STORAGE OIST	445.5			435.7	527.0	361.1	390.0								388.0											
STATE WELL NUMBER	NORTH KERN W	275/26E-20D01 M CONT.			275/26E-20E01 M	275/27E-30H02 M	285/25E-13L01 M	285/26E-07M01 M								285/26E-21H01 M											
AGENCY SUPPLYING DATA		\$ 000	2 000						8 700	8 700	0028		6001	2000										6001	5 000		
WATER SURFACE ELEVATION IN FEET		- 2 • 2		90.8	157.7	1910.7	156.7		1.46	69.5		•		265.2	263.0	262.4	260.7	259.6	254.7	262.1	0 • 6 0 7	270.5		121.4			135.5
GROUNO SUR. FACE TO WATER SURFACE IN FEET	5-22-37	300.5	00	255.9	189.0	181.0	190.0		257.6	267.1	0 90 6	0.606	æ	128.8	131.0	131.6	133.3	134.4	139.3	131.9	130.5	123.5		294•6	0 (310.0
DATE	DIST	6-21-65	7-22-64	9-23-64	12-21-64	2-23-65	4-19-65	6-21-65	9-03-64	9-17-64	77.00	¥=02=0=	9-23-64	7-22-64	9-21-64	10-20-64	12-21-64	1-26-65	2-23-65	3-22-65	10-61-4	6-21-65		9-21-64	1-22-64	9-21-64	10-20-64
GROUND SURFACE ELEVATION IN FEET	TER STORAGE	298.3	346.7						352.3	336.6		396.0	401.0	394.0										416.0	445.5		
STATE WELL NUMBER	NORTH KERN WATER STORAGE DIST	265/24E-12R01 M CONT.	265/25E-15P01 M						265/25E-15P01 M	265/25E-31R01 ₩		265/26E-30P01 M	275/25E-01A01 M	275/25E-01N01 M										275/26E-06H02 M	275/26E-20001 M		

AGENCY SUPPLYING DATA		0000	6 001	8 700	0000 900 9	2000
WATER SURFACE ELEVATION IN FEET		1122.1 1115.0 1115.0 1115.0 119.7 119.7 1210.0 120.0 115.6 115.6	159.0	190 • 9	175.0 175.0 182.2 182.2 182.2 182.4 182.4 182.7 17.9 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0	304.8
GROUNO SUR. FACE TO WATER SURFACE IN FEET	5-22.40	193.9 200.3 190.0 191.0 186.3 186.9 186.0 196.0 196.0 196.0 197.0 197.0 197.0	167.0	158.1	24	80.2
DATE		7-22-64 9-21-64 10-20-64 11-17-64 11-17-64 1-22-65 2-23-65 4-19-65 6-21-65	9-22-64	8-24-64	7-22-64 9-21-64 9-21-64 11-17-64 11-17-64 11-221-64 12-21-64 11-221-64 9-21-65 9-21-64 11-20-	7-22-64
GROUND SURFACE ELEVATION IN FEET	ELTA AREA	306.0	326.0	349.0	330°0 385°0	385.0
STATE WELL NUMBER	KERN RIVER DELTA AREA	285/24E-23D01 M	285/25E-34J01 M	285/26E-29L01 M	295/25E-12M03 M	295/27E-34N01 M
AGENCY SUPPLYING DATA		0000	8700		0 0 0 0 0 0	
WATER SURFACE ELEVATION IN FEET		11124 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	87.2	101.0	159.2 159.1 159.4 159.4 118.9 137.6 153.5 151.8 151.8 151.8 151.9 151.9 151.9	
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.38	283.3 252.0 252.0 252.0 234.3 210.0 1198.2 1198.2 212.5 212.5 212.5 211.7 246.9	228.8*	274.0	245.8 215.9 215.9 218.6 256.1 237.4 245.4 245.4 1175.5 117.7 117.7 117.7 117.7 118.9 118.9	
DATE	0157	7-22-64 8-24-64 9-21-64 10-20-64 11-17-64 1-22-65 2-23-65 3-23-65 4-19-65 6-21-65	9-10-64	8-24-64	110-20-64 110-20-64 12-21-64 1-25-65 3-22-65 3-22-65 3-22-65 1-10-65 1-10-65 1-17-64 11-17-64 11-27-64 11-27-64 11-27-64 11-27-64 11-27-64 11-27-64 11-27-64 11-27-64 11-27-64 11-27-64 11-27-64 11-27-64 11-27-64 11-27-64 11-27-64 11-27-64 11-27-65	
GROUND SURFACE ELEVATION IN FEET	O IRRIGATION DIST	322.0	316.0	0.676	335°0 329°0	
STATE WELL NUMBER	SHAFTER-WASCO	275/24E-01L02 M	275/24E-35C01 M		285/25E-16D03 M	

AGENCY SUPPLYING DATA		5120	6001	2000			5120	5120	8 700	2000		5120	8 700
WATER SURFACE ELEVATION IN FEET			237.9	258.4 259.4 262.2 262.2 264.9	268.4 268.4 266.0	263.6 261.6 260.1	242.1 246.1	236.3	206.5		1899.4 203.1 212.7 230.0 220.2 235.8 226.8	248.6	168.7
GROUNO SUR. FACE TO WATER SURFACE IN FEET	5-22.40	□ ⊛	116.5	100.6 104.0 99.5 96.8	96.0 90.6 93.0	95.4	90.9	55.0	134.6*	0 0	120°6 106°9 97°3 79°5 79°5 74°2 90°9	63.5	146.0*
DATE		9-22-64	9-24-64	7-23-64 8-25-64 9-22-64 10-21-64 11-18-64	12-21-64 1-27-65 2-24-65	5-23-65 4-20-65 5-19-65 6-22-65	9-22-64	9-18-64	8-24-64	7-23-64	9-22-64 10-21-64 11-22-64 1-26-65 2-24-65 3-23-65 4-20-65 6-22-65	9-18-64	9-11-64
GROUND SURFACE ELEVATION IN FEET	ELTA AREA	359.0	354.4	359.0			333.0	294.5	341.1	310.0		312.1	314.7
STATE WELL NUMBER	KERN RIVER DELTA AREA	305/27E-28A02 M	30S/28E-32B01 M	305/28E-34R02 M			315/26E-01A01 M	315/26E-35D01 M	315/27E-04L01 M	315/27E-28H01 M		315/27E-28J01 M	315/28E-30M01 M
AGENCY SUPPLYING DATA		2000			8 700	0797				5120	0000		8 700
WATER SURFACE ELEVATION IN FEET		302.0	295.9		203.6	241.8	244.9	245.2	237.1	280.1	2552 2566 2566 2566 2566 2566 2566 2566	252.8	251.0
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.40	00000	000		115.7*	66.7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 8 8 9 8 6 9 6 6 9 6 6 9 6 9 6 9 9 9 9	710.4	0.65	00000000000000000000000000000000000000	85.2 93.2	87.7*
OATE		8-24-64 9-21-64	11-18-64	2-24-65 3-23-65 4-19-65 5-19-65 6-22-65	9-11-64	7-00-64 8-03-64 9-02-64	10-30-64	3-05-65	6-01-65	9-22-64	7-22-64 8-24-64 9-21-64 10-20-64 11-17-64 12-21-64 1-26-65 3-24-65	4-19-65 5-19-65 6-21-65	9-11-64
GROUND SURFACE ELEVATION IN FEET	LTA AREA	385.0			319.3	308.5				339.1	338.		338.7
STATE WELL NUMBER	KERN RIVER DELTA AREA	295/27E-34N01 M CONT.			305/25E-03H01 M	305/25E-22D01 M				305/26E-16J01 M	305/26E-22P02 M		305/26E-27A01 M

AGENCY SUPPLYING DATA		6001	5050	6001	6001	6 00 1	5120		6001	2 000							5 000						
WATER SURFACE ELEVATION IN FEET		164.0	589.1	134.7	231.5	2 • 2 9 2	152.0	269.5	124.2	12.0	50.2	76.8	78.8	54.5	62.4	7 • 7 7	146.2	144.6	14460	146.5	147.7	148.2	148.0
GROUNO SUR. FACE TO WATER SURFACE IN FEET	5-22.41	464.0	202.4	333•3	168.5	0 0	384.0	173.0	262.5	275.3	252.8	226.2	224.2	248.5	240.6	258.6	323.8	325.4	325.68	323.5	322.3	321.8	322.0 322.1
DATE		9-22-64	9-22-64	9-23-64	9-23-64	9-23-64	1-25-65	1-25-65	9-23-64	7-23-64 8-25-64	10-21-64	12-22-64	2-24-65	3-23-65	5-20-65	6-22-65	7-23-64	8-25-64	10-21-64	11-18-64	12-22-64	1-27-65	3-23-65
GROUND SURFACE ELEVATION IN FEET	OPA AREA	628.0	791.5	468.0	0.004	536.0	442.5		386.7	303.0							470.0						
STATE WELL NUMBER	EDISON-MARICOPA AREA	305/29E-26A01 M	305/30E-20R01 M	315/29E-09A01 M	315/29E-29A01 M	315/30E-21G01 M	325/25F-35M02 M		32S/28E-23R01 M	325/28E-30D04 M							325/29E-16R02 M						
AGENCY SUPPLYING DATA		5120	8 700	6001		6001	6001	5 000						5 000									6 00 1
WATER SURFACE ELEVATION IN FEET		200.8	154.3	546.5		125.0	224.5	334.2	334.5 334.1 335.0	333.00 333.00 033.00	333.2	332.1	331.3	205.8	203.0	210.3	214.7	218.8	218.8	216.3	218.4	210.2	165.5
GROUND SUR. WATE FACE TO SURFA WATER ELEVA SURFACE IN FE	5-22.40	177.2 200.8 174.2 203.8	138.3* 154.3 127.3 165.3	53.5 249.5	5-22.41	453.0 125.0 438.0 140.0	185.5 224.5 198.5 211.5			38.5 334.5 39.5 333.5 39.5 333.5			41.7 331.3	167.2 205.8	170.0 203.0			154.2 218.8				162.8 210.2 167.1 205.9	349.5 165.5 341.0 174.0
	5-22.40				5-22.41			38.8	38 6 8 8 8 8 8 0 9 0		39.8		41.7		170.0	162.7	158.3		154.2	156.7	154.6		
GROUND SUR. FACE TO WATER SURFACE IN FEET	KERN RIVER DELTA AREA 5-22.40	177.2	138.3*	53.5	EDISON-MARICOPA AREA 5-22.41	453.0	185.5	38.8	38 6 8 8 8 8 8 0 9 0	388 398 50 50 50 50	39.8	40.9	41.7	167.2	170.0	162.7	158.3	154.2	154.2	156.7	154.6	162.8	349.5

STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GROUND SUR. FACE TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA	STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GROUND SUR- FACE TO WATER SURFACE IN FEET	WATER SURFACE ELEYATION IN FEET	AGENCY SUPPLYING DATA
A A Q Q O C I S A M - NO S I O R	OPA ARFA		5-22.41			EDISON-MARICOPA AREA	OPA AREA		5-22.41		
							0	1-27-65	0.801	742.0	6001
325/29E-16R02 M CONT.	470.0	6-22-65	324.1	145.9	0000 \$	IIN/IBW-ZBDOI S CONT.	0.00	60-17-1	•		
M 60001-3007-300	416.0	7-23-64	200-1	215.9	2000	11N/19W-04H01 S	575.9	9-22-64	0		6001
	9	8-25-64	197.4	218.6				1-26-65	n		
		9-25-64	190.5	225.5		000000000000000000000000000000000000000	0 623	7-23-64	476.9	195.1	5 000
		10-21-64	190.2	225.8		11N/19W-0/R03 S	0.210	8-75-64	478.1	193.9	
		11-18-64	3000	215.9				9-22-64	474.6	197.4	
		1-27-65	2000	215.4				10-21-64	471.2	200.8	
		2-24-65	200.2	215.8				11-18-64	468.7	203.3	
		3-23-65	200 • 3	215.7				12-22-64	467.6	204.4	
		4-20-65	201.6	214.4				1-21-65	00/077	202.3	
		5-19-65	200.4	215.6				3-23-65	470.6	192.4	
		6-22-65	201.0	215.0				4-20-65	470.9	201.1	
2 0000000000000000000000000000000000000	0.14.0	7-23-64	379.1	36.9	2000			5-20-65	474.6	197.4	
323/29E-19H03 M		8-25-64	372.2	43.8				6-22-65	482.4	189.6	
		9-22-64	338.1	77.9			4	77	t		0078
		10-21-64	327.4	88.6		11N/20W-07001 S	452.3	7-13-64	3 707	4.44	
		11-18-64	309.9	106.1				60-01-2	. 0	7	
		12-22-64	303.4	112.6		O LONG L MOCKATA	7 - 787	9-21-64	348.4	136.3	6001
		1-27-65	299.4	116.6			7	1-25-65	324.6	160.1	
		2 2 2 2 5	222.0	004							
		4-20-65	321.8	94.5		11N/20W-24A01 S	730.2	9-15-64	530.6	199.6	8 700
		5-19-65	349.3	66.7				2-10-65	530.6	199.0	
		6-22-65	361.8	54.5		11N/21W-05M01 S	515.9	9-16-64	495.1	20.8	8 700
	0 647	7-23-64	21121	261.9	5000						
		8-25-64	212.4	260.6		11N/22W-04H01 S	529.0	9-16-64	464.3	64.7	8 700
		9-22-64	213.5	259.5				0-31-64	220.1	123.9	6001
		10-21-64	212.0	261.0		12N/20W-51R01 5	0 0 0 0 0	1-25-65	736.3	126.7)
		11-18-64	200.7	262.9				0000))		
		1-27-64	210.0	263.0		12N/21W-29N01 S	423.3	9-16-64	323.0	100.3	5120
		2-24-65	207.4	265.6				1-20-65	318.0	105.3	
		3-23-65	207.1	265.3					0	0.016	7 1 20
		4-20-65	207.5	265.5		12N/23W-28P01 S	0.86%	1-21-64	278.0	220.0	717
		20-61-6	2000	2020							
		6-22-65	211.6	261.4							
11N/18W-06P01 S	657.0	9-25-64	ים		6 00 1						
		1-26-65	b								
11N/18W-28D01 S	850.0	9-23-64	126.7	723.3	6 00 1						

AGENCY SUPPLYING OATA		4640	0797	0797						5 000									:	0494									0494	
WATER SURFACE ELEVATION IN FEET		181•1	177.6	170.8	220•6	219.1	192.1	207.6	187.5	214.4	212.1	220.6	222.4	219.2	221.0	219.8	220.2				215.9	219.2	217.0	2.50.	19201		212.1	7.861	207.0	198.5
GROUND SUR. FACE TO WATER SURFACE IN FEET	5-22.42	76.7	82.7	92.7	42.9	45.9	71.4	55.9	76.0	55.6	57.9	0.64	47.6	50.8	0 • 6 *	50.2	49.8			B (64.8	61.5	63.7	7.60	88.0		68.6	82.5	69.8	18.3
DATE	DIST	9-02-64	9-02-64	8-03-64	10-01-64	12-01-64	3-05-65	4-29-65	6-30-65	7-23-64	8-25-64	9-22-64	11-18-64	12-22-64	1-27-65	3-23-65	4-20-65	6-22-65		8-04-64	10-01-64	10-30-64	12-01-64	1-05-65	3-05-65	4-29-65	6-01-65	6-30-65	9-05-64	3-01-65
GROUND SURFACE ELEVATION IN FEET	BUENA VISTA WATER STORAGE	257.8	260.3	263.5						270.0										280.7									276.8	
STATE WELL NUMBER	BUENA VISTA	285/23E-31R01 M	295/23E-08A01 M	295/23E-10P01 M						295/23E-27M01 M										295/24E-32001 M									30S/23E-01C01 M	
AGENCY SUPPLYING DATA		5000						0715	2000									2000										5120		0797
WATER SURFACE ELEVATION IN FEET		151.5	170.8	160.0	162.2	165.0		199.0	129.3	113.3	121.9	7.671	137.0	137.4	129.3	132.6	132.0	218.4	216.5	217.1	218.1	217.4	217.6	212	217.6	217.8	218.5		223+0	
GROUND SUR. FACE TO WATER SURFACE IN FEET	5-22.42	86.5	67.2	78.0	75.8	73.0		41.0	1111.7	127.7	119.1	11100	104.0	103.6	111.7	108.4	109.0	21.6	23.5	22.9	21.9	22.6	22.4	29.52	22.4	22.2	21.5	D	22.0	@
DATE	DIST	7-23-64	3-22-64 10-21-64 11-18-64 12-22-64	1-27-65	3-23-65	5-20-65	1 7	2-02-65	7-23-64	9-22-64	10-21-64	12-00-64	1-27-65	2-24-65	4-20-65	5-20-65	6-22-65	7-23-64	8-25-64	10-21-64	11-18-64	12-22-64	1-27-65	2-23-65	4-20-65	5-20-65	6-22-65	9-25-64	2-05-65	8-03-64
GROUND SURFACE ELEVATION IN FEET	WATER STORAGE	238.0					0	0.042	241.0									240.0										245.0		253.2
STATE WELL NUMBER	BUENA VISTA	275/22E-16B01 M					2 60010 0000 000	213722E=21702 M	275/22E-32H01 M									285/22E-09D01 M										285/22E-10002 M		285/22E-36P01 M

	AGENCY SUPPLYING DATA		5120	0000	0000	6001	0000	6001
	WATER SURFACE ELEVATION IN FEET		57.5	123. 120. 120. 1190. 1123. 123. 131. 131. 128. 128. 128.		120.0	1589.5 1588.5 1588.2 1599.7 1600.0 1600.0 1600.0 1590.3	
	FACE TO FACE TO WATER SURFACE IN FEET	5-22-43	157.5	99999999999999999999999999999999999999	224.4 238.5 233.4 223.4 174.6 175.6 171.2 170.6 1164.2 172.8	108.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0
	DATE	0157	2-04-65	7-23-64 9-25-64 9-22-64 10-21-64 11-18-64 12-22-64 12-22-64 12-22-64 1-24-65 3-24-65 4-20-65 6-22-65	7-23-64 8-25-64 10-21-64 11-18-64 12-22-64 12-22-64 12-22-64 12-22-64 12-22-64 12-22-65 12-22-65	9-24-64	7-22-64 9-24-64 10-21-64 11-17-64 11-17-64 12-21-64 12-21-64 12-21-65 2-23-65 4-19-65 6-22-65	9-54-64
	GROUND SURFACE ELEVATION IN FEET		215.0	217.0	217.0	228.0	2 4 8 + 0	237.4
	STATE WELL NUMBER	SEMITROPIC WATER STORAGE	255/22E-14601 M CONT.	255/23E-28D01 M	255/23E-28D03 M	255/24E-07R01 M	255/24E-15H01 M	255/24E-30H01 M
г								
	AGENCY UPPLYING DATA		0797	0000	0000	9		5120
	WATER AGENCY SURFACE SUPPLYING ELEVATION DATA		206.9 4640	195.8 2165.2 216.2 216.2 217.4 208.3 216.2 213.4 199.5	244.6 238.4 238.4 230.1 230.1 231.6 251.7 251.7 251.7 251.7 251.7 251.7 251.7 251.7			24.5 5120
	WATER SURFACE ELEVATION IN FEET	5-22-42				6.	135.6 135.6 133.9 133.9 105.0 106.2 131.5	
	GROUND SUR. WATER AGENCY DATE WATER SUPPLYING SUPPACE ELEVATION DATA IN FEET IN FEET		206.9	195.8 212.1 216.2 216.2 217.4 217.4 205.1 205.1 213.4 213.4 213.4 213.4 213.4 213.4	2.44.6 2.	D1ST 5-22.43	76.6 135.6 76.6 135.6 76.4 133.6 76.4 133.6 77.0 135.0 67.8 144.2 70.8 144.2 70.8 144.2 82.6 130.6 88.5 123.0	24.5
	GROUND SUR- FACE TO WATER SURFACE SURFACE IN FEET IN FEET	BUENA VISTA WATER STORAGE DIST 5-22-42	80.1 206.9 81.3 205.7	87.2 70.9 70.9 66.8 66.8 65.6 65.6 65.6 76.9 76.9 76.9 76.9 76.9 76.9 76.9 76	38 . 4 . 6 . 6 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7	AGE D1ST 5-22.43	7-25-64 76-6 135-6	190.5 24.5

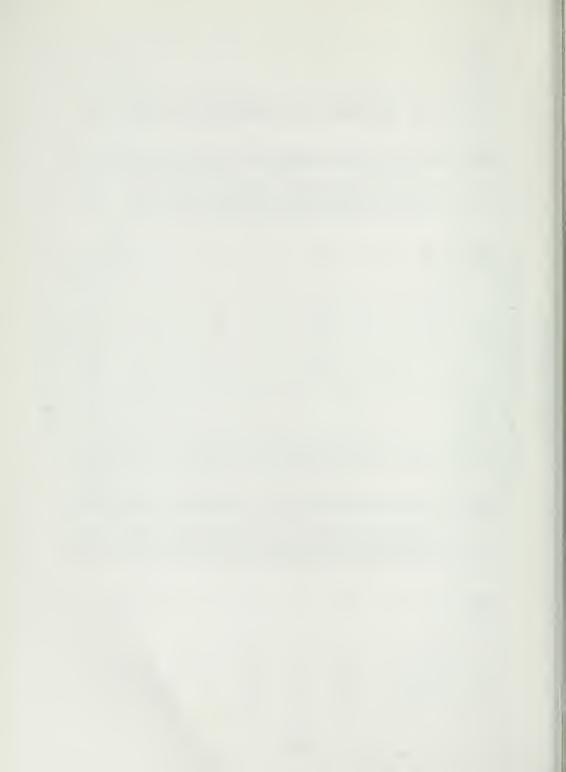
AGENCY SUPPLYING DATA		5 000									9	2000											5120			101										0494			
WATER SURFACE ELEVATION IN FEET		152.0	152.3	155.	155.0	166.1	154.5	155.9	156.0	154.2	i c	0 0	76.7	44.0	69.5	85.1	91.0	62.3	47 e G	77.9	0.00	20.0	211.0	214.0		22203	21304	210.0	220.4	224.6	219.6	223.6	224.8	223.0	220.5		117.3	126.9	
GROUND SUR. FACE TO WATER SURFACE	5-22.43	115.0	114.7	113.3	111.8	0 111	112.5	11101	1111.0	112.8		266.5	6.607	222.5	197.5	181.9	176.0	204.7	221.2	189.1	0.222	247.0	0.74	0.44		32.7	41.6	300.4	30.4	40.6	35.4	31.4	30.2	32.0	34.5		183.8	174.2	
DATE	1510	8-24-64	10-20-64	11-1/-64	12-21-04	1 20 00	3-22-65	4-10-65	5-19-65	6-21-65		7-22-64	8-24-64	10-20-64	11-18-64	12-21-64	1-26-65	2-23-65	3-22-65	4-19-65	5-19-65	6-21-65	0-20-64	2-03-65		8-03-64	9-05-64	10-01-64	10-30-64	1-05-65	3-05-65	4-03-65	4-29-65	6-01-65	6-30-65	7-00-64	9-03-64	10-30-64	
GROUND SURFACE ELEVATION IN FEET	SEMITROPIC WATER STORAGE	267.0										267.0											0			255.0										301.1			
STATE WELL NUMBER	SEMITROPIC W	275/23E-01R01 M CONT.										275/23E-01R04 M											1	Z 13/23E=00E01 H		285/23E-11E01 M										285/24E-28A01 M			
AGENCY SUPPLYING OATA		6001	0	0000											5120			2000											6,120	9		5120			5120	8 7 0 0	5120		2000
WATER SURFACE ELEVATION IN FEET		78.7		202.0	205.3	, ,	20202	20500	204.3	205.0	204.9	205.0	204.9	0 * 6 0 7	209.5	208.0		142.1				128.7	1,00	149.3	14703	149.7	150.9	140.5		125.0		122.9	6.86			- 12.3	210.5		151.8
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.43	158.7		38.5) a	0 0	0 00 0 00 0 00 0 00 0 00	0	39.7	39.0	39.1	39.0	39.1	0.66	27.5	29.0		81.9		п		95.00	70.07	74.7	16.7	74.3	73.1	83.5		128.0		112.0	136.0		æ	307.8*	54.5		115.2
DATE	DIST	1-28-65	;	7-23-64	8-22-04	10-22-6	11-18-64	12-22-64	1-27-65	2-24-65	3-24-65	4-20-65	5-20-65	60-77-9	9-29-64	2-04-65		7-23-64	8-25-64	9-22-64	10-21-64	11-18-64	1 27 45	2-24-65	3-24-65	4-20-65	5-20-65	6-22-65	0-30-64	2-04-65	,	9-28-64	2-03-65	;	9-28-64	9-08-64	9-25-64		7-22-64
GROUNO SURFACE ELEVATION IN FEET	WATER STORAGE	237.4		24400											237.0			224 .0											2 2 3 0	0.602		234.9			258.0	295.5	265.0	1	267.0
STATE WELL NUMBER	SEMITROPIC W	255/24E-30H01 M		265/21E-14E01 M											265721F-14.101 M	1001 717 607		265/22E-10G02 M											M 1000000000000000000000000000000000000			265/23E-02R01 M			265/23E-36F01 M	265/24E-23H01 M	275/22E-02001 M		275/23E-01R01 M

	AGENCY SUPPLYING DATA		2 000	5120	5120	5120	5120	5120	5120	5120		5000					2000
	WATER SURFACE ELEVATION IN FEET		3429.1 3424.6 3447.8 3447.8 3447.8	205.0	751.5	519.0	709.0	524.3	320.0	1183.0		- 32.6	- 55.4	- 74.0	- 26.2	- 21.6 - 13.0 - 4.4	45.4
	GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.44	130.9 137.6 132.2 133.1 132.4	63.0	158.5	166.0	166.0	205.7	209.0	37.0	5-22.45	213.6	236.4	255.0	207.2	202.6	223.4
	DATE		1-27-65 2-24-65 3-24-65 4-20-65 5-20-65 6-22-65	9-30-64	9-30-64	9-30-64	9-30-64	9-30-64	9-30-64	9-30-64	EA	7-24-64	9-23-64	11-18-64	1-28-65 2-24 25-65 3-24-65 3-24-65	4-21-65 5-20-65 6-23-65	7-24-64
	GROUND SURFACE ELEVATION IN FEET	TRICK AREA	0.084	268.0	910.0	685.0	875.0	730.0	530.0	1220.0	LOST HILLS AREA	181.0					178.0
	STATE WELL NUMBER	AVENAL-MCKITTRICK AREA	255/19E-20002 M CONT.	255/20E-04C01 M	265/17E-13L02 M	265/18E-16H01 M	265/18E-19802 M	265/18E-27F01 M	265/19E-12L01 M	275/18E-15R01 M	TULARE LAKE-LOST HILLS	215/20E-12M01 M					215/20E-27A01 M
	AGENCY SUPPLYING DATA]	0 4 9 4	5120		2050	00005				5050	5050	5050	2050	5120	2000	
	WATER SURFACE ELEVATION IN FEET		122.6 123.6 124.6 119.6	189.0	181.0		426.1 421.5 426.2	7.024	426.1	426.0 426.0 425.7	194.0		0.067		315.0	3460	348.5
)	GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22-43	178.5 178.5 177.5 176.5 181.5	101.0	109.0	В	133.9 138.5 133.8	133.8	132.9	134.0 134.0 134.3	41.0	æ	209.0	×	107.0	134.6	131.2
	DATE	DIST	12-01-64 1-05-65 3-05-65 4-03-65 4-29-65 6-01-65	6-30-65	2-01-65	12-14-64	7-23-64 8-25-64 9-22-64	10-21-64	1-27-65 2-24-65 3-24-65	4-20-65 5-20-65 6-22-65	12-14-64	12-14-64	12-16-64	12-16-64	9-30-64	7-23-64 8-25-64 9-22-64	10-21-64 11-18-64 12-22-64
	GRDUND SURFACE ELEVATION IN FEET	SEMITROPIC WATER STORAGE DIST	301.1	290•0	TRICK AREA	255.0	0.095				235.0	267.0	0.669	625.0	422.0	0.084	
	STATE WELL NUMBER	SFMITROPIC W	285/24E-28A01 M CONT.	X (194F-1480) X		225/19E-18P02 M	235/18E-29E02 M				235/19E-14R01 M	235/19E-26M01 M	245/18E-30D01 M	245/18E-33N01 M	255/19E-15G01 M	255/19E-20002 M	

AGENCY SUPPLYING DATA		5050	5050		5050	5050			
WATER SURFACE ELEVATION IN FEET		165.0 156.9 160.0 158.5 164.8	176.5	181.9 179.9 177.0 177.0 179.0 178.8 190.2	175.0	47.3	8.5 8.5 23.0 31.8	4 4 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
GROUND SUR. FACE TO WATER SURFACE IN FEET	5-22.46	31.0 39.1 36.0 37.5 31.2	24.5 23.0 14.5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	26.0 142.0 E	143.7	182.5 182.5 168.0 159.2	152.5 147.8 144.1 142.8	
OATE	101	1-29-65 3-03-65 4-07-65 5-05-65 6-01-65 6-25-65	7-24-64 8-26-64 9-25-64	111-24-64 12-30-64 1-29-65 3-03-65 4-07-65 6-01-65	6-25-65 7-24-64 8-26-64 9-25-64	7-24-64	9-25-64 10-27-64 12-30-64 1-29-65	65 103 103 103 103 103 103 103 103 103 103	
GROUND SURFACE ELEVATION IN FEET	CORCORAN IRRIGATION DISTRICT	196.0	201.0		188.0	191.0			
STATE WELL NUMBER	CORCORAN IRR	215/22E-27A01 M CONT.	225/22E-01802 M		225/22E-08L01 M	22S/22E-15C01 M			
AGENCY SUPPLYING DATA		2000		2000			5050		2050
WATER SURFACE ELEVATION IN FEET		- 79.6 - 78.6 - 63.6 - 70.6	- 60•0 - 40•8 - 24•5	110.5 109.3 108.2 105.9 105.2	108.5 107.0 107.7 108.6 108.1		148.8 145.5 150.0 147.5	150.5 151.6 152.5 144.8 151.9 166.8 151.0	155.7 160.0 160.5 163.0 163.0
GROUND SUR. FACE TO WATER SURFACE IN FEET	5-22.45	257.6 256.6 241.6 248.6 219.9	238.0 218.8 202.5 n	106.5 107.7 108.8 1111.1 111.0	108.5 1109.5 109.3 108.9	5-22.46	47.7 51.0 46.5 49.0	00000000000000000000000000000000000000	4 W W W W W W W W W W W W W W W W W W W
DATE	AREA	9-23-64 10-22-64 11-18-64 12-23-64 1-27-65 2-25-65	3-25-65 4-21-65 5-20-65 6-23-65	7-23-64 8-25-64 9-22-64 10-21-64 11-18-64 12-22-64	2-24-65 3-24-65 4-20-65 5-20-65 6-22-65	ICT	7-24-64 8-26-64 9-25-64 10-27-64	11-24-64 12-30-64 1-29-65 3-03-65 4-07-65 5-05-65 6-01-65	7-24-64 8-26-64 9-25-64 10-27-64 11-24-64
GROUND SURFACE ELEVATION IN FEET		178.0		217.0		IGATION DISTRICT	196.5		196•0
STATE WELL NUMBER	TULARE LAKE-LOST HILLS	215/20E-27A01 M CONT.		255/21E-22H01 M		CORCORAN IRRI	215/22E-16L02 M		215/22E-27401 M
				229					

GROUND SUR
WATER AGENCY WATER SURFACE SUPPLYING SURFACE IN FEET IN FEET
5-22.47
200.0 80.0 197.2 82.8
2222.3 - 11.3 217.5 - 6.5
5.8 177.2 6.5 176.5
247.0 - 25.0 248.2 - 26.2
DRY DRY
n
102.1 118.9
58•1 189•9
220.0 - 42.0
60.5 100.5 55.3 105.7
58.9 177.1 58.8 177.2 55.1 177.2 55.1 180.9 55.6 176.4 59.3 176.4 59.3 176.7 58.8 177.7 58.9 177.7
4433.4 - 197.4 5000 4443.0 - 207.0 434.8 - 198.8

AGENCY SUPPLYING DATA		0000	0 0 0	2 000	5 000			5050	0000
WATER SURFACE ELEVATION IN FEET		223.6 223.8 223.8 223.9 223.0 223.0	86.0 100.5 100.5 105.8 105.8 105.8 1145.0 1143.9	15.4	- 369.9 - 361.8 - 305.8	- 318.3 - 315.1 - 276.1 - 369.3	- 369.7 - 380.0 - 332.6 - 327.2	0.44.0	
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22-47	666 666 666 666 666 677 666 670 670 670	3366.0 3866.8 3866.8 3866.8 3371.2 4336.0 4336.0 433.9	301•4 286•6	798.9 790.8 734.8	747.3 744.1 705.1 798.3	798.7 809.0 761.6 756.2 751.3	347.0	492.0 515.2 472.0
DATE		12-23-64 1-28-65 2-25-65 3-24-65 4-21-65 5-21-65 6-23-65	7-24-64 9-27-64 10-23-64 11-19-64 11-23-64 12-23-64 12-23-64 13-23	9-17-64	7-24-64 8-26-64 9-23-64	10-22-64 11-19-64 12-23-64 1-28-65	2-25-65 3-24-65 4-21-65 5-21-65 6-23-65	12-21-64	7-23-64 8-19-64 9-17-64 10-12-64
GROUND SURFACE ELEVATION IN FEET	N AREA	290.0	29000	226.0	429.0			253.0	356.0
STATE WELL NUMBER	MENDOTA-HURON AREA	175/16E-30A03 M CONT.		175/17E-21N02 M	18S/15E-02NO1 M			185/17E-12N01 M	
AGENCY SUPPLYING DATA		5 000	0000		6001	6001	5050	2000	2000
WATER SURFACE ELEVATION IN FEET		29.1 26.9 1 23.8 1 20.5 1 25.6 25.5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- 285.0	114.5	48•1 51•0	- 19.6 16.0	7.07	223.5 224.8 223.8 223.4 224.0
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.47	201.1 198.9 195.8 191.0 192.5 202.4 197.6	196.2 785.0 781.0 781.0 749.0 772.0 772.0 772.0	783.0	104.5	138.9 136.0	237.6 202.0	186.3	666.5 66.2 66.2 66.0 66.0
DATE		10-12-64 11-12-64 12-11-64 1-11-65 2-10-65 3-10-65 4-08-65	7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	6-29-65	10-01-64	9-28-64 2-02-65 9-28-64	12-15-64 9-24-64 2-02-65	9-23-64	7-24-64 8-26-64 9-23-64 10-22-64 11-19-64
GROUND SURFACE ELEVATION IN FEET	4 AREA	172.0	0 * 86 * 0		219.0	187.0	457.0	232.5	290•0
STATE WELL NUMBER	MENDOTA-HURON AREA	155/16E-34E01 M CONT.	165/14E-16N01 M			165/16E-10N01 M	175/14E-13R01 M 175/16E-02E01 M	175/16E-24R01 M	175/16E-30A03 M


			7 2 0	20040					0113 071100		
STATE WELL NUMBER	GROUND SURFACE ELEVATION	OATE	GROUND SUR- FACE TO WATER SURFACE	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA	STATE WELL NUMBER	GROUNO SURFACE ELEVATION IN FEET	DATE	FACE TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
	IN PEET	_	N THE								
						MFNDOTA-HURON	IN AREA		5-22.47		
MENDOTA-HURON AREA	N AREA		5-22-41				0 02.9	12-17-64	ם		5050
3	356.0	11-13-64	463.4	- 107.4	2000	215/16E-02N01 M	0				5050
195/17E-35NU1 m CONT.		12-11-64	441.9	- 111.5		215/16E-07N01 M	634.0	12-18-64	0		
		2-10-65	498.0	- 142.0		215/16E-35D01 M	682.0	12-11-64	o o		0505
		4-08-65	4.86.4	130.4		M 104017F-06N01 M	526.0	12-17-64			5050
		5-04-65	459.9	- 103.9		215/17F-11E01 M	413.0	12-14-64	399.0	14.0	5050
M [OM2] = 381,000	274.0	12-17-64	o		2050	215/17F-24601 M	425.0	12-15-64	0		5050
	281.0	11-19-64	366.8	85.8	2000	215/18F-02M01 M	278.0	12-14-64	В		2050
	675.0	7-23-64	222.5	452.5	000 \$	215/18E-28M02 M	363.0	9-23-64	339.0	24.0	2000
205/15E-32AUL m		8-25-64	223.4	450.8 450.8 449.8		225/16E-12F01 M	787.0	12-17-64	298.0	0.88%	5050
		11-19-64		449.1		P050 501L C	POSO SOIL CONSERVATION DISTRICT	1 STRICT	5-22.48		
		12-22-64	-	448.2				7-03-64	5.5	104.5	5529
		1-28-65	-	443.5		105/13E-06R01 M	110.0	8-03-64	00	104.2	
		3-24-65		447.1				9-03-64	7.2	102 • 8	
		4-20-65		446.9				10-05-64	7.0	0.501	
		5-20-65		0.037				11-03-64	10.3	101.9	
		6-22-65	254.2	3				12-07-64	J C	102.0	
		12-16-64	437.0	- 160.0	5050			2-08-65	0 0	102.0	
20S/18E-11N01 M	0 • / / 2	01-71		4	0004			3-04-65	9.6	100.4	
	270.0	7-22-64	45	- 182.6				4-05-65	9.6	000	
205/18E-11001		8-19-64		- 181.2				5-05-65	7 . 6	102.6	
		10-12-64		- 183.1				6-10-9			4
		11-13-64		-			0.711	7-03-64	9 • 8	107.2	4756
		12-11-64	-	- 167.7		11S/13E-05001 M		8-03-64	10.0	107.0	
		1-11-65						9-03-64	11.7	103.3	
		2-11-65	4680.4					10-05-64	1301	104.3	
		3-10-65						11-03-64	12.0	105.0	
		54-70-4		- 177.3				59-50-71		108.5	
		6-02-65		- 152.1				2-08-65		106.6	
					9000			3-04-65		104.2	
20S/18E-36D01	M 260.0	10-22-64	4 295.1 5 297.0	37.0				4-05-65	12.2	104.0	
					5050	_					
215/15E-01E01	M 623.0	12-18-64									

	AGENCY SUPPLYING IN OATA		6001		2000		6001	0 % 0 %	0505
	WATER SURFACE ELEVATION IN FEET		396.5	401.5 409.0 4117.3 4118.6 422.0 422.0 424.1 424.1 424.1 424.0	202 • 9	187.7 207.9 214.5 232.6 247.0 261.5 262.0 268.0 268.0	262•6 288•5	66.0 601.2 601.2 601.2 600.5 71.9 71.9 74.0 74.0 73.8	75.0
	GROUNO SUR. FACE TO WATER SURFACE IN FEET	5-22.50	135.5		310.1	325.3 325.3 2965.1 266.0 251.5 255.0 2250.0 286.0	255.4 229.5 5-22.54	11.05.01 11.05.00 11.05.05.05 10.05.05.05 10.05.05.05 10.05.05.05 10.05 10.	0.4
	DATE	ISTRICT	7-27-64	9-24-64 10-26-64 11-23-64 12-23-64 2-01-65 2-25-65 3-25-65 6-21-65	7-27-64	8-24-64 9-29-64 10-29-64 11-23-64 12-22-64 2-01-65 2-01-65 3-22-65 4-26-65 6-21-65	9-25-64	7-003-64 8-004-64 9-004-64 11-05-64 12-03-64 12-03-64 12-03-64 13-	7-03-64
WELLS	GROUND SURFACE ELEVATION IN FEET	RRIGATION D	532.0		513.0		518.0	0 * 0	80.0
WAIER LEVELS AI W	STATE WELL NUMBER	TERRA BELLA IRRIGATION DISTRICT	225/27E-25J03 M		225/27E-36N01 M		235/27E-10H01 M MERCED BOTTOMS	75/10E-23K01 M	75/10E-23K02 M
N A IER	AGENCY SUPPLYING DATA		5529	5529		5529	5529		
20000	WATER SURFACE ELEVATION IN FEET		103.3	120.3 118.3 116.4 116.1 120.0 118.3 120.6 120.6	118.7	1109.5 1115.9 1115.9 1115.0 1117.0 1117.0 1117.0	113.9	129 6 9 1 1 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
2	GROUND SUR. FACE TO WATER SURFACE IN FEET	5-22.48	13.7	10°-7 10°-6 10°-6 10°-6 10°-7 10°-7	0 0 0	100° 100° 100° 100° 100° 100° 100° 100°	12.1 12.8 15.7 18.4	00 0 1 1 1 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 0	
	DATE	ISTRICT	6-07-65	7-03-64 8-03-64 10-05-64 11-05-64 11-05-64 12-07-65 1-05-65 3-04-65	5-05-65	10-05-664 11-05-664 11-05-664 11-05-664 11-05-664 11-05-664 11-05-664 11-05-664	5-05-65 6-07-65 7-03-64	9-03-64 110-05-64 112-03-64 12-03-64 1-05-65 2-08-65 3-06-65 4-05-65 6-07-65	
	GROUND SURFACE ELEVATION IN FEET	SERVATION D	117.0	128.0		126.0	140.0		
	STATE WELL NUMBER	POSO SOIL CONSERVATION DISTRICT	115/13E-05001 M CONT.	115/13E-26A01 M		115/13E-33L01 M	125/13E-13J01 M		

TABLE C-3(Cont.)

GROUND WATER LEVELS AT WELLS

	WATER AGENCY SURFACE SUPPLYING ELEVATION DATA IN FEET		270.6 6001	268.8	272.3		270.0	271.2	272.5	73.1	72.5	272.8	271.7	27107	222.0 6001		24.2	222.9	26.1	226.7	22.0	231.3	233.9	0.35.0	234.5		1009 6001		275.7	513.6	27.50	0.112	0.612	220.6	780-4	7.020	279.2				201.1 5129	201.1			
-	FACE TO W WATER SU SURFACE ELE	5-22.65	117.4 2				0	8 9				115.2			182.5					178.8 2					171.0			112.1					111.5		1110		111.2		5-22-66	77-6	20.9			5-22.69	
	DATE		7-01-64	8-01-64	9-01-64	10-09-64	11-01-64	12-01-64	1-02-65	14 10 1	24-10-2	4-01-65	5-01-65	6-01-65	7-01-64	1-01-04	791010	10-09-64	11-01-64	12-01-64	1-02-65	2-01-65	3-01-65	4-01-65	201100	0-10-0	7-01-64	8-01-64	9-01-64	10-09-64	11-01-64	12-01-64	1-02-65	20-10-2	3-01-65	4-10-65	5-01-65	001010	1010	KIC:	9-27-64	2-09-65			
	GROUND SURFACE ELEVATION IN FEET	WATER DISTRICT	0													40502											4	390.0											1010	KINGS COUNTY WATER DISTRICT	222 0	0.000		TIEV ARFA	LLEI AREA
	STATE WELL NUMBER	GARFIELD WAT		125/20t-13A01 M												125/21E-07A02 M												125/21E-18A03 M												KINGS COUNT		205/21E-05A01 M		ASSESSMENT WALLEY AREA	DI-FASANI VM
	AGENCY SUPPLYING DATA			0505		_							0,50,5)										5050											5050										
	WATER SURFACE ELEVATION IN FEET			76.0	→ C	1 30 9	75.3	15.4	75.3	76.7	75.9	72.0	7 00	85.2	7403	107.3	119.0	106.6	127.B	121.6	114.0	100.8		101.1	88.0		110.3	119.9	127.6	128.9	123.0	115.7	102.5		144.9	144.6	142.5	143.3	143.5	144.8	144.0	144.2	14501	143.5	
	GRDUND SUR- FACE TO WATER SURFACE IN FEET	5-22-54		0.4	7.0	1 • 9	4.7	4.6	4.7	3.3	4 . 1	8.0		8 76	105.7	72.1	62.0	73.2	75.0	2000	0 9 9	79.2	4	78.9	92.0	DRY	69.7	60.1	54.0	61.1	57.0	64.9	77.5		35.1	35.4	37.5	36.7	36.5	35.2	36.0	35.8	36.3	36.6	2000
	DATE			49-40-6	11-05-64	12-03-64	1-12-65	2-01-65	3-04-65	4-07-65	5-06-65	6-04-65		8-04-64	79-70-6	11-05-64	12-02-64	1-12-65	2-05-65	3-05-65	6-04-65	2010014		7-03-64	8-04-64	9-0-6	11-05-64	12-02-64	1-12-65	2012	4-09-65	5-06-65	6-04-65	,	7-03-64	49-7C-8	79-70-6	11-05-64	12-02-64	1-12-65	2-05-65	3-05-65	4-09-65	5-06-65	CO++0+0
	GROUND SURFACE ELEVATION IN FEET		O E	80.0										180.0										180.0											180.0										
	STATE WELL NUMBER		MERCEO BOILOMS	E-23K02 M	CONT									95/14E-01801 M										M CORLO 241	1010101										M FOR 10- 341 100										

APPENDIX D
SURFACE WATER QUALITY

APPENDIX D. SURFACE WATER QUALITY

Introduction

This appendix presents surface water quality data obtained during the 1965 water year. The data are presented as tables and graphs representing the chemical, bacteriological, and observed physical characteristics of the water at the sampling stations. These characteristics are determined in accordance with instructions contained in the latest edition of "Standard Methods for the Examination of Water and Wastewater".

Measurement Techniques

Definitions

<u>Cubic foot per second (cfs)</u> is a unit expressing rates of discharge. One cubic foot per second is equal to the discharge of a stream of rectangular cross section one foot wide and one foot deep at a flow with an average velocity of one foot per second.

<u>Dissolved oxygen (DO)</u> is the amount of free oxygen contained in water. It is an important requirement for the maintenance of fish and other aquatic life and is also a reliable indicator of organic pollution.

 \underline{pH} is a value that represents the logarithm of the reciprocal of the hydrogen ion concentration. <u>Total dissolved solids (TDS)</u> represents the quantity of dissolved mineral constituents in water.

Specific conductance or electrical conductance (EC) is a measure of the capacity of water to conduct an electrical current. It is closely related to the quantity of dissolved minerals (TDS) in the water.

 $\underline{ \text{Coliform} } \text{ is a group of organisms whose presence in water is an indicator of bacteriological } \\ \text{contamination or pollution.}$

Most probable number (MPN) is an index of the number of coliform bacteria which, more probably than any other number, would give the results shown by laboratory tests.

<u>Hardness</u> is a characteristic of water that is mainly caused by compounds of magnesium and calcium. Its presence is usually recognized by the increased quantity of soap required to produce lather and by the formation of a curd of scum on the water.

Parts per million (ppm) is a weight-to-weight ratio of a constituent relative to water.

<u>Grams per liter</u> is a weight-to-volume ratio (pounds to gallons) used to express the quantity of a constituent contained in a quantity of water. In fresh water, one part per million is equal to one milligram per liter.

- 1 milligram per liter (mg/1) = 1 part per million (ppm)
- 1 microgram per liter (uq/l) = 1 part per billion (ppb)
- 1 nanogram per liter (ng/1) = 1 part per trillion (ppt)

Equivalents per liter (e/l) is a unit chemical equivalent weight of the constituent per liter of water.

1 milliequivalent per liter (me/1) = 1 equivalent per million (epm)

Methods and Procedures

Field activities include the collection of samples from 31 stream sampling stations in the San Joaquin Valley as listed on Table D-1. The stations are sampled periodically (monthly, quarterly, or semiannually), depending on past record and need for data. The following field data are also obtained at the time the sample is collected: (1) dissolved oxygen, (2) pH, (3) temperature, (4) gage height, (5) time, and (6) visual observation of water conditions and of unusual stream channel conditions. Samples of water are submitted to the laboratory for mineral and bacteriological analyses, and samples collected during May and September at ten selected stations are also submitted for spectrographic determination of trace elements.

A procedure for servicing stations where continuous electrical conductivity recorders are installed has been developed to obtain a reliable record. This procedure consists of determining the EC at the time of sample collection to check the accuracy of the recorder. Based on the EC comparison, detected errors resulting from dirty measuring probes or other uncontrollable factors which tend to affect the accuracy of the instruments can be corrected.

Accuracy

The accuracy of laboratory and field determinations reported in this appendix meets the standards specified in the latest edition of "Standard Methods for the Examination of Water and Wastewater".

Coding

To facilitate machine processing of surface water quality data and to assure compatibility of quality and quantity data, each station has been assigned an index number in accordance with the description indicated on page of Appendix B. The locations of the sampling stations are shown on Plate 4, by station identification number as given in column 2 of Table D-1.

Data

Mineral and sanitary analyses of samples collected by this program are reported in Table D-2, and spectrographic analyses for trace elements are reported in Table D-3. Data obtained by continuous conductivity recorders are reported as graphs of the weekly mean specific conductance and are shown in Figure D-1. Records of temperature were also recorded at some of these stations and are shown in Figure D-2.

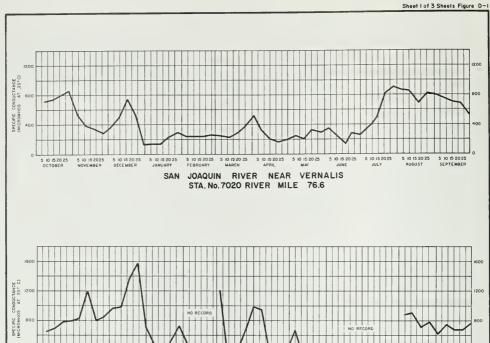
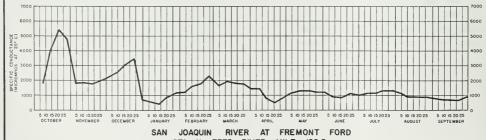

The collection of samples for radiological analysis was discontinued in 1964.

TABLE D-I INDEX TO QUALITY SAMPLING STATIONS

Station	Station Identification Number	Station Number	Location	Period b of Record	Frequency of Sompting	Sampled By	Analysie an Page
Big Creek above Pine Flat Dam	C11320.00	33a	12S/25E- 4	July 1960	М	USACE	244
Chowchilla River near Raymond	B64200.00	114	8s/18E- 1	January 1962	s	DWR	245
Delta-Mendota Canal oear Mendota	B00770.00	92	13S/15E-19	July 1952	М	DWR	246, 275
Delta-Mendota Canal near Tracy	B95925.00	93	15/ 4E-30	July 1952	М	DWR	(R,T) 247, 275
Freano River near Daulton	B67150.00	113	98/19E-34	January 1958	s	DWR	248
Kaweah River below Terminus Dam	C02185.00	35	17S/27E-25	September 1961	М	USACE	249
Kaweah River at Three Rivers	C21250.00	350	17S/28E-27	April 1951	М	USACE	250
Kern River near Bakerefield	C05150.00	36	29S/28E- 9	April 1951	Ж	KCPR	251, 275
Kerm River below Isabella Dam	C51350.00	36a	26S/33E-30	September 1955	Q	USACE	252
Kern River near Kernville	C51500.00	366	25S/33E-15	September 1955	Q	USACE	253
Kings River below North Fork	C11460.00	33c	12S/26E-21	September 1959	Q	USACE	254
Kings River below Peoples Weir	001140.00	34	17S/22E- 1	April 1951	М	DWR	255. 275
Kings River below Pine Flat Dam	C11140.00	33%	13S/24E- 2	September 1959	Q	USACE	256
Merced River below Exchequer Dam	B51200.00	32a	4S/15E-13	April 1959	Q	DWR	257
Merced River near Stevinson	B05125.00	32	6s/ 9E-36	Apr11 1951	М	DWR	(R) 258,275
Salt Slough at San Luis Ranch	B00475.00	24c	9S/11E- 7	November 1958	М	DWR	259
San Joaquin River at Crows Landing Bridge	B07250.00	26ъ	6S/ 9E- 7	January 1962	М	DWR	260
San Joaquin River at Fremont Ford Bridge	107375.00	25c	7S/ 9E-24	July 1955	М	DWR	(R) 261, 275
San Joaquin River at Friant Dam	B07885.00	24	11S/21E- 7	April 1951	Q	DWR	262
San Joaquin River near Grayson	B07080.00	26	4S/ 7E-24	April 1959	М	SF	263
San Joaquin River at Maze Road Bridge	B07040.00	26a	3S/ 7E-33	April 1951	М	SF	(R) 264
San Joaquin River near Mendota	B07710.00	25	13S/15E- 7	April 1951	М	D₩R	265
San Joaquin River at Patterson Bridge	B07200.00	278	5S/ 8E-15	January 1962	М	DWR	(R) 266
San Joaquin River near Vernalis	B07020.00	27	3S/ 6E-13	April 1951	М	DWR	(P,T) 267, 275
Stanislaus River at Koetitz	B03115.00	29	3S/ 7E- 2	April 1951	М	DWR	(R) 268, 275
Stanislaus River below Tulloch Dam	B32150.00	29a	15/12E- 1	July 1956	Q	DWR	269
Tule River near Springville	C31150.00	916	215/29E-15	November 1963	М	USACE	270
Tule River below Success Dam	C03195.00	91	21S/28E-35	July 1952	М	USACE	271, 275
Tuolumme River below Don Pedro Dam	B41100.00	31a	3S/14E-20	April 1951	Q	SF	272
Tuolumne River at Hickman Bridge	B04150.00	30	3S/11E-34	April 1951	М	SF	(R) 273
Tuolumne River at Tuolumne City	B04105.00	31	4S/ 8E-12	Apr11 1951	М	SF	(R) 274, 275

a. Locations are in reference to Mt. Diablo Base and Meridian
b. Beginning of record
c. N - Monthly, B - Bimonthly, Q - Quarterly, S - Semiannually
d. DMR - Department of Water Resources, USACE - United States Army Corps of Engioers
SF - City and County of Sao Francisco, KCFR - Kern County Farks and Recreation
e. Recorder stations are indicated with (R) or (R,T): (R) indicates conductivity
recorder, (R,T) indicates conductivity and temperature: Weekly mean values are
shown on Figures D-1 and D-2, pages 240 through 243.

400

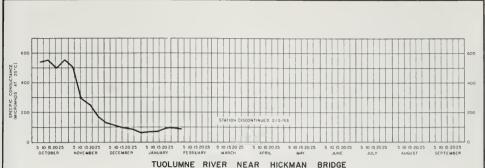


SAN JOAQUIN RIVER AT PATTERSON BRIDGE STA. No. 7200 RIVER MILE 104.5

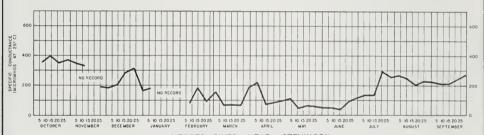
5 IO IS 20 25 WAY

5 IO IS 20 25 5 IO IS 20 25 JUNE JULY

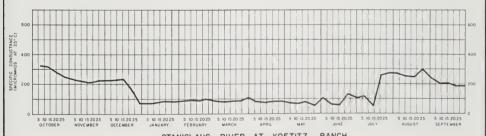
5 10 15 20 25 5 10 15 20 25 5 10 15 20 25 5 10 15 20 25 OECEMBER JANUARY FEBRUARY MARCH APRIL



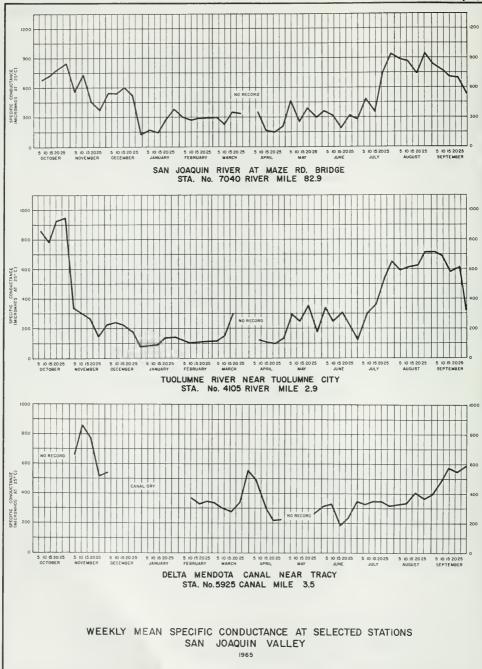
STA. No. 7375 RIVER MILE 129.5

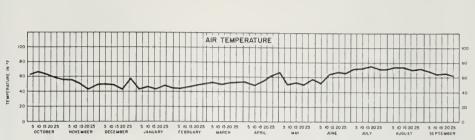

WEEKLY MEAN SPECIFIC CONDUCTANCE AT SELECTED STATIONS SAN JOAQUIN VALLEY

1965

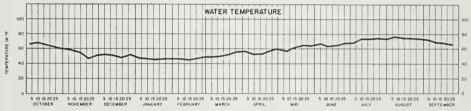

DEPARTMENT OF WATER RESOURCES SAN JOAQUIN DISTRICT 1966

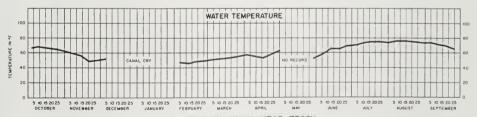
TUOLUMNE RIVER NEAR HICKMAN BRIDGE STA. No. 4150 RIVER MILE 29.3


MERCED RIVER NEAR STEVINSON STA. No. 5125 RIVER MILE 1.8


STANISLAUS RIVER AT KOETITZ RANCH STA. No. 3115 RIVER MILE 9.5

WEEKLY MEAN SPECIFIC CONDUCTANCE AT SELECTED STATIONS SAN JOAQUIN VALLEY


1965


DEPARTMENT OF WATER RESOURCES SAN JOAQUIN DISTRICT 1966

SAN JOAQUIN RIVER NEAR VERNALIS STA. No. 7020 RIVER MILE 76.6

SAN JOAQUIN RIVER NEAR VERNALIS STA. No. 7020 RIVER MILE 76.6

DELTA MENDOTA CANAL NEAR TRACY STA. No. 5925 RIVER MILE 3.5

WEEKLY MEAN TEMPERATURE AT SELECTED STATIONS
SAN JOAQUIN VALLEY
1965

DEPARTMENT OF WATER RESOURCES SAN JOADUN DISTRICT 1966

ANALYSES OF SURFACE WATER

BIG CREEK ABOVE PINE FLAT DAM (STA. NO. 33d)

		Anolyzed by i		UBGS													
		bid - Coliform Analyzed		Median	Meximum 23.	Minimum ,62											
	1	- A-	Turb Units		Н	10	7		ω	N	10	25	m	п	П	٦	٦
		000	Total N.C.		C)	0	0		0	0	0	0	0	0	0	0	0
		Hordness os CoCO ₃	Tatal mg/l		20	36	%		72	22	%	59	22	98	12	31	36
		cont - pos	5		38	04	39		33	36	32	28	38	37	04	39	₹6
	Total	pevios golids	ng/l		153	ΙΪ́	78e		63e	63°	67e	e69	678	71e	80°	93e	846
		p	- 1										ABS 0.0 PO ₁ 0.05 As 0.0				ABS 0.0 F0 ₄ 0.02 As 0.0
	rez	Silic	(2015)										53				81
	liter er 111	Baran			0.0	000	당		이	0.0	00	0.0	0.2	00	0:0	0.0	0.0
	s per	Fluo-	(F)														
	milligrams per liter milliequivalents per liter	ž	(NO ₃)										2.3				0,02
0	m1111	Chio-	(CI)		21 0.59	0.31	5.6		0.0	0.05	2.1	0.05	1.6	2.9 0.08	4.3	6.3	0.23
C11320.00	ri s		(504)										0.02				0.00
3)	constituents		(HCO ₃)		58	45	36		34,00.56	35	38	99*0	36	42 0.69	44 0.72	52 0.85	54 0.89
	Mineral co	Corbon	(CO3)		0.00	000	000		0.0	000	0.0	0.00	0.00	0.0	0.00	0.0	0 8
	ž	Polas-											0.9				0.00
		Sodium			14 0.61	0.48	7.5		5.2	5.7	5.6	5.3	0.20	6.9	8.2	9.1	9.4
		-Magne-	(Mg)										0.14				0.02
		Calcium			, 8	0.72	0.51		0.47	0.45	0.52	0.58	0.31	0.51	0.54	0,62	0.70
		PH SO	00		8.0	7.7	7.1		6.9	7.7	2.7	7.2	7.3	8,2	7.2	8.0	7.8
	Specific	(micromhos (178	130	91		72	73	78	81	72	83	93	109	122
Ì		10	%Sat		109	071	8		78	85	%	91	66	110	86		115
		Dissolve	mg/1		10.1	11.7	11.6		10.6	10.7	л.п.	10.5	10.2	7.01	9.6		10.7
		Temp in oF			99	55	77		27	775	941	84	96	62	73	73	29
		Oischarge Temp			r-I	7.8	12.7		821	73	73	250	54	8	Я	0.0	0.5
		ond time	P.S.T.	1961	10/19	0121	12/14	1965	1/11	2/8	3/8	1100	5/10	6/14	7/16 0930	8/9	9/13

b Laboratary pH

Sum or concurrent many many memory. It is copper (Cu), lead (Pb), manganese (Mn), zunc (Zn), and hexavolent chranium (Cr¹⁶), reported here as 0.0 except as shown. Sum of colcium and magnesium in me/1.

Determined by addition of analyzed constituents. Derived from conductivity vs TDS curves. Gravimetric determination.

Annual median and range, respectively. Calculated from analyses of duplicate manifyly samples made by Caldamia Department of Public Health, Divisson of Laboratories, or United States Dublic Health Service.

Mineral analyses made by United States Geological Survey, Quality of Water Borner (USSS), United States Department of Water Information (MSM), Los Angeles, Department of Water and Power (LADMP), City of Los Angeles, Department of Water and Power (LADMP), City of Los Angeles, Department of Public Health (LADPH), City of Long Beach, Department of Public Health (LADPH), City of Long Beach, Department of Water Resources (DWR), as indicated.

CHOWCHILLA RIVER NEAR RAYMOND (STA. NO. 114)

	_	by 1	USGS		
		Hordness bid Colform Analyzed as CaCO ₃ it MPN/mi by 1 Total N C Turb mg/1 Units	Median .23 Maximum .23 Minimum		
	L L	Turb Uhits	8	©.	٦
		Hordness bid- ac CaCO ₃ ity Total N C Turb mg/1 mg/1 Units	0	0	15
		Total	31	57	8
	Per-	sad -	23	32	L ^d
	Total	solved sad-	568	988	235g
		Other constituented		ABS 0.0 Poli 0.05 As 0.0	70.000 00.0000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.0000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.0000
	150	Sifica (SiO ₂)	18	প্ল	Ħ
ter	r litte	Baran Silica (B) (SiO ₂)	7.	0.0	ं।
per li	nts per	Fluo- rude (F)			
ligrems	milliequivelents per liter	rrate (NO ₃)	2.1 0.03	0.03	0.03
	m1111e	Chlo- ride (CI)	2.7	0.22	1,72
	č	Sul - fate (SO ₄)	0.02	0,02	0.0
9	constituents	Bicar - bonate (HCO ₃)	39	1.13	1.51
	Mineral con	Carbon- ate (CO ₃)	0 8	0.00	0 8
	ž	sium (K)	0.06	1.5	0.00
		Sodium (Na)	5.7	10	30
		Magne- sium (Mg)	1.5	3.25	0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1
		Calcium (Ca)	0.50	13	28 1.40
L		H a o	7.1	7.7	1.5 8.1.5
	Specific	(micromhos pH at 25°C) a	ま	140	344
		yed %Sot	107	8	8
		axygen axygen mg/l 9/oSat	11.7	9,	7.9
		Temp in of	8	69	8
		Discharge Temp		m	0
		ond time sampled P.S.T	1964 12/28 1425	1965 5/10 1145	3645

Held pH

c Sum of calcium and magnesium in me! .. b Laboratory pH

d. Iran (Fe), alumnum (A), arsent. (As), caper (Cu), lead (Pb., manganese. "Jn), sinc. "Zn), and hexavalent chramum (Cr."), reparted here as \$\frac{0}{0}\$ except as shown a Desured from conductivity vs TDS curves.

Determined by addition of analyzed constituents g Gravimetric determination

by Annual medical and an analyses and digiticate manulty samples made by California Department of Public Medical Control Contr

245

ANALYSES OF SURFACE WATER TABLE D-2

DELICA-MENDOTA CANAL NEAR MENDOTA (STA. NO. 92)

		Anolyzed by i	nsgs												
	-	Mordness bid - Coliform Analyzed os CoCO ₅ itv MPN/mi by i Toigi N C. Turb mg/1 lnits	Median	Maximum 62.	2.3	-									
	1	Turb Units		8	15	-		15	æ	8	8	9	745	20	52
		COS NC.		32	35	52		77	20	99	23	Ħ	39	10	84
		Hordness bid- os CoCO ₅ itv Total N.C. Turb mg/1 mg/1 Unite		127	132	136		7	109	142	15	52	108	75	140
		- pos		947	64	54		64	29	52	54	74	-:t 00	41	94
	Totof	solved solved mg/l		283 ^e	315e	355e		180e	268°	358e	1798	124е	255°	155e	3268
		Other constituents ^d									ABS 0.0 PO ₄ 0.20 As 0.0				ABS 0.0 Pol ₄ 0.25 As 0.0
	154	(Silico									13				118
	ter.	Boron (B)		0.2	0.2	0.5		0.2	0.3	0.3	0.2	0.1	0,1	0.1	0.1
	per 11	Fluo- ride (F)													
	milligrams per liter millieguivalents per liter	rrote (NO ₃)									2.5				0.05
	millie	Chio- ride (CI)		1.86	2.09	2.29		36	70	2.37	1.16	29 0.82	70 1.97	30	2.37
BOOTTO.00)	č	Sul - fote (SO ₄)									33				1.00
٣	constituents	Bicor – bonote (HCO ₃)		1.90	1.93	102 1.67		61 1.00	72	100	63 1.03	50 0.82	1.38	1,23	11.8
(BOOTTO.	Mineral con	Corbon- ote (CO _{\$})		0.0	0.0	0.0		0.0	0.0	0.0	0.00	0.00	0.0	2 0.07	0.00
	W	Potos- sium (K)									1.6				0.07
		Sodium (Na)		2.18	2.52	3.18		33	2.18	3.04	1.8	21 0.91	2.00	1.04	25.44
		Mogne- sium (Mg)									7.3				1.15
		Colcium (Co)		2.54 e	2.64	c 2.72		1.48 c	2.18	2.84	0.0	1.04	2.16	1.50 e	33
		F ab		8.2	8.0	7.9		7:7	7.4	8.1	8.0	7.1 8.0	4.6	7.4	7.5
	Spacific	conductonce pH (micromhos ot 25°C) a		501	559	630		319	475	635	305	220	452	#LZ	559
		gen %Sat		8	%	100		93	101	137	76	93	1/2	8	8
		Dissolved oxygen mg/l %Sa		8.0	9.4	0.11		10.2	10.3	14.2	9.5	8.3	7*9	7.4	7.8
		Temp in of		22	62	52		52	58	57	3	69	71/2	18	13
		Dischorge Temp													
		ond time sampled P.S.T.	1967	10/13	11/9	12/14 1325	1965	2/8	3/8 1345	4/12 1425	5/13 0705	41/9 1045	21/12	8/9	9/13

Loborotory pH o Field pH

c Sum of calcium and magnessum in me/l.,

Sum of catcum and magnessium in mark **.

Iron (Fe), aluminum (Al), arsenic (As), capper (Cu), lead (Pb), manganese (Mn), and (Zn), and havaralent chromium (Ci *6), reported here as 0.00 except as shown

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents. Grovimetric determination.

Annul median and rongs, respectively. Calculated from analyses of duplicate manfuly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service (USPHS), San Bernardina County Flood County Control States Department of the Cornel Distract (SEPCP), United States Popial Extension (USPHS), San Bernardina County Flood County Flood County County of Managers, Department of Managers, Department of Managers, Department of Public Health (LADPH), City of Long Beach, Department of Public Health (LADPH), The City of Colfornia Department of Mater Resources (DMR), as indicated.

32555-DHI 6-61 200 SPO

DELLA-MENDOTA CAMAL NEAR TRACY (STA. NO. 93)

[_	D B	92				_							
		Anolyzed by 1	USGS											
	•	bid Coliform's ify MPN/mi	Median	Meximum 620.	6.2									
	Į,	Torb Units		8	7	0,		07	8	30	2	35	35	52
		Total NG.		139	-	51		&	ส	17	«O	177	9	88
				107	88	132		81	92	72	42	89	89	176
-	9	- pos		77	52	52		92	0,	27	572	77	177	877
	Toto	solved solids mg/l		220	532°	345e		1986	186	1686	956	1446	139e	92 गग
		Other constituentsd								ABS 0.0 PO ₁ 0.15 As 0.0				ABS 0.0 Not 0.46 As 0.0
	1-	Sific d (SiO ₂)								웨				ଅ
	iter r lite	Baron (B)		0.1	7.0	9.0		0.2	0.2	0.1	0.1	0.1	0.1	2,0
	s per 1	Fluo- ride (F)												
	milligrams per liter milliequivalents per liter	trate (NO ₃)								0.6				4.000
(00	H111	Chlo- ride (CI)		1.47	148	8,54		50	1.24	33	99.0	35.0	0.73	3.4
(895925.00)	ē.	Sul - fote (SO ₄)								32				1.23
٦	nstifuent	Bicar- bonate (HCO ₃)		1.75	25.49	93		1,05	1.10	0.97	177	1.08	74	2.23
	Mingrol constituents	Corbon		0.0	0.0	0.10		0.0	0.00	0.13	0.00	0.0	0.03	00.13
	Min	Potos- sum (K)								0.04				3.50 0.08
		Sodium (Na)		38	102	65 2.83		37,	35	2000	0.70	1.09	8.9	3.35
		Magne- sum (Mg)								0.59				17
		Calcium (Ca)		2.14 e	, 1g.	2,64		1.62	1.52	17 0.85	0.8E	1.36	1.36	2°30 2°10
-		T alo		7.2	8.1	8.3		8.0	8.0	8 2 2	8.0	8.23	8.3	(C)
	Specific	conductance pH (micromhos of 25°C) a		390	24.5	613		352	331	862	168	255	24Z	
		yed %Sat		78	81	8		95	ま	\$	95	83	42	601
		Dissolved oxygen mg/l %Sot		7.3	7°4	3.0		10.3	10.2	10.0	0.0	7.0	L.9	9.6
				8	69	9,		53	53	59	99	75	76	72
		Orschorge Temp		2502	855	0		2510	870	2546	3390	4160	4185	1730
		ond time sampled P S.T	1964	10/6	11/9	12/8	1965	3/3	1030	5/5	6/15	7/13	11/8 2101	9/15

Hq bland o

b Loboratory pH

c. Jum at Calcium and magnessum in the 1.1...
d. Iran (F.B.), alumnum (A.I.), assented (A.I.), copper (C.U.), lead (P.D.), manganese (Un), 2.11c (Z.B.), and heravalent chromium (C.I.), reported here as 0 0 except as shown a large factor of the control of the co c Sum of colorum and magnesium in me/1...

Datemined by addition of analyzed constituents e Danved from conductivity vs TDS curves

Gravimetric determination

g Groument cleterimistion

h Annual material and one sepectively Calculated from analyzes of duplicate monthly samples made by Caldania Oppartment of the Interest, Sureau of Reclamation (USBR), United States Oppartment of the Interest, Sureau of Reclamation (USBR), United States Oppartment of the Interest, Sureau of Reclamation (USBR), United States Oppartment of Water and Power (LADMP), City of Las Angeles Department of Reclamation (USBR), United States Oppartment of Water and Power (LADMP), City of Las Angeles Department of Reclamation Water District of Southern Caldania (WADPH), City of Lang Beach, Department of Mater Resources (DWR), as indicated.

Canado District (USBCH), Terminal Testing Laboratories, Inc. (TTL), or Caldania Oppartment of Water Resources (DWR), as indicated.

R

ANALYSES OF SURFACE WATER

FRESHO RIVER NEAR DAULTON (STA. NO. 113)

_					
	Anolyzed by i	USGS			
	OS COCO3 11y MPN/mi Total N C Turb	Median 1.3 Maximum 1.3 Minimum			
	Turb Turb Unite	8	д	н	
	os CoCO ₃ ity Total N C Turb mg/1 mg/1 Units	13	0	п	
	Hordn os Co Total	94	32	14.5	
	- Pos	₹.	36	64	
Toto	solved solids mg/l	1508	778	958	
	Other constituents ^d		ABS 0.0 PO _{th} 0.0 As 0.0	ABS 0.0 PO ₁ 0.06 As 0.0	
	Silica (SiO ₂)	77	81	81	
liter er lit	Boron (8)	5-0	0:0	0.0	
ns per	Fluo- ride (F)	0.1			
milligrams per liter	Ni- trate (NO ₃)	3.6	0,02	0.0	
m1)11	Chlo- ride (CI)	1.16	5.8	0.93	
(B67150,00)	Sul - fote (\$04)	7 0.15	90.00	90.08	
constituents	Bicor- bonate (HCO ₃)	99*0	51 0.84	5 ⁴ / ₆	
Mineral con	Potos- Carbon- 8 sum ote (K) (CO ₃)	0.0	0,00	0 00	
Min	Potos- sium (K)	0.05	0.03	0.05	
	Sodium (Na)	28 1.13	8.4 0.37	0.91	
	Magne- Sium (Mg)	2.7	0.14	7.00	
	Calcium (Ca)	14 0.70	0.50	0.70	
	H a o	7.3	7.3	8.0	
	Specific conductance pH (micromhos a)	559	306	506	
	oxygen oxygen	86	100	8	
	0	0*6	9.8	7.7	
	Temp In OF	89	99	83	
	Orschorge Temp	30	155	8	
	Sompled P S.T	1964	1965 5/10 1255	9/2	

o Field pH

c. Sun of colcum and magnesium in mor(1, *) and (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Cr⁺⁶), reported here as $\frac{0.0}{0.0}$ except as shown, d. Iron (Fe), alumnium (A1), arsenic (As), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (A1), arsenic (As), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (A1), arsenic (As), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Cr⁺⁶), reported here as $\frac{0.0}{0.0}$ except as shown. b Labarotary pH

e Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

Gravimetric determination.

32505-LH 6-61 200 UPO h Annual median and range, respectively. Calculated from analyses and duplicate manhly samples made by California Department of Public Health, Division of Laborataries, or United States Dublic Health Service.

In this or Cantal Division States Geological Survey, Ordality of Water Branch (USS), United States Department of Manterian (USBR); United States Department of Water States Geological Survey, Ordality of Water States Geological Survey, Ordality of Water States Geological Survey, District of Survey, Survey, Survey, District of Survey, District

KAWEAH RIVER BELOW TERMINOUS DAM (STA. NO. 35)

		Anolyzed by i		USGS													
		bid - Caliform A		Median .16+	Meximum 16+	.16+											
Ì		A Pid	Units		7	C)	m		15	m	н	75	9	М	-	C/	п
Ì		000 000	mg/1		0	0	0		0	0	0	0	0	0	0	0	0
		Hordness os CoCO ₃	Total mg/1		87	64	122		32	33	25	28	24	16	177	83	%
		200			23	23	25		%	24	%	70	25	25	83	8	19
	Total	Colved Solids	ng/l		708	198	758		708	64.8	548	558	994	386	328	446	50 ⁸
		p											ABS 0.0 POL 0.0 Ae 0.0				9.2 ABS 0.0 POL 0.0 As 0.0
	707	on Silica	Sic		01	cul	di		QI.	01	01	di	27	01	ml	OI	
	r litte	P- Boron			0,0	0.2	0.1		0.0	0,0	ं।	0.1	0.0	0.0	0.3	0.0	0,0
	ams pe	Fluo-															
	milligrams per liter	z	(NO3)										0.6				0.5
2,00)	E L	Chlo-	(C)		0.1	5.3	0.12		0.06	0.05	1.4	1.3	0.03	0.9	0.8	0.03	3.1
(002185,00)	č	1.	(\$00,										0.04				0.00
	constituents	Bicar	(HCO ₃)		1,00	63	0,90		39	99.0	3400.56	36	3200.52	0.36	18	0.44	0.52
	Mineral car	Corbon	(CO ₃)		0.00	0.0	000		0.0	0.0	0.00	0.0	0.00	0.00	0.0	0.0	0.00
	Min	Potos-	(x)										0.0				0.03
		Sodium	(ON)		6.7	0.30	6.4		5.1	9.0	0.18	10.17	3.7	2.6	1.9	2.5	0.13
			(Mg)										0.0				0.08
		-	(Co)		× 0.0	36.0	0.84		0.63	0.62	0.50	0.55	0,10	0.33	0.28	0.43	8.8
		Ŧ	alo		7.2	7.2	1:		7.9	7:0	7.5	7:0	1.9	7.	7.3	7.5	7.
		conductance	D 25 10		112	133	977		83	82	89	7.7	29	94	39	55	70
		9 5	%Sot		145	142	8		ま	10.4	ま	%	66	8	151	87	96
		Dissolvad	1/80		12.3	14.0	1.11		11.3	12.8	11.5	7.e	10.3	10.5	14.8	0.8	8,1
			-		92	61	92		1,5	77	777	58	52	7.	62	19	7
		Dischorge Tamp			e S	0007	120		1850	9.4	1,78	248	1010	1801	2007	906	195
		Dots ond tims	P S.T	1961	10/5	11/12 0950	12/7	1965	1/5	2/8	3/1 0940	9/1	5/4 0730	6/2 0920	7/8	8/9	9/8

o Field pH

b Loborotory pM

c. Sun of calcum and magnessum in the (). 4. d from (Pb), manganese (Mn), and (Zn), and heravolent chromium (Cr. ¹), reparted here as 0.0 except as shown. d Iron (Fe), aluminum (M), arrected kere of 0.00 except as shown. c Sum of calcium and magnesium in the/1.

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents

Gravimetric determination

 ∂S_{ij}^{\prime} Processing and ongs. respectively. Calculated from analyses of duplicate monthly samples mails by Calculand Department of Public Health, Division of Laboratories, or United States Devoluted France Department of Health Calculated France Calculated States Calculated Water Resources (DWR), as indicated Any of Las Angeles, Organization States Calculated Water Resources (DWR), as indicated and calculated States Calculated States Calculated Water Resources (DWR), as indicated and calculated States Calculated States Calculated Water Resources (DWR), as indicated and calculated States Calculated States Calculated Water Resources (DWR), as indicated and calculated States Calculated States Calculated Water Resources (DWR), as indicated States Calculated States Calculated Water Resources (DWR), as indicated States Calculated States Calculated Water Resources (DWR), as indicated States Calculated States State

ANALYSES OF SURFACE WATER

KAWEAH RIVER AT THREE RIVERS (STA. NO. 35b)

[Anolyzed by i	USGS													
		A L		E +	El VO											
		bid - Collform 11v MPN/mi Turb I Units	Median	Maximum 11.6+	Minimum.											
	1	Turb Units		r	07	-3		25	m	7	CI	m	7	el	٦	п
		Mordness os CoCO ₃ Total N C.		0	0	0		0	0	0	0	0	0	0	•	0
}		Toto mg/		55	141	36		56	8	53	88	198	9	Ŋ	%	33
		T S S S S S S S S S S S S S S S S S S S		%	e 27	8 25		17. e	e 25	e 58	e 5/2	23	e 27	e 57	- 5h	22
	Toto	solved solids mg/l		23 _e	% %	989		41e	7 ² e	11 te	777€	376	216	25e	41 _e	538
		Other constituents ^d										ABS 0.0 PO ₄ 0.0 As				ABS 0.0 PO ₄ 0.0 As 0.0
	1L	Silico (SiO ₂)										리				레
	iter r lite	Boron (B)		0.0	0.0	0.0		0:0	0.0	0.0	0.1	0.1	0.0	0.1	0.0	0.0
	per 1	Fluo- ride (F)														
	milligrams per liter milliegulvalents per liter	ni- trote (NO ₃)										0.0				E 80
	millie	Chio- ride (CI)		0.25	4.4	3.2		1.4	1.6	1.4	1.4	0.0	0.4	0.0	0.06	0.09
(00,052122)	E	Sul - fate (SO ₄)										20.04				30.06
(3)	constituents	Bicor- bonate (HCO ₃).		1.16	54 0.89	4.7 0.77		33	38	38	38	0.38	0.20	16	35	0.72
	Mineral cons	Carban- ate (CO ₃)		0.00	000	0.00		0.00	0.00	0.00	000	000	0.0	0.0	0.00	0.00
	Mine	Potos- Srum (K)										0.0				0.03
		Sodium (No)		0.39	0.30	5.6		0.17	0.20	5.3	0.18	2.6 0.11	1.5	0.09	3.7	0.20
		Magne- sum (Mg)										0.0				0.06
		Colcium (Co.)		1,10	0.82	0.72°		0.53	09.0	0.58	95.0	0.31	0.19	0.24	0.52	09.00
		F e o		7.2	7.2	7.9		7.7	7.1	7.B	7.2	2.7	7.3	7.4	7.4	8.0
	Specific	(micramhas of 25°C)		155	114	8		72	42	92	92	14	27	32	71	91
		gen (r		142	142	%		89	96	100	102	93	100	96	8	93
		Orse Oxy mg/l		13.4	15.5	11.8		10.7	12.0	n.3	11.2	ы.е	0.11	0.6	8.2	0.6
		Tamp in ag		59	54	71		54	775	20	52	773	52	79	89	63
		Orschorge Tamp		98	흈	144		1850	4.63	478	501	0921	2008	2007	906	106
		Dots ond time sompled P.S.T.	1964	10/5	11/12 0930	12/7	1965	1/5	2/8	3/2	1020	5/4 0830	6/2 1010	0060	8/9 0915	9/8

o Field pH

Determined by addition of analyzed constituents.

32505-0-H 0-61 200 spo

b Laboratory pH.

c sum at calculum and magnessum in migrat.

d Inn (Fe), aluminum (Al), assorte (As), capper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Cr⁺⁵), reparted here as $\frac{0.0}{0.00}$ except as shown. c Sum of calcium and magnesium in me/l. e Derived from conductivity vs TDS curves.

Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS), United States Department of the Interior, Survey and Recomment of the Interior, Survey and Interior, Survey (LDMP), City of Los Angeles, Department of Public Health (LADPH), City of Los Angeles, Department of Public Health (LADPH), City of Long Beach, Department of Survey (LDMP), Terminal Section of Survey (LDMP), Terminal Section of Survey (LDMP), Terminal Section of Survey (LDMP), Survey (LDMP), Survey (LDMP), Survey (LDMP), Survey (LDMP), Terminal Section (LDMP), Terminal S h Annual median and range, respectively. Calculated from analyses of duplicate manthly samples made by California Department of Public Health, Duvision of Laboratories, or United States Public Health Service. g Gravimetric determination

KERN RIVER NEAR BAKERSFIELD (STA. NO. 36)

	-							_							
	Analyzed by §	USGS													
	bid - Coliform	Median	Anximum 24.	.06											
	Pid-	8	CV .	п	-		07	CV .	-	C/	9	9	-	m	н
	00 N	1/84	0	0	0		0	0	0	0	0	0	0	0	0
		1/8u	54	20	65		20	19	91	84	£4	33	27	52	28
	- PO		39	1,3	177		38	39	07	39	39	39	38	38	*
Total	eolved solids mg/1		118	114°	147 ^e		109	104	86	103	958	999	866 8	55e	64.8
	Other constituents ^d										ABS 0.0 POL 0.0 As 0.0				ABS 0.0 PO ₁ 0.11 As 0.01
14	(\$0.0\$)										ᆌ	-			웨
iter r lite	Boron S (B) (S		0.2	0.3	0.2		0.1	0.1	0.1	0.2	0.1	0.1	0.0	0,0	0.0
per l	Fivo- B (F)														
milligrams per liter millicoulvalents per liter	rote (NO.)										0.02				0.03
A THIE	Chio-		6.2	6.4	8.8		5.7	5.1	0.14	4.4	1.2	3.3	2.8	2.6	0.07
100,0515000	Sul - fote (SO.)										0.21				90.12
constituents	Breor - bonate	ì	82 1.34	1.34	1.41		76	1.8	11.1	1.21	1,07	0.75	38	38	41 0.67
Mineral con	Corbon-		0.00	0.0	0.00		0.00	0.0	0.00	0.0	0.03	0.00	000	0.0	000
N C	Potos-										1.7				1.6
	Sodium (No)		16	0.74	21 0.91		14	14	14	14	13 0.57	9.1	7.5	0.30	0.31
	Mogne- sium (Mo)										0.16				0.0
	Calcium (Ca)		1.08	1.00	1.30		1.00	0.90	0.92	9.0	114 0.70	0.62	0.54	0.50	010
		۵	7.9	7.3	7.5		8.1	1:3	0.8	0.8	80.3	8.0	7.7	7.9	7.7
	Spacific conductance (micromhos of 25°C) a		183	171	553		170	161	154	160	146	103	5	88	93
	Discolved oxygen	7030													
	Ten of		58	58	77		4.5	917	20	1,7	7,	200	75	20	2
	Oschorge Temp		129	191	76		597	562	168	229	1084	1080	9191	1355	1034
	ond time	1964	10/27	11/2 0930	1/2/1	1965	1/4	2/1	3/2	1,16	5/4 0850	6/1	1/6	8/3	9/1 064.5

o Field pH

b Loborotory pH

c Sum of calcium and magnesium in re/1.

Sum of calcium and magnessum in med.1.

Iron (Zn), and heravalent chramium (Cr. *s), respect (Cu), lead (Pb), manganese (An . 2 inc (Zn), and heravalent chramium (Cr. *s), reparted here as 0 0 except as shown from (Fe), aluminum A. service (As), capper (Cu), lead (Pb), manganese (An . 2 inc (Zn), and heravalent chramium (Cr. *s), respected here as 0 0 except as shown

Determined by addition of onalyzed constituents Derived from conductivity vs TDS curves

MAN SHOWN ONLY PIE Annual median and range, respectively. Calculated from analyses of duplicate manthly samples made by Caldonno Department of Public Health, Durstanno of Laboratories, or United Stores Public Health Service (USPHS), Son Bernardine County Flood Manner land Stores Department of the Interior, Burston of Residence (USPHS), United Stores Public Health Service (USPHS), Son Bernardine County Flood County Flood Stores (RefSC), Marriagolous Water District of Southean Caldonno (AMD), Las Angeles Department of Marrier and Power (LADMP), City of Las Angeles, Department of Water Resources (DMR), as naticated

K

ANALYSES OF SURFACE WATER TABLE D-2

KERN RIVER REIOW ISABELLA DAM (STA. NO. 368)

		Anolyzad by i	nses			
	,	Hordnass bid Coliform Analyzad os CoCO ₃ Ify MPN/ml by i Tofq! N C. Turb mg/l mg/l Units	Median .06 Meximum	Minimum 00		
	T n T	-fy Turb Units	r-	9	н	Q
ĺ		N C.	0	0	0	0
		Hordness bid- os CoCO ₃ ity Total N.C. Turb mg/l mg/l Units	1717	38	72	8
		- pog - pon	39	38	39	%
	Totol	solvad solvad solida mg/l	95e	898	51e	84.48
		Other constituents ^d		ABS 0.0 PO ₄ 0.0 As 0.0		20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	154	Silica (SiO ₂)		킈		ЯI
	ter 11te	Boron Silica (B) (SiO ₂)	0.1	0.1	0.0	1.0
, 30a)	milligrams per liter milliequivalents per liter	Fluo- ride (F)				
STA. NC	lligrem equivel	Ni- trote (NO ₃)		0.03		අ <mark>ලි</mark> වැලි
LA DAM (mi111	Chio- ride (C!)	2-1	3.9	2.2	ଷ୍ଟ୍ରମ ଅ
[C51350.00]	ri si	Sul - fote (SO ₄)		10		0,10
R BELOW	nstituen	Bicor- bonate (HCO ₃)	69	58 0.95	34 0.56	33 64.
KERN KIVER BELOW ISABELIA DAM (STA. NO. 30e) (C51350.00)	Minard constituents	Carbon- ote (CO ₃)	0	0 0 0	000	0 0
Z.	ž	Potos- sium (K)		7.0		다. 다. 다.
		Sodium (No)	13	17.0	6.8	17.1 3.33
		Calcium Magne.		0.16		6.00 0.04
		Calcium (Ca)	٥		0.47	0.0 6.4.9
		F alo		0.1	7.5	10.
	Spacefic	Conductonce pH (micromhos a	150	121	80	₽
		ved en %Sot	6.9	35	8	931
		Dissolved oxygen oxygen	9,01	6.6	8.6	e e
			94	75	179	89
		Oischorge Temp	m	347	1082	940
		Dote ond time sampled P S T	17/11	5/7	7/12 0930	3047 30045

Loboratory pH.

Jum of colcum and magnessum in mal 1.

Iron (Fe), aluminum (Al), organic (As), copper (Gu), lead (Pb), manganese (Mn), zinc (Zn), and haxavalent chromium (Gr ¹⁶), reported here as \$0.0 except as shown. Sum of calcium and magnesium in me/1.

Determined by addition of analyzed constituents. Derived from conductivity vs TDS curves

Gravimetric determination.

³²⁵⁰⁵⁻⁰⁻H 6-61 200 JPG Annual madian and range respectively. Calculated from analyses of duplicane manhly samples made by Calculation Department of Public Health, Division of Laboratories, or United States Dublic Health Service.

Mineral consystems and by United States Geological Survey, Dubling Winter Branch (USS), United States Department and Present (USP), Department of Weter and Prese (LADMP), City of Las Angeles, Department of Many Control Instituted States (Serviced States) and States (Serviced States) as Angeles, Department of Many Resources (DWR), as indicated.

Public Health (LBDPH), City of Long Beach, Department of Many Resources (DWR), as indicated.

KERN RIVER NEAR KERNVILLE (STA. NO. 36b)

		by i	uses					 			 	
-	£	Hordness bid-Coliform Analyzed as CoCO ₃ ity MPN/mi by it Total N C Turb mg/l thits	Median .23 Meximum	70. Minimum	8				 		 	
r	- 5	Into			m	-	-					
		Mordness bid- os CoCO ₃ ity Totol N C Turb mg/l mg//thits	0		0	0	0					
		Pordr Totol ma/1	₹.		8	21	35					
	P .	- pos	14		36	7.2	37					
	Total	solved sod -	83.6		248	34°	889					
		Other constituents			ABS 0.0 POL AB 0.0		As 0.0					
	ter	(Si) (Si)			외		캠					
	r liter	Boron (8)	0.0		0.1	00	0.0					
1	nts per	Fluo- rids (F)										
	milliequivalents per litter	rofa (NO ₃)			e 0 0 0		3 0.05					
	m1111	Chlo- ride (Ci)	3.8	u.º	0.05	1.1	3.2					
ומסי מסכרכיו	c. s	Sul - fots (50 ₄)			0.10		0.15					
	nentituent	Bicor – bonate (HCO ₃)	95	0.92	31 0.51	0.30	0.77					
	Mineral constituents	Potos- Corbon- sum (K) (CO ₃)	0.0	00.00	0.00	0.0	0.00					
	M	Potos- sum (K)			000		0.03					
		Sodium (No)	п	84.0	5.6	3.9	0.39					
		Mogne. s.um (Mg)			0.03		0.14					
		Colcium (Co)	U	69.0	0.38	0.23	0.50					
-		F alo		7.8	7:1	7.6	2.7					
	Spacific	conductonce pH (micromhos of 25°C) &	n ₉		99	617	104					
		lvs d gsn % Sof	89		91	8.	8					
1		Disso oxy ng/1	12.0		11,0	9.5	0.6					
-		Tanger of	38		4.5	57	62					
		Discharge Tamp	610		1422	1462	341					
		Dote ond time sompled P.S.T	2965	1230	5/7	7/12 0830	9/7					

b Loborotory pH

 \mathbf{g}_{i}^{\prime}

e. Sum of calcum and magnessum in me/1.

d. Iran (Fe), alumnium (A.). assente (As), caper (Cu), lead (Pb), manganese (Idn), zinc (Zn), and heravalent chromium (Cr) is reported here as 0.00 except as shown d. Iran (Fe), alumnium (A.).

Derived from conductivity vs TDS curves

h Annual median and image, respectively Calciulated from analyses of displaces enoughly samples made by Caldania Department of Public Health, Division of Laboritaties, or United States Geological Survey Quality of Main Branch (USCS), United States Department of the Interior, Survey and (USBR), United States Belong the Service (USPRS), San Bernardine County Flood County Plood County Plood County District (SBCECD), Mempation Water District and Southern Caldonia (AMD), Les Angeles Department of Water and Power (LADMP), City of Las Angeles, Dep Determined by addition of analyzed constituents

TABLE D-2

KINGS RIVER BELOW NORTH FORK (STA. NO. 33c) ANALYSES OF SURFACE WATER

		Anolyzed by i	nses					
Ī	4	Hordness bid Coliform os CoCO ₃ ity MPN/ml Toldi N C, mg/1 mg/1 mg/1 mg/1	Medien 2.3	Maximum 6.2	.23		-	
Ì	1,0	bid- tty mg/1		-	C)	H	-	г
Ī		N C		0	0	0	0	0
		Hordnese os CoCO ₃ Total N C mg/1 mg/1		8	6	9	90	44
Ī	9	- pog -		53	き	33	32	68
	Total	solved solved mg/l		143 _e	238	14 e	21 ^e	328
		Other constituents ^d			ABS 0.0 PO ₄ 0.05 As 0.0			A85 0.0.0
	er	Silica (SiO ₂)			긔			계
	liter.	Boron Silica (B) (SiO ₂)		0:	이	ं	0.0	·
	s per	Fluo- ride (F)						
	milligrams per liter. millieguivelents per liter	N) - frote (NO ₃)			2.6			0.00
3	md11.	Chio- ride (CI)		0.03	0.0	0.4	0.7	0.03
(00,004110)	Ē	Sut - fote (SO ₄)			0.0			0°.
0)	constituents	Bicor - bonofe (HCO ₃)		24	14	8 0.13	1100	0.31
i	Mineral cor	Carbon- ota (CO ₃)		000	0.0	0.00	000	0.00
	ž	Potos- sium (K)			0.3			7.00
		Sodium (No)		3.6	2.4 0.10	1.3	1.8	0.12 21.0
		Mogne- sium (Mg)			0.00			0.00
		Calcium (Ca)		0,40	3.6	° <u>। य</u>	0.17	0 . 26
		F ab		6.9	7.1	7.2	7.1	r.
	Spacific	(micromhos pH of 25°C) a		57	33	18	12	т п
		Oissolvad oxygan mg/l %Sof		92	104	97		स
				11.2	10.4	9.5		. ot
		Temp in oF		47	52	62	63	79
		Orschorge Temp		1420	5664		1155	28
		ond time sampled P.S.T	1965	1/11	5/10	7/16	6/8	9/13 1145

Loboratory pH.

Sum of calcium and magnessium in mal.1.

Iron (Fe), aluminum (Al), crepcit (As), capper (Cu), lead (Pb), mangenese (Mn), zinc (Zn), and hazavalent chromium (Cr¹⁶), reported here as abown. c Sum of colcium and magnesium in me/1.

Determined by addition of analyzed constituents. Derived from conductivity vs TDS curves

Grovimetric determination.

Annual madian and annual to account to the contract of applicant monthly samples made by California Department of Public Health, Division at Laboratories, or United States Public Health Service.

Mineral analyses made by United States Geological Survey, Chapter of World States Contract of States (USPHS), 1, 5on Bernardian Chanter of States (USPHS), 1, 5on Bernardian Chanter of States (USPHS), 1, 5on Bernardian Chanter of States (States of States of Sta

32505-D-H 6-61 200 JPD

KINGS RIVER BELOW PROPIES WEIR (STA. NO. 34)

	_	_															
		Annivad	by 1	USGS													
		Tur- Bid - Coliform	MPN/mi	Median	Maximum 620.	2.3											
		Tur- bid-	Turb		7	7	m		10	-3	2	15	CJ	9	2	C/	~
		990	N C		0	0	0		0	0	0	0	0	0	0	0	~
		Hord	Total mg/1		36	26	26		69	19	18	9	75	7,	10	10	শ্ৰ
		Per	- Po-		2	93	%		77	ž	83	23	31	33	콨	58	8
		die -	solved solide mg/l		67 ^e	11,6	107e		125 ^e	36€	35e	107°	518	S.J.	21€	30°	326
			Other constituents d										ABS 0.0 PO ₁ 0.05 A® 0.0				ABS 0.0 PO ₁ 0.01
		-	(Sinco (Sinco										시 조도록				1.
	liter	151	Boron (B)		잉	0.2	이		1.0	0.0	0.2	0,0	0.2	0.0	0,2	0:0	0,0
	per 11	millicquivelents per liter	Fluo- ride (F)														
	milligrams per	quivele	rrote (NO ₃)										0.0				0.0
(0)	mil.	millie	Chio- ride (Ci)		0.05	0.14	4.2		5.7	3.1	0.03	0.13	1.6	0.0	0.8	0.0	0.03
(00,04110)	e i		Sul - fare (SO ₄)										77			_	90.00
3	constituents		Bicar- bonote (HCO ₃)		46	1.33	1.23		1.36	0.39	0.36	1.23	0.51	0.28	13 0.21	0.21	0.23
	Mineral co		Corbon- ore (CO ₃)		0.0	0.00	0.0		0.03	000	0.00	0.0	0.00	0.0	0.0	0.0	0.0
	Mir		Polos- fium (K)										0.03				0.3
			Sodium (No)		0.30	0.48	0.40		0.43	2.0	3.2	0.36	5.2	2.8	0.11	0.08	0.10
			Mogne sium (Mg)										0.14				0.00
			Colcium (Co)		0.71	1:12	1.12		1.38	0.38	0.35	1.8	0.34	0.27	0.21	0.21	200
		-	ماه ي		7.2	7.6	8.0		7.1	7.7	7.6	7.5	7:3	7.7	7.5	7.4	0.00
		Specific	(m.cromhos p		86	991	156		182	59	51	156	69	07	31	53	35
					93	ಹೆ	58		す	100		100		103	103	100	106
		Discolved	0xygen mg/1 %S		8.5	8.1	6.1		10.9	11.2		9.5		10.2	6.6	9.5	7*6
		Te and	P Ci		19	63	92		97	8	2	3		9	79	%	89
		Dischorge	in cfs in of		121	77	55		711	603	1347	150	316	1865	1855	1854	1530
			ed time edmpled P.S.T	1964	10/13	11/9	12/14	1965	1/11	2/8	3/8	1200	5/10	6/14	7/12	1200	9/13

o Freid pH

b Loborotory pH

e. Sum of calcum and magnessum in Ex./1 x., apper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavolant chromium (Gr*7), reported hare as 0.00 except as shown d. Inon (Fe), aluminum (M), assents (As), capper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavolant chromium (Gr*7), reported hare as 0.00 except as shown Derived from conductivity vs. TDS curves

Determined by addition of analyzed constituents.

Grovimetric determination

Manage in the States Coological Survey, Quality of Water Broach (USGS), United States Department of the Interior, Survey of Rectionation (USBR), United States Public Health Service (USPHS), San Banardina County Flood
Counted States (States States Caldinated (AMD), Las Angeles, Department of Public Health (LADPH), City of Long Beach, Department of States (AMD), City of Long Beach, Department of Managed States (AMD), City of Managed States (A h. Annual median and ange, respectively. Coloculosed from analyses of dupticare manthly samples made by California Department of Public Health, Division of Laboratories, or United Strates Public Health, Serice

ANALYSES OF SURFACE WATER

KINGS RIVER BELOW PINE FLAT DAM (STA. NO. 33b)

		nolyzed by i	SDSN					
		Hordness bid - Coliform Analyzed	dien 2.3	Mextmum 50.	.23			
-		d-Col	- ¥	S Ma	0	-	н	⊣
-	F	Hordness bid- os CoCO ₃ 11y Totol N C Turb mg/1 mg/1 Units		0	0	0	0	0
		Hordn os Co Totol mg/1		13	15	∞	t-	-
		- Pog		35	%	33	33	8
	Total	solids oud -		30	368	Je	17°	8
		Other constituents ^d			ABS 0.0 PO ₄ 0.0 As 0.0			다 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전
	ter	Silico (SiO ₂)			al			2.4
	r lite	Boron (B)		0.0	0.0	0.0	0.0	0,0
	and pe	Fluo- ride (F)						
	milligrams per liter milliequivelents per liter	rrote (NO _S)			0.02			e io
	m121	Chio- ride (CI)		0.02	1.0	0.4	0.00	0.01
(00.041113)	5	Sul - fote (SO ₄)			1.0			0.02
	constituents	Bicor- bonote (HCO ₃)		17 0,28	0.33	010	9	0.15
	Mineral con	Corbon- ofe (CO ₃)	-	0.00	0.0	0.0	0.00	0 8
	ž	Potes- srum (X)			0.02			0.01
		Sodium Potos- ((No) (K)		2.7	3.0	1.6 0.07	1.5	4.1.00000000000000000000000000000000000
		Mogne- sium (Mg)			0.0			0 8
		Colcium Mogne-		0.26	4.6 0.23	0.15	0.14 0.14	0.14
		4 a o		6.7	7.2	7.4	7.2	1.1
	91000	conductance (micromhas at 25°C) a		04	777	55	23	Q.
		gen %So		35	6	98		800
		ox ox		10.3	10.2	10.8		9.01
		e Temp		20	22	52	99	62
		Oischorge Temp in cfs in oF		244	4336		7260	1630
		Oote ond time sompled P.S.T.	1965	1/11	5/10	7/16	8/9	09/33

32505-0-H 6-61 200 3PO

b Loboratory pH.

c. Sum at colcium and magnesium in 1967 L.
d. Iran (FB), aluminum (AI), arearca (As), capper (Cu), lead (FB), manganese (Un), zinc (Zn), and hexavalent chromium (Cr⁺⁵), reported here as $\frac{0.0}{0}$ except as shown. c Sum of colcium and magnesium in i me/1.

Determined by addition of analyzed constituents. Derived from conductivity vs TDS curves

g Grovimetric determination.

h Annot medion and rongs, respectively. Calculated from analyses of diplicate monthly samples made by California Department of Public Health, Division of Loboriantes, or United States Deals of World States Canalogued Stavey, Coleity of World States Canalogued Staves, Coleity of World States of States Canalogued Staves, Coleity of World States of States Canalogued States of States o

ANALYSES OF SURFACE WATER

MERCED RIVER BELOW EXCHEQUER DAM (STA. NO. 32a)

	D						
	Analyza by 6		0.5053				
,	Hardness bid - Caliform Analyzed as CaCO ₃ 117 MPN/ml by 1		Medien 6.2	Moximum 23.	8		
100	- 4 -	Turb Und ts		8	5	C)	Н
	0000	Totol N C Durb		(V	0	0	0
	Hord os C	Totol mg/l		8	13	00	6
9	000			8	25	8	70
Total	edids can	mg/l		376	288	16°	308
	Other constituents d				2.5 ABS 0.0 Pol, 0.0 As 0.0		7.8 ABS 0.0 FO ₄ 0.0
tter	Boron Silica			91		01	
milligrams per liter milliequivalents per liter	Bor	<u> </u>		0.0	0.0	0.0	0.0
ums per	Fluo-						
lligre	- IN	(NO 3)			3.0		0.00
m1111	Chlo-	(C)		0.03	0.0	0.6	0.4
ē	Sul -				0.02		0.02
nstifuent	Bicar -	(HCO3)		0.36	0.26	0.16	0.18
Mineral constituents in		(00)		0.00	0.00	0.0	0.00
M	Potos-	(x)			0.3		0.01
	Sadium	6 2		0.10	0.09	1.7 0.07	0.00
	Magne-	(Mg)			0.7		0.1
	Calcium	(00)		0.41	0.70	0,16	3.4
	Ŧ	ماه		7.0	200	4.7	7:1
Sperific	Canductance PH (micrambos			25	35	57	24
	pan	% Sa1		707	108	105	109
	Dissolved	"8,1 %Sa1		11.6	11.3	10.3	9.6
	Temp In OF			51	55	19	70
	Discharge Temp				4130	1960	1480
	Oats ond time	PST	1965	1/11	5/10 0925	7/12	9/2

b Laboratory pH

o Field pH

e. Sun of calcum and magnessium in ac/1 **.

d. Iran (Fe), aluminum (A1), arstanic (A2), capper (Cu) lead (Pb), mangainase ("An), 2 inc (Zn), and heravalent chramium (Cr.), reparted here as 0.00 except as shown d. Iran (Fe), aluminum (A1), arstanic (A2), capper (Cu) lead (Pb), mangainase ("An), 2 inc (Zn), and heravalent chramium (Cr.), reparted here as 0.00 except as shown

Determined by addition of analyzed constituents Danved from conductivity vs TDS curves

Gravimetric determination

h Annoll median and lange, respectively. Calculated from analyses of displicate monthly samples made by Calculane obspariment of Public Health, Division of Laboratories, or United States Dublic Health Service USPHS), San Bernardine County Flood County States Contract States County Flood County States County Flood County States County Flood County States County Flood County States County States County States County States County County States Coun

-1 1 R

ANALYSES OF SURFACE WATER

MERCED RIVER NEAR STEVINSON (STA. NO. 32)

		Anolyzed by 1	nses													
		MPN/mt	Median	Maximum 620.	Minimum 5.											
		furb Turb		7	CV .	15		m	70	10	17	00	15	7.	п	9
		Hordness bid- os CoCO ₃ ity Toig! N.C. Turb mg/l mg/lUnits		0	0	0		0	Н	0	0	Н	0	0	0	0
		Hord os Co Total		98	89	72		75	27	15	82	27	13	65	45	28
		- Pog		94	12	04		충	72	345	41	19	88	77	07	39
	Totol	spived splids mg/l		235e	194e	153 ^e		136e	₇ 94	$177^{\rm e}$	176e	186	24 e	138 ^e	100	127 ⁶
		Other constituents d										ABS 0.0 PO ₁ AB 0.0				ABS 0.0 FO ₄ 0.19 As 0.0
	Į.	Silica (S:02)										엙				8
	iter r lite	Baron (B)		0.0	0.0	0.0		0.1	0.0	0.0	0.1	0.0	0.0	0.0	0.0	ं।
	s per l	Fluo- rids (F)			-											
	milligrams per liter milliequivalents per liter	Ni- trate (NO ₃)										0.0				0.09
(00	md 111	Chio- ride (C!)		31 0.87	15	13		7.4	0.05	19 0.54	16	0.03	0.9	16	8.6	0.37
(BO5125.00)	ŭ,	Sul - fote (SO ₄)										0.10				0.17
Ĭ	constituents	Bicar- bonate (HCO ₃)		150	140 2,29	101		96 1.41	32 0.52	1.85	1.84	32 0.52	97.0	1.41	1.07	1.44
	Minsral con	Corbon— ate (CO ₃)		0.0	0.0	0,03		0.00	0.0	0.0	0.0	0.00	0.0	0.07	0.0	0.00
	Min	Potas- sum (K)										0.5				1.8
		Sodium (Na)		38	30	800		0.65	3.8	1.22	36	0.13	2.4	1.04	140	18 0.78
		Magns- sum (Mg)							_			0.16				0.26
		Calcium (Ca)		1.8	1.78	1.44		1.28	0.54	1.50 c	1.64°	0.38	0.36	1.18	8	0°.90
		E @ 0		7.3	7.9	8.3		8.2	7.8	8.2	8.2	7.2	6.9	8.3	7.2	
	Spacific	conductance pH (m.crombos a a 25°C) a		365	302	239		196	72	275	273	88	38	215	156	700
		gan %Sot		88	ま	%		76	8	81	%	100	8	85	%	93
		Dissolvs d axygsn mg/1		8.4	8.6	9.5		8.6	10.4	8.9	9.5	10.2	4.6	7.5	7.5	8
		Tsmp in of		79	19	54		53	8	53	25	57	61	72	73	92
		Dischorgs Tsmp		20	131	150		230	1140	S#S	592	2160	5800	250	306	750
		ond time sampled P.S.T.	1967	10/6 0850	11/9	12/8 0930	1965	1/5	2/2 1115	3/2	1040	5/4	6/15 0815	7/13	8/13	9/14

32505-LH 6-61 200 JRU

c Sum of calcium and magnessum in me/1. b Laborotory pH

c sum or technomium (Gr. 15), reported here as $\frac{0.0}{1000}$ except as shown. In ord for the sum of the sum o Determined by oddition of analyzed constituents. Derived from conductivity vs TDS curves

Gravimetric determination.

Annual madion and ronge, respectively. Calculored from analyses of duplicate monthly somplies made by California Department of Public Health, Divission of Loboratories, or United Stotes Public Health Service.

Mineral analyses made by United Stotes Geological Survey, Dadaity of West Barned (USSS), United Stotes Societies Public Health Service (USPHS); Son Bernadine Control Discontinue (MDD), Los Angeles Department of Water and Power (LADMP), City of Los Angeles, Department of Mater Resources (DMR), or Angeles, Department of Water Resources (DMR), son indicated.

Public Health (LBDPH), Terminal Testing Laboratories, in ce (TLL), or California Department of Water Resources (DMR), son indicated.

SALIT SLOUGH AT SAN LUIS RANCH (STA. NO. 24c)

	_	_						_	_							
		Analyzed by i	usos													
	4	bid Cottorm's ity MPN/mi	Median	Max 1mum 7000.	2.3											
	- Jo	Turb Unites		8	2 2	25		15	8	07	07	54	2	51	8	35
		Hordness bid- os CoCO ₃ ify Total N C Turb mg/l mg/l Units		90	8	270		369	465	224	255	241	93	\$	7	102
		Total TRA/1		246	380	7,68		572	685	352	1,32	362	516	82	202	258
		- po		55	58	61		59	8%	58	59	57	55	55	55	₹.
	Total	solved solide reg/l		709°	1172	1406		1623°	1935 ^e	1022 ^e	1250°	11506	625°	625°	SST	700g
		Other constituents ^d										ABS 0.1 PO ₁ 1.0 As 0.0				ABS 0.0 FO ₄ 0.56 Ae 0.01
	15	Silico (SiO ₂)										17				21
	liter er lit	Boron (B)		0.5	1.7	2.1		2.8	0,4	1.9	1.7	2.1	0.5	0.6	7,0	0.5
	ents p	Fluo- rids (F)														
	milligrams per liter milliequivalents per liter	rots (NO ₃)										5 0.08				4.4 0.07
	m1111	Chio- ride (Ci)		180 5.08	288 8.12	360		11.79	524	235	355	7.00	170	177	162	200
(BOO475.00)	u i	Sul - fate (SO ₄)		136 2.83	310	9.16		616	675	362	366	372	25.54	2.35	1.62	22.54
(B004	constituents	Bicor - bonats (HCO ₃)		2.79	3.51	3.70		248	256	156	3.54	2,43	150	156	2.56	31.5
	Mineral con	Carban- ote (CO ₃)		0.13	0.13	8 0.27		0.0	0.20	0.0	0.0	0.00	000	0.0	0.0	0 0 0 0
	Min	Potas- sium (K)										5.2 0.13				4.8 0.12
		Sodium (No)		138	238	340		380	19.14	9.83	230	9.83	282	5.35	112	142 6.18
		Mogns- sium (Mg)										2.70				2.47
		Calcium (Ca)		7.92	7.60	9.36		11.14	13.70	7.01	8.64	15.	1.32	777.7	0.7	2.69
		E 00		0.3	7.2	7.4		7.6	08.7	10.8	7.8	7.5	0 0	7.3	0.20	7:9
	Spacific	conductance pH (micromhos of 25°C) a		1180	1950	2340		2700	3220	1700	2080	1760	1040	1040	88	1170
		yen %Sat		53	7/2	73		8	72	63	8	73	3	Z.	92	3
		Dissolved oxygen		5.1	6.9	8.0		9.1	8 2	7.1	6.8	7.5	5.9	T. of	0.4	5.9
		Temp In OF		63	29	52		8	64	2	8	57	62	72	72	89
		Dischargs Temp		72	103	93		157	8.	188	130	145	さ	105	J	62
		ond time sampled P.S.T.	1964	10/6 0735	01/9	12/8	1965	1/5	2/2	3/2 0830	4/6 0815	5/12 0750	6/15	7/13	8/13	9/14 0800

MANAGER CHEET STO

R

b Laboratory pH

c. Sam of colerum and magnessum in mer/1.
d. Inc. (2a), copper (Cu), lead (Pb), manganese (Mh), 21nc (Zh), and hexavalent chramum (Cr. ²), reported here as 000 except as shown d. Inc. (2a), and hexavalent chramum (Mh), arrange (As), copper (Cu), lead (Pb), manganese (Mh), arrange (Cr. ²), reported here as 000 except as shown

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents g Gravimatric determination

h Annual median and range, respectively, Calculated from analyses at duplicate manthy samples made by California Department of Hobits Health, Division of Laboritaries, or United States Geological Survey, Quality of Water States Department of Water princing, Survey, Quality of Water States Geological Survey, Quality of Water States Department of Water and Power (LADMP), City of Los Angeles, Department of Water and Power (LADMP), City of Los Angeles, Department of Water and Power (LADMP), City of Long Beach, Department of Power (LADMP), Transall Estate, Department of Water Securces (DWR), as indicated to the Angeles, Department of Water Securces (DWR), as indicated to the Angeles, Department of Water Securces (DWR), as indicated to the Angeles, Department of Water Securces (DWR), as indicated to the Angeles, Department of Water Securces (DWR), as indicated to the Angeles, Department of Water Securces (DWR), as indicated to the Angeles, Department of Public Headth (LADPH), Terminal Institute, Laboritate (DWR), as indicated to the Angeles, Department of Water Securces (DWR), as indicated to the Angeles, Department of Water Securces (DWR), as indicated to the Angeles, Department of Water Securces (DWR), as indicated to the Angeles, Department of Water Securces (DWR), as indicated to the Angeles, Department of Water Securces (DWR), as indicated to the Angeles, Department of Water Securces (DWR), as indicated to the Angeles, Department of Water Securces (DWR), as indicated to the Angeles, Department of Water Securces (DWR), as indicated to the Angeles, Department of Water Securces (DWR), as indicated to the Angeles, Department of Water Securces (DWR), as indicated to the Angeles, Department of Water Securces (DWR), as indicated to the Angeles, Department of Water Securces (DWR), as indicated to the Angeles, Department of Water Securces (DWR), as indicated to the Angeles, Department of Water Securces (DWR), and the Angeles (DWR)

ANALYSES OF SURFACE WATER

SAN JOAQUIN RIVER AT CHOWS LANDING BRIDGE (STA. NO. 26b)

								-	_	_	_		_			
		Anolyzed by i	USGS													
		wPN/mi	Median	Maximum 620.	Minimum 6.2											
		Turb Units		8	15	15		01	8	8	07	25	30	30	98	52
		N C.		%	69	%		36	51	125	86	8	9	53	17	55
		Hordr os Co Total		148	232	244		134	711	256	224	99	36	166	154	132
		sod -		51	58	53		54	58	58	57	1.7	51	53	57	51
	Total	solved solids mg/l		3608	9889	7238		3718	350 ^g	7828	.6438	1698	104 B	8957	439 ⁸	3458
		Other constituents ^d										ABS 0.0 PO ₄ 0.20 As 0.0				ABS 0.0 PO ₁ , 0.18 As 0.0
	ter	Silica (SiO ₂)										켸				22
	liter per lit	Boron (B)		0.2	0.9	0,8		0.5	0.5	0.8	0.5	0.2	0.1	0,2	0.2	0.1
	ms per	Fluo- ride (F)														
	milligrams per liter milliequivalents per liter	NI- trofe (NO ₃)										0.7				2.6
,		Chlo- ride (Cl)		2.65	169	184 5.19		2,12	88.	180	170 1,80	36	23	3.22	3.53	8 8 8
(BO7250.00)	r s	Sul - fate (SO ₄)										35				1.12
(BO	constituents	Bicor- bonate (HCO ₃)		136	3.26	2.75		1.95	1,33	160	154	56.0	36	138	2.20	2.15
	Mineral co	Carban- ate (CO ₃)		0.0	0.0	0,20		0.0	0.0	0.0	0.0	0.0	0.0	0.00	2 0.07	0.0
	ž	Potas- sium (K)										1.5				2.8
		Sodium (Na)		3.04	946	3.44		3.09	3.22	163	135	1.22	17 0.74	3.74	93	64 2.78
		Magne- sium (Mg)										5.1				1,14
		Calcium (Ca)		2.96	79.4	1.88°		2.68	2,34	5.12	94.4	0.90	0.772	3.32	3.08	30
		PH e Q		8.25	7.2	8.5		7.4	8.1	8.0	7.6	7.5	7.2	7.6	8.3	8.1
	Spacific	(micramhas at 25°C)		651	1180	1290		613	589	1270	1070	282	170	777	751	582
				83	66	8		16	36	16	87	100	ま	%	88	103
		Disso oxy mg/l		7.9	8.8	9.6		10.1	10.4	9.5	9.6	10.0	8.9	7.5	7.4	0.6
		Te or		79	89	24		8	20	26	52	9	69	75	75	73
		Discharge Temp														
		ond time sampled P.S.T.	1964	10/6 0920	11/9	12/8 0950	1965	1/5	2/2	3/2	9/4	5/4	6/15	7/13	8/13	9/14 1035

o Field pH

Determined by addition of analyzed constituents.

b Laboratory pH.

c. Sum of calcium and magnessum in me/½. d. lead (Pb.), manganese (Mn), zinc (Zn), and hexavalent chromium (Cr.*6), reported here as 0.00 except as shown. d. Iron (Fb.) aluminum (Al), assents (As), copper (Cu), lead (Pb.) manganese (Mn), zinc (Zn), and hexavalent chromium (Cr.*6), reported here as 0.00 except as shown. Derived from conductivity vs TDS curves.

Grovimetric determination

³²⁵⁰⁵⁻LH 6-61 200 SPO Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service.

Mineral analyses made by United States Geological Survey, Quality of Water Bernach (1965), United States Source (1967), United States Sta

SAN JOAQUIN RIVER AT PREMONT FORD BRIDGE (STA. NO. 25c)

		Anolyzed by i	uses													
		Jurb MPN/mi	Median 62.	Maximum 620.	. %											
	į,	-fy -fy Turb Units		45	8	10		100	0 77	8	20	07	8	2.2	04	8
		20 Z		174	176	307		3	154	163	159	123	52	87	*	5.4
		Total		340	360	512		129	262	288	30	244	169	212	244	176
	Q.	Log -		95	9	65		51	28	26	57	55	龙	92	55	53
	Total	solved solids		1003	1119°	1487°		324°	805 ^e	805°	83h°	703 ⁸	459°	589°	653°	4858
		Other constituents d										ABS 0.1 FO ₁ 0.95 As 0.01				5 ABS 0.0 FO _b 0.60 As 0.01
	riter	Silica (SiO ₂)		1	101	m1		101	01	OIL	mI.	72	OIL	0/1	ml	21
	r lite	Boran (B)		7.0	1.5	1.8		0.5	1.0	1.2	9.8	6	0.2	0.2	0.3	0.1
	lents	Fluo- ride (F)														
	milligrams per liter milliequivalents per liter	ni- trote (NO ₃)										3.8				0.04
	. LEE	Chio- ride (CJ)		305	302	69.21	_	1.89	224 6.32	210 5.92	250	178 5.02	3.58	175	205 5.78	3.78
(BO7375.00)	ē	Sul - fate (50 ₄)		210	5.75	9.12		82	221	5.12	206	3.75	1.46	2.02	81%	1.11
(BO7	constituents	Bicar- bonate (HCO ₃)		3.31	3.67	3.77		1.70	2.75	2.49	2,82	2.41	2.34	2.19	2.69	2.62
	Minero) cor	Corbon- ote (CO ₃)		0.0	0.00	0.33		0.00	0.0	0.0	0.0	0.0	0.00	0.00	8	0.00
	N.	Potos- sium (K)										1.0				3.6
		Sodium (Na)		8.70	250	340		61 2.65	8.00	172 7.18	182	140	3.92	5.31	135	4.13
		Magne. Srum (Mg)										25.09				0.88
		Calcium (Ca)		, 88. 6.80	<u>2.20</u>	10.24		2.58	5.84°	5.76	8.8	2.79	3.38	,24 c	88.4	2.64
		표 이		7.6	7.5	7.5		7.1.	7.3	7.6	t	7.7	8 .1	8.25	8.5	8.1
	Spacific	conductance pH (micromhos) a		1720	1920	2550		9256	1380	1380	1430	0711	7775	1010	1120	820
		lved gen %Sot		22	8	89		91	82	75	F	8	38	7.1	8	%
		Oxygen oxygen		6.8	8.8	9.1		10.3	7.6	8.3	8.7	9.1	8.0	6.1	6.7	7.6
		Te no P		63	89	52		20	67	51	8	8	38	74	F	0.2
		Dischorge Temp		54	167	100		1300	7.0	276	310	379	370	522	199	225
		ond time sompled P S.T.	1967	10/6	0060	12/8	1965	1/5	2/5	3/2 0930	1,6	5/4 0845	6/15	7/13	8/13	9/14

a Field pH

b Laboratory pH

c. Sum of decirum and magnessum in the serve decirum to the serve of t c Sum of calcium and magnesium in mc/1.

e Derived from conductivity vs TDS curves

f Determined by addition of analyzed constituents

g Grovimatric determination

h Anneal median and stages respectively. Calculated from analyses all duplicate monthly samples mode by Calculated by Oblighte Health, Division of Laboratories, or United States Geological Survey, Calculated Marce Bloader (USDR), United States Geological Survey, Calculated States Geological Survey, Calculated States Geological Survey, Calculated States (USPMS), Son Benandine Calculated States (USPMS), Son Benandine States and Paper (LADMP), City of Los Angeles, Department of Water (LADMP), City of Los Angeles, Department of Marce Resources (USPMS), or adjusted to Paperment of Public Health (LADMP), City of Los Benandine States (LADMP), City of Los Angeles, Department of Marce Resources (USPMS), or adjusted to Paperment of Public Health (LADMP), City of Los Benandine States (LADMP), City of Los Benandine States (LADMP), City of Los Benandines (LADMP), City of LADMP), City of Ladment (LADMP), City of LADMP), City of LADMP, City of LADMP), City of Ladment (LADMP), City of LADMP), City of LADMP), City of LADMP)

ANALYSES OF SURFACE WATER TABLE D-2

SAN JOAQUIN RIVER AT FRIANT DAM (STA. NO. 24)

	Anolyzed by i		USGS				
	NPN/mi		Median 13.	Meximum 62.	.23		
1 1	- piq	Turb		<u>2.</u> 2	-	н	m
	0000	Total N.C. Turb		0	0	0	0
	Hord 98 Cr	Total ng/l		62	य	91	21
	o de la constantina			17	27	54	37
Total	solved sod -	mg/l		a do	376	31e	316
milligrams per liter milliaquivalents per liter	Boron Silica Other constituented	ŀ		0*0	0.0 9.8 ABS 0.0 FO ₄ 0.10 A8 0.0	0*0	0.0 10 ABS 0.C POl ₄ 0.13 As 0.0
ents pe	Fluo-	(F)					
milligrams per liter liegulvalents per li	- 2				0.02		0.7
	Chio-			6.3	0.07	1.8	90.00
ents in	Sul -	-		2,0	40.0		0.02
tituents	Bicor-	- 1		36	0,30	97.0	0,30
Mineral constituents in	Carbon	(500)		000	0.00	000	0 8
Miner	Potas-	(K)		0.0	0.0	010	0.02
	Sodium	(S O)		9.4	0.19	0.17	3.7
	Mogne-	(Mg)			0.0		0.0
	Calcium Magne-	(Ca)		0.58	3.8	0.21	3.6
	Ha .	ماه		7.9	2.0	7.5	7:1
of franco	conductonce (micromhos			107	94	39	यम
	Dissolved	mg/1 %Sot		\$	118	117	109
	Disso	1/9ш		10.0	12.4	12.1	9.11
	Temp in of			475	55	57	55
	Dischorge Temp			84	8	210	102
	ond time	P.S.T.	1965	1/11	5/10 1355	7/12	9/13

b Labaratory pH.

Num of colcum and magnesium in the χ_{\star} .

Then the second manner (As), reported here as $\frac{0.0}{0.00}$ except as shown item (Fig.), aluminum (Al), are specified (As), capper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and haxavalent chramium (Ci 15), reported here as $\frac{0.0}{0.00}$ except as shown. Sum of colcium and magnesium in me/1.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Grovimetric determination.

h Annual median and range respectively. Calculared from analyses of duplicate monthly samples made by California Operatment of Public Health, Division of Laboratories, or United States Geological Survey, Chality of Water Branch (USS), United States Operations of the States Geological Survey, Chality of Water Branch (USS), United States Operations of Water States Geological Survey, Chality of Water States Geological Survey, Chality of Water States Geological Survey, Chality of Water California (WWD), Los Angeles, Department and Power (LADWP), City of Las Angeles, Department of Water Resources (DWR), as indicated the Resources (DWR), as indicated

SAN JOAQUIN RIVER WEAR GRAYSON (STA. NO. 26)

		Anolyzed by 1		USGS													
		MPN/mi		Median	Max1mm 1300.	6.2											
	1	piq ,	Unite		8	8	CV.		130	25	8	707	83	52	37	8	8
		000	D'A		51	91	113		23	88	13	83	45	8	89	%	7.7
			rate!		18	998	767		%	186	2	516	137	ま	184	216	178
		5 p 5			12	57	57		₹.	57	772	57	53	53	52	太	23
	Totel	pevios solids	mg/1		1482°	790	721 ^e		27¼e	535 ^e	119 ^e	265	3598	364	1,84	582 ^e	4738
		Other constituents d											A8 0.2				ABS 0.0 FO _L 0.54 As 0.0
	I la	Silico	(50.0)										91				1
	1ter r lite	Boron	(Q		0.2	9.0	0.7		7.0	9.0	0.1	0.3	7.0	0.1	0.1	0.3	0.2
	ents per	Fluo-															
	milligrams per liter millieguivalents per liter	Ni -	(80N)										4.2				0.10
1	BILLIE	Chio-	(C)		3.24	20th	5.87		57	3.58	21 0.59	152	2.37	65 1.83	3.55	156	3.27
(BOZOBO DO)	ē	Sul -											1.56				81 1.69
٦	astituent	B.cor-	(HCO3)		2,66	3.54	3.28		1:41	270	0.74	2,66	11.	78	2.33	176 2,88	2.62
	Mineral constituents	Potos- Carban-	(500)		0.0	0.0	0.13		0.0	0.00	0.0	0.0	0.00	0.0	0.0	20.07	0 0 0
	N.	Potos-	Œ										200				3.4
		Sodium	(MO)		3.78	7.13	7.40		2.31	11.87	0.83	130	3.18	2.09	8.3	5.05	1.05
		Magne.	(Mg)										1.19				8118
		Colcium	(00)		3.68	5.36	\$.68 5.68		1.8 1.8	3.72	1,00	1.32	31	, 88.	3,68	1.32	8 i
		H C	ماه		8.2	7.6	8.3		7.2	25.5	7.7	8.0	1:1	M.0.	8.2	3.5	84.2
	Spacific	(micromhos of 25°C)			812	1330	1430		197	18.	201	1000	986	777	815	9779	162
			%Sot		81	92	72		75	85	82	86	85	%	027	3	9.
		Dissolved	1/ 2/2		7.8	9.7	7.8		9.6	7.6	0.0	8.5	7.5	7.8	9.6	5.5	9.6
-		Te ap			59	8	75		64	877	55	3	Ę	3	8	52	73
		Discharge Temp			54	682	999		4500	2830	3300	1640	2100	1750	1000	999	790
			P.S.T	1964	10/14	2/5	12/9	1965	1/18	2/11	3/5	1230	1220	6/2	7/8	8/2	9/14

b Loborotory pH o Freid pH

except as shown

ĸ

MANAGER BOOK 27

c Sum of colcium and magnesium in mc/1.

c. Sum of calcuum and magnesium in mer/1. • dead (Pb), manganesa (Mn), zinc (Zn), and hexavalent chramium (Cr⁺⁶), reparted here as <u>0.0</u> 0.000 in the minimum (Cr⁺⁶), reparted here as <u>0.000</u> 0.000 in the minimum (Cr⁺⁶), reparted here as <u>0.000</u> 0.000 in the minimum (Cr⁺⁶), reparted here as <u>0.000</u> 0.000 in the minimum (Cr⁺⁶), reparted here as <u>0.000</u> 0.000 in the minimum (Cr⁺⁶), reparted here as <u>0.000</u> 0.000 in the minimum (Cr⁺⁶), reparted here as <u>0.000</u> 0.000 in the minimum (Cr⁺⁶), reparted here as <u>0.000</u> 0.000 in the minimum (Cr⁺⁶), reparted here as <u>0.000</u> 0.000 in the minimum (Cr⁺⁶), reparted here as <u>0.000</u> 0.000 in the minimum (Cr⁺⁶), reparted here as <u>0.000</u> 0.000 in the minimum (Cr⁺⁶), reparted here as <u>0.000</u> 0.000 in the minimum (Cr⁺⁶), reparted here as <u>0.000</u> 0.000 in the minimum (Cr⁺⁶), reparted here as <u>0.000</u> 0.000 in the minimum (Cr⁺⁶), reparted here as <u>0.000</u> 0.000 in the minimum (Cr⁺⁶), reparted here as <u>0.000</u> 0.000 in the minimum (Cr⁺⁶), reparted here as <u>0.000</u> 0.000 in the minimum (Cr⁺⁶), reparted here as <u>0.000</u> 0.000 in the minimum (Cr⁺⁶), reparted here as a cr⁺⁶ 0.000 in the minimum (Cr⁺⁶), reparted here as a cr⁺⁶ 0.000 in the minimum (Cr⁺⁶), reparted here as a cr⁺⁶ 0.000 in the minimum (Cr⁺⁶), reparted here as a cr⁺⁶ 0.000 in the minimum (Cr⁺⁶), reparted here as a cr⁺⁶ 0.000 in the minimum (Cr⁺⁶), reparted here as a cr⁺⁶ 0.000 in the minimum (Cr⁺⁶), reparted here as a cr⁺⁶ 0.000 in the minimum (Cr⁺⁶), reparted here as a cr⁺⁶ 0.000 in the minimum (Cr⁺⁶), reparted here as a cr⁺⁶ 0.000 in the minimum (Cr⁺⁶), reparted here as a cr⁺⁶ 0.000 in the minimum (Cr⁺⁶), reparted here as a cr⁺⁶ 0.000 in the minimum (Cr⁺⁶), reparted here as a cr⁺⁶ 0.000 in the minimum (Cr⁺⁶), reparted here as a cr⁺⁶ 0.000 in the minimum (Cr⁺⁶), reparted here as a cr⁺⁶ 0.000 in the minimum (Cr⁺⁶), reparted here as a cr⁺⁶ 0.000 in the minimum (Cr⁺⁶) 0.000 in the minimum (Cr⁺⁶) 0.000 in the minimum (Cr⁺⁶) 0.000 in t

Determined by addition of analyzed constituents Derived from conductivity vs TDS curves

Gravimetric determination

Annual majon and range, respectively. Calculated from analyses of duplicate monthly samples made by Caltiania Department of Public Health, Division of Loboratories, or United States, Castlogical Survey, Could yell when the Roman Caltiania (1968), United States Castlogical Survey, Could be supported to the Cantal District States (1964), San Bernadia Caltiania (1967), Las Angles Department of Major and Roman Caltiania (1967), Las Angles Department of Major Roman (1967), United States Department of Public Health LADPH), City of Las Angles Department of Public Health LADPH), City of Las Angles Department of Public Health LADPH), City of Las Angles Department of Public Health LADPH), City of Las Angles States (1967), Formal Resources (1968), as indicated

ANALYSES OF SURFACE WATER

SAN JOAQUIN RIVER AT MAZE ROAD BRIDGE (STA. NO. 26a)

		Anolyzed by i	nsgs													
	,	Hordness bid - Coliform os CoCO ₃ ity MPN/mi Total N C hurb	Median 230.	Meximum 7000.	6.2											
	1	Pud- Turb Units		15	8	٦		20	15	%	15	25	30	82	37	52
		Hordness bid- os CoCO ₃ ity Total N.C. Turb mg/lunts		99	28	53		52	77	13	78	23	36	9	75	L ₇
				188	991	132		ಪೆ	67	L#	92	69	102	150	8	168
		- Pos		51	55	96		51	52	45	27	67	51	52	23	51
	Totol	solved sod - solide num		1,88°	473°	366°		210e	175e	107e	199 ^e	2168	256°	373°	509e	9871
		Other constituents d										ABS 0.2				ABS 0.0 PO _L 0.58 As 0.0
	ter	(\$0.5)										원				27
	liter per li	Boron (B)		0.2	†·0	0.3		0.3	0.2	0:1	0.0	0.2	0.2	링	0.2	0,0
	ents i	Fluo- ride (F)							_							
	milligrams per liter milligulvalents per liter	N1- trate (N0 ₃)										2.0				6.3
(00.0	millin.	Chio- ride (CI)		3.92	3.72	2.76 2.76		1.38	1.18	25 0.71	52	27.44	76	3.30	168	3.53
(BO7040.00)	ē	Sul - fats (\$04)										42 0.87				1.10
	constituents	Bicar- banate (HCO ₃)		156 2,56	132	1.57		72 1,18	52 0.85	42	1.05	76	1.33	110	2.51	2.43
	Mineral cor	Carban- ate (CO ₃)		0.00	0.0	0 0		0.0	0.0	000	0,0	000	000	0.0	0.00	0 0 0
	ž	Potas- sium (K)										0.05				0.10
		Sodium (No)		3.87	1600.1	3.39		1.74	1.18	18	1,78	1.74	2.13	3.31	102	3.65
		Mogne- sium (Mg)										9.5 0.78			_	177
		Calcium (Ca)		3.76	3.32	2.64		1.68	1.34	ू हा	1.52	8 8	2.04	8.8	00.4	39
		H B Q		7.4	7.4	7.9		7.1	7.5	7.5	7.3	7.5	8.1	7.4	7.5	8 2 8
	Specific	conductonce pH (micromhos) a		875	848	659		375	314	191	357	396	854	699	915	753
		sn %Sol		92	73	75		69	16	%	88	ಹ	83	101	63	110
		Oisso axy		7.1	T.2	0.0		7.2	10.7	9.3	80	7.8	7.6	7.8	5.1	9.6
		Temp n oF		99	19	55		617	14	53	09	99	89	78	78	73
		Discharge Temp		1240	1360	1800		8650	7180	5100	7,800	6300	2498	1845	362	1230
		Dote ond time sompled P.S.T.	1964	10/14	12/5	12/9	1965	1/18	2/11 0950	3/5	4/5	4/29	6/2	7/8	8/2 1045	9/14 1310

o Freld pH

32505-D-H 0-61 200 UPO

b Lobaratary pH.

Sum of colcum and magnessium in me/1.

Iron (Fe), aud haxavalent chromium (Gr. ¹⁵), reported here as $\frac{0.0}{0.00}$ except as shown. c Sum of calcium and magnesium in me/1.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents Gravimetric determination.

h Annual median and mage, respectively. Calculand from analyses of diplicate monthly samples, made by California Department of Public Health, Division of Laboratorias, or United States Guide Health Service.

I Mineral burder of States Geological Survey, Orality of Native Reacons, USSA), Late Appelled Specific and Proceedings of Control District Specifical States and State

SAN JOAGUIN RIVER NEAR MENDOTA (STA. NO. 25)

	Analyzed by i		USGS													
	bid - Coliform		Median 6.2	Maximum 620.	.23											
	- y	Purb		29	8	CV		9	15	9	п	8	8.	9	55	25
	0000	S C		%	51	96		0	충	8	3	19	23	13	19	8
	Hordness os CoCO ₃	Total N C Purb		116	191	148		96	89	82	146	2	69	7	₽	111
	P 0			54	8	₹5		19	20	8	51	45	1 ⁴	14.5	43	772
Total	Pevios Pevios	mp/1		261e	397°	397°		300€	227°	2116	368	1668	172 ^e	168°	179°	2708
	Other constituents d											ABS 0.0 PO _L 0.25 As 0.0				ABS 0.0 PO ₄ 0.35 Ae 0.0
	Silico	2010	_									AKK				2 K 4
ter.	Baron S	(B)		0.2	7.0	7.0		0.2	6.3	0.2	6.3	0.1	7.0	0.0	0.1	1,0
per 11	Fluo-															
milligrams per liter	- N											0.02				0.02
m1111e	Chia-	-		1:01	201	93		2.03	1.33	50	2.65	1.07	1.13	37	36	1.75
ć	Sul	(\$05)										23				0.85
tituents.	Bicor	(HCO3)		97:1	2.3	1.70		1.95	1.10	1.05	100	1,02	26.0	67	1:30	1.70
Mineral constituents	1	(00)		0.00	0.00	0.13		0:00	0.0	0.0	0.0	0.0	0.0	0.00	0.0	0.00
Wine	Potos-											0.05				0.07
	Sedium	(NO)		1.91	3.26	81 3.52		3.44	1,78	38	3.00	1.17	1.23	1.22	8:18	97 8.2 8.20
												0.59		-		0.00
	Colcium Magne-	(°2)		2.32	3,22	° 8.		1.8	1.78	1.64	2.92	0.80	1.38	1.48	1.68	1.50
	ī	ماه		14.0 B.0	1:3	8 4 3		7.7	7.9	7.9	8.9	7.6	7.5	7.5	4.2	7.5
	conductonce pH (micromhos	10-00 10		451	989	989		520	393	366	635	287	262	291	309	797
		%Sot		971	00	175		87	198	115	141	16	76	ಹೆ	89	101
	Dissolved	6 1/30		10.7	9.8	19.4		11.4	E . C	ה.2	13.8	9.3	8.7	7.1	7.5	8.7
_				69 1	- 29	52 1		100	75	62	62	49	20	15	92	22
	Discharge Temp			n3 (37 (8		0.5	e .	230	140	360	004	7,30	001	540
		P.S.T	1967	10/13	n/9 1235	12/14 1410	1965	1/11	2/8	3/8	1500	5/13	6/14	7/12	8/9	9/13

b Laboratory pH a Field pH

c Sum of calcium and magnesium in mc/l.

d Iran (Fe), aluminum (Al., arsanic IAS), copper (Cu), lead (Pb), manganese (IAn), zinc. Zn), and heravalent chromium (Cr¹¹), reported here as $\frac{0}{0}$ except as shown a Darrod lone conductivity vs TDS curves.

Determined by addition of analyzed consti

Gravimetric determination

Annual median and range respectively. Calculated from analyses of duplicate monthly samples mode by California Department of Public Health, Division of Laboriatures, or United States Goological Survey, Chalify of Weste Broack (USS), United States Department of Health Internet, States and Public Health Service (USPHS), San Bernardine Cannon States and Perev (LADMP), City of Law Angeles, Department of Material States of Survey California Department of Water of Nation and Perev (LADMP), City of Law Angeles, Department of Public Health (LADPH), City of Lang Breach, Department of Public Health (LADPH), City of Lang Breach, Department of Mater Resources (DRR), as indicated

SAN JOAQUIN RIVER AT PATTERSON BRIDGE (STA. NO. 27a)

	Anolyzed by i	USGS													
	Cotiform ^h MPN/mi	Median	Maximum 620.	Minimum 23.											
,	- brd - brd Joseph		8	15	9		8	09	8	04	8	30	88	25	29
			32	11	83		75	917	131	0	12	-7	09	31	8
			148	54e	7170		133	217	₹	216	2	2 5	188	138	148
ě	- pos		53	28	53		53	57	58	95	64	617	95	55	
Total	solids solids		3728	7298	7238		3778	3408	8118	607 ⁸	1758	948	5408	3788	385 ^g
	Other constituents														ABS 0.0 PO ₄ 0.54 AB 0.0
Į.	Silica (SiO ₂)										25				81
r lite	Baran (B)		0.2	1.0	0,8		0.5	7.0	8	7.0	0.2	0.1	0.2	0,2	0.1
per l	Fluo- rids (F)														
lligrams	rate (NO _S)										0.02				0.00
M1114	Chio- ride (CI)		8/2	185	186		2.06	2.09	192	165	39	17	141	2.71	2,76
Ē	Sul - tats (SO ₄)										36				1.25
nstituents	Bicar- banate (HCO ₃)		2.33	3.38	3.08		121	1.31	162	162	86.0	37	25.49	126 2.07	2,41
	Carbon- (CO ₃)		000	0.00	0.13		0.0	0.00	0.00	0.00	0.00	0.00	2 0.07	2 0.07	0.00
Z	Potas- Sium (X)										1.5				3 0.08
	Sodium (No)		3.31	155	252		3.04	2.96	169	129 5.61	32	15	112	3.31	3.44
	Magne- Sium (Mg)										6.1				1,66
			2.86	4.92			2,66	2.24	5.28°	14.32 c	0.90	99.0	3.76	2.76	1.30
	F a b		25.0	7.8	7.4		8.0	3.1	8.2	7.9	7.1	7.2	8.3	0.3	7.5
Soecific	conductan (micromha at 25°C		049	1210	1270		019	554	1310	1020	304	148	916	645	683
	gen %Sot		78	91	93		8	89	88	85	101	93	86	87	8
			7.3	8.2	9.4		10.0	10,1	4.6	9.5	6.6	0.6	8.3	7.5	8.5
	Temp in oF		99	69	65		51	64	53	53	61	63	75	7	72
	Dischorge in cfs														
		1964	10/6	000 0401	12/8	1965	1/5	2/2 1215	3/2	071	5/4	6/15	7/13	8/13	9/14
	Sameric Maneral constituents in Milladdischere per 134er Total -	Specific and Constitutions Specific and Constitutions Mindred Constituti	State Colored Colore	Specific Paragraph Parag	Secretive Part Pa	Specific Park Calcium Magnet Calcium Magnet Calcium Magnet Calcium Calcium	Societies Paragraphic Pa	State Continue C	State Continue C	State Column Co	The control of the	The control of the	This can be a control of the contr	This bound Thi	This control This

a Field pH

b Laboratory pH.

Just or Carlo Junior may receive the second of the second c Sum of calcium and magnesium in me/1.

Determined by addition of analyzed constituents. Derived from conductivity vs TDS curves

Gravimetric determination

Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Divisson of Laboratorists, or United Stores Public Health Service
Mineral analyses made by United Stores Caelogical Street, Jodalys of Water Bornet (USSS), United Stores Department of the International Stores Caelogical Street, Stores of Stores of Stores and Power (LADMP), City of Las Angeles, Department of Water and Power (LADMP), City of Las Angeles, Department of Public Health (LADPH), City of Lang Bearing Control Stores (DMR), as indicated. Bearing Control Stores of Stores of Stores of Stores (DMR), as indicated. Bearing the Stores of Stores of

SAN JOAGUIN RIVER NEAR VERMALIS (STA. NO. 27)

		Anolyzed by i	USGS													
	Coliform MPN/mi		Median 230.	Mexturum 2400,	13.											
	Tur-	Turb Units		8	91	9		R	9	_	8	8	04	25	35	8
		Hordness bid- oe CoCO ₃ itv Taigi N C Turb mg/l mg/lUbits		24	94	7 7		9	13	72	17	7	10	177	2	67
	Hore os C Tatal			170	150	121		55	59	75	2	8	7	12	198	167
L	Per	P 0 0 0		8	ま	52		<u>~</u>	84	22	51	77	171	20	51	64
	10101	solved solids mg/1		417e	393 ^e	336		120	154°	184°	174°	1458	888	306	481e	4288
		Other constituents d										ABS 0.0 POL 0.25 As 0.0				ABS 0.0 POL 0.52 As 0.01
١.		Sitic 6								_		81				의 조포국
ter	r lite	Boron S (B) (S		0.1	7:0	6.3		0.1	0.1	0.1	0.0	0,0	0:0	0,1	0.2	5.0
per 11	ents per	Fluo-B														
milligrams per liter	quivale	trafe (NO ₃)										3.5				0.09
In Indian	m1111e	Chlo- ride (CI)		3.16	3.05	2,50		0.59	35	1.30	1.18	98.00	21	88 2.48	153	3.44
I BOTOZO OOJ		Sul - fote (SO ₄)		-		_						0.35				1.06
11.fuents		Bicor - bonate (HCO ₃)		156 2.56	2.08	1.62		25.0	26.0	1.02	1.07	86.0	38	1.70	2.43	11th
Mineral constituents		Corbon- ofe (CO ₃)		0.00	0.0	0.03		0.0	0 8	0.0	0.0	0.00	0 0	000	0.13	0 8
M.		Potos- svum (K)										0.03				3.6
		Sodium (No)		3.35	3.48	2.78		19	1.22	34	37.18	8.00	13	2.52	93	3.31
		Magne- sium (Mg)										5.5				1.39
		(Ca)		3.40	3.00	2.54		1.10	1.30	1.50 c	1.40	0.75	0.82	2.52	3.8	39
				8.53	7.1	7.2 8.2		7.0	7.9	7.2	2.7	7.2	7.9	7.6	7.6	3.2
	Specific	(micromhos pH of 25°C) a		739	169	965		213	273	326	300	240	156	543	853	136
		osot %		92	72	ಹೆ		H	93	93	91	96	8	8	66	8
		Dissolved Conygen (fr		6.7	7.2	0.6		8.5	10.5	10.5	10.0	9.5	80	7.5	7.6	8.1
		Te or		72	57	法		52	611	0,5	525	29	3	73	75	25
		Orachorge Temp		1300	1790	2030		14300	02.99	9620	0079	6270	8250	2350	700	1400
		sompled sompled P S.T	1964	10/7 0730	11/10	0260	1965		2/3	3/3	1,77	5/5	97/9	7/14	8/11	9/15

b Laborotory pH o Freld pH

c Sum of colcium and magnesium in me/1.

R

Derived from conductivity vs TDS curves

Determined by addition of analyzed constit

MOS-DHE DAG MU Annal median and range, respectively Colculated from analyses of duplicate manify's samples made by California Department of Public Health Service (USPHS), Son Bennardino County Flood Mineral analyses made by United States Department of the Interior, Surveou of Reclamation (USB), United States Public Health Service (USPHS), Son Bennardino County Flood County Flood County Flood District (SECPCD), Mennagolitan Water District of Southern California (MOD), Los Angeles, Department of Water and Power (LADMP), City of Las Angeles, Department of Water Resources (DMR), as indicated

STANISLAUS RIVER AT KOETITZ RANCH (STA. NO. 29)

	Analyzed by 1		USGS													
	oliform MPN/ml		Median 62.	Maximum 620,	2.3											
	Į.	Purb Unite		m	н	α		07	9	8	6	8	25	72	97	9
		Hordness bid - C as CoCO ₃ 11v Total N C Turb ER/1 mg/10/10s		0	0	•		m	0	0	0	0	0	0	0	0
				711	833	8		36	31	31	30	27	13	8	73	0
	9	sod - lum		33	8	25		19	21	55	22	- 19	23	22	23	83
	Totol	solved solids		222°	146	150e		61 ^e	54€	55e	52e	536	34e	154e	127e	1198
		Other canstituents d										ABS 0.0 PO ₄ 0.05				As 0.0
	riter	Silica (SiO ₂)		01	out	-11						18	-01			81
	per 111	Boron (B)		0:0	0.2	0.1		0.1	0,0	0.0	0,0	<u> </u>	0.0	0.0	0,0	0.0
(BO3115,00)	lents	Fluo- ride (F)														
	milligrams per liter milliequivalents per liter	Ni- trate (NO ₃)										2.1				70.00
	m111	Chlo- ride (Ci)		8.7	5.6	6.2		0.03	1.3 0.04	0.04	0.00	0.0	0.5	6.2	0.17	5.4
	E.	Sul - fote (SO ₄)										30.00			_	0.15
	constituents	Bicar- bonate (HCO ₃)		2,92	110	1.77		99.0	38	39	37	36	0.39	1.8	89	1.46
	Mineral con	Carbon- ate (CO ₃)		0.13	0.00	2 0.07		0.0	0.00	0.00	0.00	000	0.00	0.07	0.03	0.00
	Min	Potos- sium (K)										0.03				2.4
		Sadium (Na)		1:13	0,48	13		3.8	3.6	3.8	3.8	0.13	2.2	25.0	0.44	9.5
		Magne- sum (Mg)										0.13				0.55
		Calcium (Ca)		2.3 <u>4</u>	1.66	1.72		0.72	0.62	0.62	0.60	8.2	0.38	1.80	27.1	17 0.85
		Hd B O		7.4 8.3	7.2	200		7.0	7.9	7.1	7.7	7.5	7.7	7.2	8.3	7 2
	Sparific	(micramos pH (micramos pH at 25°C) a		329	516	222		8	8	81	H	70	20	228	188	184
		os%		62	69	92		68	8	8	95	97	%	88	8	93
		Oissolved oxygen mg/1 %Sq		5.7	8.1	7.6		10.0	11.2	17.7	10.5	6.6	9.4	7.7	7.7	0.8
		Teno in of		69	69	55		25	84	20	52	58	62	72	75	73
		Oischorge Temp		180	204	207		2580	8,98	1785	250	3700	3750	007	343	318
		ond time sampled	1961	10/6	11/9	12/8	1965	1/5	2/2	3/3	1320	5/4	6/15	7/13	8/13	9/14

8

32505-D-H 6-61 200

b Laboratory pH.

c Sum of colcium and magnesium in me/l.

c. Sum of calcium and magnesium in $m_{E/A}$.

I compare (Cu), lead (Pb), manganese (Mn), and hexavalent chromium (G, 6), reported here as $\frac{0.0}{0.00}$ except as shown.

e Derived from conductivity vs TDS curves.

f Determined by addition of analyzed constituents.

g Gravimetric determination.

h Annual median and nange, respectively. Calculated from analyses of duplicate menthly samples made by Calcunua of Public Health, Division of Laboratorius, or United States Geological Survey, Calculater Branch (USSS), Universificate Control States Geological Survey, Calculater (Bush), Laborater States Geological Survey, Calculater (Calculater Calculater (MSP), Laborater (MSP), Division of Walking (MSP), Survey (MSP), S

ANALYSES OF SURFACE WATER TABLE D-2

STANISIAUS RIVER BELOW TULLOCH DAM (STA. NO. 29a)

		Anolyzed by i	uses							
-		Hordness bid - Coliform Ar os CoCO ₃ ity MPN/mi Total N C Turb me/1 me/1 thits		Meximum 230.	90.					
-		bid - Col ity M Turb Units	-X	15 Ma.	[-	а		 	
-	F	Hordness bid- os CoCO ₃ 11v Totol N C Turb mg/l mg/l Utits		CV	0	0	0	 	 	
		Total		82	17	17	8		 	
	9	100 m		23	22	23	17			
	Total	solved end - solids rum		54e	368	32e	418			
		Other constituents d			ABS 0.0 POL 0.0 As 0.0		ABS 0.0 PO ₁ Aa 0.0			
	liter	Baron Silico (B) (SiO ₂)		OI.	21	OI.	13	 	 	
	er lite			0.0	ं।	00	0,0		 	
	milligrams per liter milliequivalents per liter	Fiuo- ride (F)								
	millig Liegui	frote (NO ₃)			3.6		0.03			
0.007	m111	Chlo- ride (Cl)		0.03	0.2	0.0	0.01			
(B32150,00)	<u>e</u>	Sui - fate (SO ₄)			0.02		0.02			
	stifuents	Bicor- bonate (HCO ₃)		33	0.36	22 0.36	0.43			
	Mineral constituents	Potos- Corbon- Sum (K) (CO ₃)		0.00	0.00	000	0.00			
	M	Potos- Sium (K)			0.0		0.03			
		Sodium (No)		3.4	2.4 0.10	2.1	0.00			
		Colcium Magne- sum (Ca) (Mg)			0.08		0.0			
		Calcium (Ca)		25.0	0.3	0.34°	7.4			
		H a D		7.1	7.2	7.8	7.7		 	
	Specific	Olesoived conductonce pH axygen (micromhos pH ot 25°C) a		73	94	प्रश	51			
		Oiesolved oxygen mg/1 %Sof		7	106	88	79			
		Oieso Oxy mg/l		12.3	11.0	8.2	5.6			
		Te or		55	57	69	72			
		Orecharge Temp		44.55	4185	1700	1610			
		Dote ond time sompled P S.T	1965	1/11 1,115	5/10 0810	7/12	9/2			

b Laboratory pH

o Freld pH

c Sum of calcium and magnesium in me/1.

d Iran (Fe), oluminum Al, arsenic (As), capper (Gu) lead (Pb), manganese (An), zinc (Zn), and hexavoleri chramium (Gr²), reparted here as 000 except as shown.

e Derived from conductivity vs TOS curves

Determined by addition of analyzed constituents

Annyal median and range, respectively, Calculared from analyses at duplicate monthly samples mode by Caltianus Department of Public Health, Division of Lobaratories, or United States Public Health Service (USPHS), San Bernadian Caltianus (1988), United States Department of International Consultation (1988), United States Department of Consultation (1988), United States Department of Consultation (1988), United States Department of Consultation (1988), United States and Consultation (1988), United States and Consultation (1988), San Bernadian Caltianus (1988), Origination (1988), United States and Consultation (1988), Caltianus Canada (1988), Origination of Consultation (1988), Caltianus Caltianus (1988), Origination (1988), Origination (1988), Origination of Caltianus Caltianus Origination (1988), Origination (1988

ANALYSES OF SURFACE WATER TABLE D-2

TULE RIVER NEAR SPRINGVILLE (STA, NO. 91b)

		Anolyzed by i	USGS													
		Coliform MPN/mi														
		Purb Units		ч	٦	Q		S	CV .	CV	н	Q	m	e	н	н
		CO3		0	0	0		0	0	0	0	0	0	0	0	0
		Hord os C		175	174	144		51	75	79	79	04	3	97	135	162
		- pog -		%	24	8		28	22	21	₹	55	21	18	23	55
	Total	solids solids mg/1		299°	285 ^e	221 ^g		93	109 ^e	130°	110e	65 ⁸	75e	173 ^e	214e	2498
		Other constituents										ABS 0.0 PO ₄ 0.0 As 0.0				ABS 0.0 PO ₄ 0.10 As 0.0
	le L	(SiO ₂)										데				타
	liter er li	Boron (B)		0.2	7.0	0.2		0.0	0,2	0.0	0:1	0.0	0,0	0.0	1:1	0.2
	ents p	Fluo- ride (F)														
	milligrams per liter milliequivalents per liter	N - trote (NO ₃)										0.0				2.7
(00'	m1115	Chio- ride (CI)		17.0	하. 이 . 생	9.4		3.2	3.5	0.12	3.2	0.05	0.06	5.7 0.16	0.22	0,28
(03,021150,00)	Ē	Sul - tote (SO ₄)										0,02				0.10
	constituents	Brcor- bonote (HCO ₃)		256	253	3.31		72	1.51	1.8	1.51	58	61 1.00	2.49	3.20	3.75
	Mineral con	Corbon- ote (CO ₃)		0.0	0.00	000		0,0	0.0	0.0	000	0.00	0.0	0.00	0.00	3 0 10
	Ā	Potos- sium (K)										0.9				3.6
		Sodium (No)		1.22	1.09	17 0.74		90.39	8.6 0.37	9.4	9.3	5.4	5.5	110	16 0.70	850
		Mogne- sium (Mg)										1.1				0.65
		Colcium (Co)		3.50	3.48	2.88		1.02	1.28	1.58	1.28	14 0.70	0.88	2.8	2.70	2.59
		F 80		8.1	8.1	8		7.7	8.2	8.1	8.1	7.1	8.1	8.0	7.7	8.3
		conductonce (micromhos of 25°C)		452	1,31	346		141	165	196	166	104	113	261	323	389
				23	86	89		76	35	8	110	101	102	107	108	ZZ ZZ
		Dissolved oxygen mg/1 %Sc		2.6	10.2	10.6		11.1	10.9	9*01	9.51	п.3	10,2	10.1	7.6	ш.7
		Ten in of		99	95	917		817	94	84	49	0,5	28	3	20	₫
		Discharge Temp		CU	23	4.3		894	192	129	70Z	375	298	53	%	15
		Dots ond time sompled P.S.T	1961	10/8	11/3	07/21	1965	1/5	2/1	3/2 0950	77 p	5/3	6/7	27/12	8/3 0755	9/13

o Field pH.

b Loborotory pH

c Sum of calcum and magnessum in me/1. 4 d from the control of the

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

Grovimetric determination.

³²⁵⁰⁵⁻⁰⁻H 6-61 200 JPU Annual median and range respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division at Leboratories, or United States Public Health Service.

Mineral analyses made by United States Geological Survey, Quality of where Booker (USSS), United States States (USPHS), Son Betracting Common (USBR), United States Spatial States (USPHS), Son Betracting Common (MMD), Les Angeles, Department of Water and Power (LADMP), City of Los Angeles, Department of Public Health (LADPH), City of Long Breach, Department of Public Health (LADPH), City of Long Breach, Department of Water and Common of Public Health (LADPH), City of Long Breach, Department of Management of Management

ANALYSES OF SURFACE WATER TABLE 0-2

TULE RIVER BELOW SUCCESS DAM (STA. NO. 91)

		Acciona	by 1		USGS													
		F	MPN/mi		Median ,16+	Maximum .16+	· 16+											
		3	Pr. V	Unite		-	н	CV .		10	77	2	н	CI .	-2	m	٦	-3
			as CaCOs 11v	mg/l		0	0	0		0	0	0	0	0	0	0	0	0
				mg/1		102	148	977		29	62	70	131	72	69	63	59	22
		P97-	- Po 2			23	₹.	₹.		25	23	23	23	23	23	83	22	8
		919		mg/1		1548	2268	1886		1258	1118	1198	197 ⁸	1308	1198	1098	1208	1288
			Other constituents											ABS 0.0 PO ₁ 0.05 As 0.0				ABS 0.0 PO ₀ 0.14 Ae 0.0
	-	, L	(\$0.0)	4										ম				킹
	liter	er 111	Boron (B)			0.1	0.1	0.2		0,0	0:0	ं।	0.1	0,1	0.0	0.0	0.1	0.0
	g ber	ents p	Fluo-	-+														
	milligrams per liter	equivel	- (N)	16001										0.03				0.09
(003195,00)	in .	m1111	Chid-			5.5	0.22	0.23		4.5	0.12	1.B	6.2	0.12	4.4	3.8	3.4	3.5
(003)	101	- 1	Sul -	- 1										90.08				0.10
	Constituents		Bicar- banate	(SOOL)		2.34	3.57	2.56		1.56	1.41	1:57	25.98	101	1.52	% 1.1	1.34	1.59
	Minarol co		Carban	1003		0.0	0.00	000		0.00	0.00	0.00	0.07	0.00	0.03	000	0.07	0 0 0
	M		Potas	4										1.6				0.00
			Sodium (Na)			14 0.61	21 0.91	0.70		000	0.38	9.6	0.70	10.	9.7	0.36	0.32	0.37
			Sign Sign	(GW)										1.7				3.5
			Calcium (Ca)			2.01	2.86	8.		1.34 c	1.24	1.40	2.62	1.30	1.38	1.3	1,18	23
			I d	م		8.0	8.2	7.8		8.2	8,2	16:1	8.3	7.5	8.3	8.1	8.5	7.5
		Specific	(micramhas at 25°C)			254	368	586		179	191	180	314	186	176	162	152	182
				70501		94	121	96		93	302	011	117	927	121	7	88	EZ .
			Disso	1/82		0.4	11.3	10.3		10.5	11.5	75.4	12.5	13.6	9.21	7.7	7.6	6.01
		1	180 c			72	99	53		61	8	20	55	7.	58	8	3	10
			Discharge Tamp			772	1	19		602	86	8	т	す	133	303	373	8
			and time		1964	10/8	11/3	12/7	1965	1/5	2/1	3/2	1025	5/3	6/7	21/7 1028	8/3	9/13

o Field pH

e. Sum at calcum and magnessum in Ber/1.

d. Irea (Fe), aluminum (A1), argenic (A2), capper (Cu), lead (Pb), manginese (Mn), 2 nc (Zn), and hexavalent chramium (Cr⁻¹), reported hare as 0 0 except as shown d. Irea (Fe), aluminum (A1), argenic (A2), capper (Cu), lead (Pb), manginese (Mn), 2 nc (Zn), capper (Cu), reported hare as 0 0 except as shown e Sum of colcium and magnesium in Be/1.

f Determined by addition of analyzed constituents e Derived from conductivity vs TDS curves

SE ME OF BUILD h Annual median and range respectively. Calculated from analyses of displicate monthly samples, made by Calculana Oppariment at Public Health, Division of Laboratories, or United States Caelogical Survey, Calculated Flores Desperiment of the firsters, Bureau of Reclamation (USBR), United States Caelogical Survey, Calculated Flores Caelogical Survey, Cae

ANALYSES OF SURFACE WATER TABLE D-2

TUOLUMNE RIVER RELOW DON PEDRO DAM (STA. NO. 314)

	Anolyzed by i		USGS							
	as CaCO ₃ ity MPN/mi by i									
į	- piq	Unite		15	⊢	Н	C)			
	000 S	Total N C TUT O mg/l mg/l Units		C)	н	0	а			
	Hord Os C	Tatal mg/1		52	23	97	0			
	- P - P -			23	23	56	70			
Total	solved and -	mg/l		1 Te	428	34°e	80			
	Other constituents d				ABS 0.0 PO _{tt} 0.0 As 0.0		OO OO OO			
Į5	Oilico	2010			의 의		5.4 ABS			
liter r lite	Boron Silico	(0)		0.1	0,0	0.0	1,0			
s per	Fluo-									
milligrams per liter	rate -				0.9		0.03			
m1111	Chlo-			0.03	0.03	1.1	000			
Ē	Sul .	(\$0,			30.06		0.0			
constituents	Bicar-	(нсоэ)		97.0	25	200	0.16			
Mineral cons	Carbon-	(00)		0.00	0.00	0.0	0 8			
Mine	Potas- C	(X			0.02		4.00.0			
	Sodium	(D N)		3 0.13	2.7	2.5	0.06			
	Magne-	(Mg)			0.0		0.0			
	Calcium Magne-	(00)		0.50	7.4	0.32	0.16			
	T c	ماه		7.8	7.1	7.2	7.3			
o. f. ready	canductance (micramhas pH			62	53	44	45			
	pen us	%Sat		88	36	ä	69			
	Dissalved	mg/1 %Sat		10.2	10.1	7.6	6.1			
	Temp in oF			91	25	69	75			
	Orscharge Temp			2310	3620	3400	2410			
	Ond time sompled	P.S.T	1965	1/19	1415	7/8	9/3 1010			

o Field pH

32505-CHI 6-61 200 JPU

b Laboratory pH.

c Sum of calcium and magnesium in me/1.

Iron (Fe), aluminum (AI), arsenic (As), capper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and heravalent chramium (Cr⁻⁵), reparted here os 0.00 except as shawn. Derived from conductivity vs TDS curves.

Determined by addition of onalyzed constituents. Gravimetric determination.

h Annual median and range, respectively. Calculated from analyses of displicate monthly samples made by Calculanta Opportment at Public Health, Division of Laboratories, or United States Dealthy of Water States Touch (USDS), United States Department of the Institute, Barreton (USBR), United States Dealthy of Water States Department of Water and Prever (LADMP); City of Las Angeles, Department of Water and Prever (LADMP); City of Las Angeles, Department of Water and Prever (LADMP); City of Lang Beach, Department of Water and Prever (LADMP); City of Lang Beach, Department of Water Searces (DWR); as indicated.

TUOILINGE RIVER AT HICHMAN BRIDGE (STA. NO. 30)

ond time sompled P.S.T

Anoiyzed by 3

E E

USGS

		Col.form													
	1	P -	Turb () Units	15	-7	~	8	9	m	-3	15	10	CV.	-2	m
		Mordness os Caco ₃	Z	8	t	m	 m	0	~	٦	m	CV .	4	13	8
			Totol mg/1	721	88	23	83	23	22	19	8	18	30	89	109
		gu de la constante de la const	5	917	%	38	53	32	30	8	32	32	38	94	14
	Total	Polos	1,500	3016	53e	76°F	 143°	36	37e	38	919	334	62°	217 ^e	3176
											ABS 0.0 FO _L 0.05 Ae 0.0				ABS 0.0 PO ₄ 0.15 Ae 0.0
	10	Silico	(20.02)								ল				17
	liter er lif	Boron		 ं।	0.0	%	0.1	0.2	0:0	0:	0:0	0.0	0:0	0:1	0.1
	ents p	Fluor	(F)												
	milligrams per liter milliegulvalents per liter	ž	(NO ₃)								0.01				0.02
(a	md111	Chio-	(CI)	2.79	0.31	8.4	0.07	1.7	0.12	0.07	30°	4.1	0.39	65 1.83	2.74
(BO4150.00)	ē		(504)								70.08				30.0
9	Constituents	Bicor-	(HCO ₃)	108	9.43	23 0.38	32 0.52	27 0.44	25	0.36	32 0.52	0.33	32 0.52	93	1.61
	Mineral con	Carbon-	(K) (CO ₃)	0.13	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0	0.0	0.0	0.00
	×	Potos-	(x)								0.03				21.0
		Sodium	(ON)	2.13	7.1	92.0	0.17	0.50	0.18	3.5	6.7	3.8	0.30	35	2.04
		Mogne-	(Mg)								0.03				0.73
		Colcium	(Co)	2.48	0.56	0.13	0.58	0.42	0.42	0.37	0.55	0.36	9.0	1.78	1:45
		r d	ماه	8.3	7.1	7.0	7.9	7.0	7.3	7.1	7.7	7.6	7.1	7.9	8.2
	Spacific	(micromhos	0 0 0	517	91	E	71	61	63	20	97	57	107	372	1,81
		D C	%Sot	81	F	93	8.	8	8	Ł	102	91	85	102	123
		Dissolved	ng/1	7.5	7.6	6.6	10.4	9.01	10.8	10.4	10.3	00	7.6	00 	10.5
		Temp in oF		19	62	法	74	94	51	25	- 65	89	70	42	15
		Dischorge Temp		100	724	925	2530	0727	1550	2720	2040	1150	644	127	125

o Field pH b Loborotory pH

1030

6/2

3/5 1430 1630

2/9

1/19

1020 12/9

c Sum of colcium and magnesium in me/1.

Derived from conductivity vs TDS curves

g Gravimetric determination

A commence of the control of the con

ANALYSES OF SURFACE WATER TABLE D-2

TUOLUMME RIVER AT TUOLUMME CITY (STA. NO. 31)

		Anolyzed by i	uses													
		APN/mi	Medien 620.	Meximum 7000.	62.											
	100	tr hits		Н	Cl	CV		8	-1	00	15	Я	97	15	15	9
		oCOs its N.C. Turb mg/lUnits		57	23	18		п	-	90	_	00	28	%	04	94
		Total		164	22	55		777	28	1,4	88	7	85	85	142	138
	9	Cent		51	20	52		37	36	143	04	177	20	64	52	64
	Totol	acived solids mg/l		428°	186e	141e		85e	≥96	する	61 ^e	1026	215e	220e	372°	398€
		Other constituents d										2 ABS 0.0 PO ₄ 0.0 As 0.0				ABS 0.0 PO ₄ As 0.01 As
	io.	(S:02)						-41				8.5	01	01		
-	liter er lit	Boron (B)		0.1	0.1	0,0		0.1	0,1	0:1	0.0	9	0,0	0.0	0.1	0
	per nts p	Fivo- ride (F)														
	milligrams per liter milliequivalents per liter	rrate (NOs)										2.4				0.13
BO4 105,00)	md1115	Chio- ride (CI)		152	1.86	1.35		21 0.59	0.34	0.76	17	36 0.73	76	76	134 3.78	3.67
(BOh)	e s	Sul - fote (SO ₄)										0.10				0.17
	constituents	Bicar- bonate (HCO ₃)		130	57 0.93	42 0.69		070	98	38	26	38	99	72	124 2.03	1.84
	Mineral ca	Carbon- ote (CO ₃)		0.0	0.0	0.0		0.0	0.0	0.00	0.00	0.10	0.07	0.0	0.0	000
	Ā	Potas- Sium (K)										1.7				5.3
		Sodium (No)		3.39	32	1,09		0.52	0.32	0.61	0.38	15	39	38	3.04	2.83
		Mogne- sium (Mg)										3.4				0.91
		Calcium (Co)		3.28	1.40	1.04		0.88	0.56	0.82	0.56	0.60	1.70 c	1.70	2.84	37
		F & D		8.1	7.9	7:4		6.9	7.3	7.7	7.0	7.1	7.1	8.1	7.8	7.2
	Specific	conductonce (micrombos of 25°C)		748	325	945		149	86	164	901	168	375	385	169	631
		sen %Sat		2	26	75		ä	92	53	%	73	1	92	09	47
		Dissolved oxygen mg/1 %Sot		6.9	5.5	7.9	-	7.6	10.8	5.9	9.1	7.1	1	6.5	5.0	7.9
		Temp in of		67	99	55		84	74	52	55	61	69	78	92	73
		Dischorge Temp		345	485	1070		3200	3600	2100	3500	5050	848	9860	009	007
		ond time sompled	1964	10/14	1000	12/9	1965	1/18	2/11	3/5	1245	1130	6/2	7/8	8/2	9/14

b Loborotory pH. o Field pH

32505-D-H 6-61 200 SPO

e Sum of calcium and magnessium in mpt/1. dead (Pb), manginese (Mn), zinc (Zn), and hexavalent chramium (Cr⁺⁶), reparted here as 0.00 except as shown. d Iran (Fe), aluminum (M), arsenie (As), copper (Cu), lead (Pb), manginese (Mn), zinc (Zn), and hexavalent chramium (Cr⁺⁶), reparted here as 0.00 except as shown.

f Determined by addition of analyzed constituents. e Derived from conductivity vs TDS curves

g Grovimetric determination.

i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS), United States Department of the Interior, Survey and the Committee of States Department of States Department of Manager and Power (LADMP), City of Las Angeles, Department of Robert (LADMP), City of Las Angeles, Department of Water Resources (DWR), as indicated. h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service.

									COMBLAC	uents 11	constituents in micrograms	ams per liter	Libra						
Station	Sto No	0000	Atum: num (At)	Beryl lium (Be)	Bismuth (Bi)	Codmium	(CODO!!	Chro. mium (Cr)	Capper (Cu)	Iron (Fe)	(Ca)	Germa . nium (Ge)	Manga nrse (Mn)	Malyb. denum (Ma)	Nickel (Ni)	Lead (Pb)	1.fonum (T.)	Wanddium (V)	2012
San Joaquin River at Fremont Ford Bridge	25c	5- 4	₹	₩ 0.57	40.29	्न - - - - -	₁	1,4	A 1. h	157	5.7	4 0.29	13	8.0	2.7	7. Y.	0.4	8.6	7.2
		9-14	53	1,3	40.67	3.3	ν. 	333	A 3.3	26	413	79.0 ►	6.7	8.0	3.9	7	2.5	83	¥ 13
San Joaquin River near Vernalis	23	5- 5	28	< 0.57	40.29	7.1	1,4	, 1, V_	An Li	3	5.7	% 0 V	Λ [®] Λ	1:1	1,4	i V	₩ 0.57	2.6	- 7. 7
		9-15	1.4	1.4 < 0.57	40.29	1.4	7. T.	A. 1.	77° T	8.0	7 5.7	€ 0° 50	, i.	2.6	1.1.	7.1	× 0.57	5.4	A 5.7
Stanislaus River at Koetitz Ranch	8	5- 4	8	4 0.57	40.29	, i.	7°F	7	A 1.4.4.	136	5.7 ≥	0°.0	1.4	A.0.28	0.63	, . Y	A 0.57	1.7	5.7
		41-6	829	< 0.57 <	40.29	4 1.h	7,7	1.1.1.	4 1.4	≥ 50	5.7	△ 0.29	1,4	₩ 0.29	3.1	Λ .:	89	15	5.7
Tuclumne River at Tuclumne City	33	4-29	8.0	8.0 < 0.57	40.29	٠. ١. ٧	7°.1	A 1,4	1.4	ක්	7.5 ×	< 0.29 < 1.4		A. 0. 8	2.5	A	0.57	2,8	× × ×
		9-14	8.0	8.0 < 1.3	40.67	3.3	3,3	e e e e e	A 3.3	8	A13	₹9.0 >	ឌ	2.7	1.8	2	1.3	17	K 13
Merced River near Stevinson	32	4 -2	ส	40.57	40.29	1.1	7°T	7.	A 1.2	99	5.7	A 0.29 A	4.1	V. 0 8. 0 8. 0	0.80	7. H	1.3	1.4	7. S
		9-14	35	A 1.3	40.67	A 3.3	e, e,	3.3	A 3.3	87	₹	19.0 ►	A 3,3	3.1	1.3	я	2.0	8.0	N 13
Kings River below People's Weir	÷,	5-10	8,3	8.3 < 0.57	40.29	1,4	1.4	A 1.	A 1.4	90	5.7	₹ 0.29	ı, L	1.4	0.71	۸ م	A 0.57	0.86	× 5.7
		9-13	я	1,3	40,67	3.3	ر س س	ν. Ε.	3.3	8	£ 51 51	79.0 >	w w	2.7	1.7	13	1.7	1.5	413
Kern River near Bakersfield	%	3 -2	97	< 0.57	40,29	7.7	7° €	A 1.	A 1.4	51	5.7	< 0.29	J. L	6.4	0,40	۸ 	0.57	1.7	5.7
		4	23	A 1.3	35	710	31	37	4,1	121	73	3	701	%	53	43	£43	84	¥13
Tule Edver below Success Lam	91	5- 3	6.3	6.3 < 0.57	40.29	1.4	1.4	7 7.7	A 1.	18	5.7	4 0.29	1.4	1.7	09.0	- 1 - 1	A 0.57	0.4	5.7
		9-13	7.1	< 0.57	40.29	A 1.4	٦. 1.	1,1	A 1.4	5%	5.7	4 0.29	1,1	4 0.29	1.4	1.4	A 0.57	1.6	A 5.7
Delta-Mendota Canal near Mendota	%	5-13	22	40.57	<0.29	A 1.42	۸ 1.	7.	n A 1. L	於	5.7	4 0,29	7° E V	1.3	1.0	ı, L	0.86	3.1	5.7
		9-13	秀	<0.57	<0.29	A 1.4	٠. ۲.	A 1.2	A 1.64	64	< 5.7 ≥	4 0,29	7° T	A 0.29	1,3	1, L	1.9	9.1	5.7
Delta-Mendota Canal near Tracy	93	5-5	97	40.57	<0.29	4 1. b	1.4	Λ 	۸۱ ۲. ۲.	ಪೆ	F.5 ≥	< 0.29	1.4	1.6	1.3	7*7	₹ 0.57	3.7	5.7
		9-15	۸ ا ا	< 0.57	1,0	1, 1,	1,4	1 1°.	7	2	A 5.7	< 0.29 < 1.4		4 0.29	40.29	7°7	₩ 0.57	13	5.7

> more than the amount indicated

< less than the amount indicated

equal to, but slightly less than the amount indicated

APPENDIX E
GROUND WATER QUALITY

APPENDIX E. GROUND WATER QUALITY

Introduction

During the 1965 water year, 486 wells were sampled throughout the San Joaquin Valley. The locations of these wells are shown on Plate 10.

The program during the 1965 water year included detailed sampling in Stanislaus County, Madera County, and a portion of western Kern County.

Detailed sampling was also conducted at certain locations found to have significant deviation in quality from surrounding areas.

The detailed sampling program in Stanislaus County was conducted to update past data and to provide sufficient information to prepare detailed water quality maps of the area. These maps will assist in reevaluating the present sampling network.

The detailed sampling program in Madera County was carried out by the U. S. Geological Survey as part of its ground water investigation throughout the county in cooperation with the Department of Water Resources. At the conclusion of the investigation, the information made available will assist in preparing a new sampling grid in the county.

A detailed sampling program covering all of Kern County was begun in 1963 but because of the complexity of the conditions there, the county was divided into small areas. The first two areas in west central Kern County are nearing completion and a third in the northwestern portion is beginning. Data for the two areas in west central Kern County can be found in Bulletins No. 130-63, No. 130-64, and No. 130-65.

Areas throughout the valley that have specific problems or significant deviations in quality are being investigated to determine causes. These areas (shown by wells) and the status of investigations are indicated in Table E-1.

Measurement Techniques

Definitions

The same definitions as found in Appendixes C and D apply to special terms used in this appendix.

Methods and Procedures

Data on ground water quality are obtained from several programs in the San Joaquin District and also from investigations conducted by the U. S. Geological Survey. Analyses of these data are published in this report.

Samples collected by the Department and by many cooperators are analyzed by the Department of Water Resources or the U. S. Geological Survey Laboratories. The procedures used by laboratories in both agencies are as specified in the latest edition of "Standard Methods for the Examination of Water and Wastewater".

Prior to submittal to the laboratory, electrical conductivity (EC) is determined in the field.

The results of these determinations are compared with historical analyses of that well to specify the extent of laboratory analysis required. If the electrical conductivity determination is within 10 percent of the previous year's value, only a partial analysis is requested; if greater than 10 percent, other factors are considered in determining the type of analysis to be requested. Generally this would be a standard analysis which consists of the majority of the common constituents.

The maps indicating "Nitrate Concentrations in the San Joaquin Valley" and "Boron Concentrations in the San Joaquin Valley" were prepared from all pertinent data available in the files and are a composite of all the aquifer systems. These maps represent data collected over an extended time because sufficient data were not available from any one year to prepare the maps.

Accuracy

The accuracy of the published analyses meets the standards specified in the latest edition of "Standard Methods for the Examination of Water and Waste Water".

The ground water quality maps, Plates 11 and 12, were based on values representing the following criteria. The values used must be substantiated by previous analyses from the same well. More than one well in the same area must indicate approximately the same value before these values may be used. The distances between points contoured is dependent on the difference between the values. The greater the difference between the values, the closer the points must be. In general, most contours are based on values not more than three miles apart. In these cases a knowledge of the hydrology and geology of the area is utilized in justifying the contours.

Coding

Explanation of Headings and Symbols Used in Columns in Appendix E. STATE WELL NUMBER used in this report is the same as used for water level measurements and is explained on page

AGENCY SUPPLYING DATA is the agency that collected the water sample and is represented by the following code:

Agency Code	Agency
5000	U. S. Geological Survey
5001	U. S. Bureau of Reclamation
5050	Department of Water Resources
5060	Department of Public Health
5521	Modesto Irrigation District
5640	Buena Vista Water Storage District
5641	Central California Irrigation District
5702	Individual Owner
5703	Valley Waste Disposal Company

Data

Table E-2 lists mineral analyses of selected wells throughout the San Joaquin District.

Table E-3 lists trace element analyses.

Water samples were analyzed to determine the concentration of those miscellaneous constituents which are not part of a standard analysis. These constituents are listed in Table E-4. Some water samples are analyzed to determine the concentration of Alkyl-Benzene-Sulfonate (ABS), where such concentrations may indicate degradation of a water supply resulting from domestic waste water disposal. Other water samples are analyzed to determine the concentration of iodine which may be an indicator of saline connate water. The validity of this assumption, however, has not been determined. Analyses were also made to determine if concentrations of pesticides and phosphates indicated degradation of the water from waste water discharges.

Plate 10 shows the locations of the wells sampled and also indicates the type of analysis made.

Plate ll is a map showing boron concentrations in the San Joaquin Valley. This map was prepared to indicate the relative concentrations of this constituent throughout the valley because of its significance to agriculture. The values are generally the higher values found in a given area. Better waters may be found in a different aquifer. There are not sufficient data presently available, however, to separate the values by aquifer.

Plate 12 is a map showing nitrate concentrations in the San Joaquin Valley. This map was published in Bulletin No. 130-64 and is repeated with the addition of the 1965 data so as to show the apparent trend of this constituent. A new base map was utilized for this plate and minor changes were made on the original map as a consequence.

TABLE E-1

WELLS INDICATING SIGNIFICANT DEVIATION IN QUALITY FROM SURROUNDING AREA

STATE WELL NUMBER WELL USE	DEVIATION	STATUS
4S/7E-27ML-M Irrigation	$NO_3a/=44$ mg/1	High nitrates in area. Cause being investigated.
4 s/9E-22C1-M Drainage	NO ₃ = 28 mg/l in 1965. NO ₃ = 60 mg/l in 1964 ABS \underline{c} / = 0.3 in 1965 ABS = 4.6 mg/l in 1964	Nitrates in area over 100 mg/l. Office report to be published in 1966. Cause appears to be Ceres Sewage Treatment Plant.
5S/7E-35G1-M	$NO_3 = 89 \text{ mg/l}$	Cause being investigated.
5S/10E-4F1-M Drainage	$NO_3 = 40 \text{ mg/l}$	Cause being investigated.
5S/11E-7P1-M Drainage	$NO_3 = 48 \text{ mg/l}$	Cause being investigated.
5S/13E-36F1-M Domestic	$NO_3 = 48 \text{ mg/l}$	Cause being investigated.
6S/11E-3B1-M Drainage	$NO_3 = 66 \text{ mg/l}$	Cause being investigated.
6S/12E-6L1-M Drainage	$NO_3 = 58 \text{ mg/l}$	Cause being investigated.
6S/12E-8D1-M Domestic	EC <u>d</u> / = 125 mu ^e /	Depth 120. EC varies with depth. Condition being investigated.
6s/12E-8D2-M Domestic	EC = 423 mu	Depth 60. EC varies with depth. Condition being investigated.
75/8E-4H1-M Domestic	$NO_3 = 43 \text{ mg/l}$	Cause being investigated.
7S/10E-7D1-M Domestic	EC = 996 mu in 1965 EC = 482 mu in 1961	Cause being investigated.
a/ NO ₃ = Nitrate b/ mg/l = milligra c/ ABS = alkyl be d/ EC = Electric e/ mu = Micromho f/ ng/l = nanogram g/ F = Fluoride	enzene sulfonate (deterg cal Conductivity in micr os n per liter	gent surfactant) omhos at 25°C

TABLE E-1
WELLS INDICATING SIGNIFICANT DEVIATION IN QUALITY
FROM SURROUNDING AREA

STATE WELL NUMBER WELL USE	DEVIATION	STATUS
7S/12E-8E1-M Irrigation	$NO_3 = 40 \text{ mg/l}$	Cause being investigated. Previously noted as above normal EC for area.
7S/15E-30El-M Irrigation	$NO_3 = 39 \text{ mg/l}$ EC = 721 mu	Cause not determined Further investigation including NO3 underway.
9S/16E-31F1-M City Well	$NO_3 = 38 \text{ mg/l}$	Cause being investigated.
9S/18E-20Al-M Domestic	$NO_3 = 41 \text{ mg/l}$	Cause being investigated.
10S/15E-31A1-M Irrigation	EC increasing from 353 mu in 1957 to 723 mu in 1965	Cause being investigated.
10S/18E-8J1-M	$NO_3 = 41 \text{ mg/1}$	Cause being investigated.
llS/10E-23Kl-M Irrigation	$NO_3 = 94 \text{ mg/l}$ in 1964.	Cause being investigated.
llS/14E-5Bl-M Irrigation	EC increasing from 267 mu in 1958 to 778 mu in 1966.	Cause being investigated.
12S/15E-4F1-M Irrigation	EC increasing from 353 mu in 1957 to 723 mu in 1965	Leaching practices to reclaim the land brought about the EC increases.
128/19E-13Al-M	3 ng/l ^{f/} DDT pesticide	An investigation of the area was conducted and the results sent to the Regional Water Quality Control Board. Cause appears to be from irrigation return waters being injected into the ground water through return wells.

TABLE E-1
WELLS INDICATING SIGNIFICANT DEVIATION IN QUALITY
FROM SURROUNDING AREA

STATE WELL NUMBER WELL USE	DEVIATION	STATUS
13S/15E-6D1-M	F^{g} = 0.9 mg/l	Areal extent being investigated.
135/19E-24Q1-M Irrigation	$NO_3 = 47 \text{ mg/l in}$ 1963	Well was destroyed in 1964. Wells in vicinity do not have high nitrates.
17S/23E-8J2-M Domestic	NO3 = 75 mg/l in 1965	NO ₃ concentrations in immediate area found to be as high as 193 mg/l/No cause determined. Further investigation underway.
18S/26E-10M1-M Irrigation	High NO ₃	Office report on this investigation to be made available in 1966.
18S/26E-36C1-M Domestic and Irrigation	High NO3	Office report on this investigation to be made available in 1967.
18S/27E-10C2-M Domestic	High NO3	Part of above investigation
21S/27E-27F1-M Industrial	High ABS and NO3	Office report on investigation available.
24S/22E-35Nl-M Irrigation and Stock	Arsenic = 0.25 mg/l	Cause and areal extent being investigated.
28S/25E-4Fl-M Irrigation	$NO_3 = 81 \text{ mg/l}$	Cause being investigated.
28S/25E-4P2-M Domestic	$NO_3 = 47 \text{ mg/l}$	Cause being investigated.
28S/25E-9E2-M Domestic	$NO_3 = 77 \text{ mg/l}$	Cause being investigated.

TABLE E-1
WELLS INDICATING SIGNIFICANT DEVIATION IN QUALITY
FROM SURROUNDING AREA

STATE WELL NUMBER WELL USE	DEVIATION	STATUS
28S/25E-24P1-M Domestic and Irrigation	$NO_3 = 54 \text{ mg/l}$	Cause being investigated.
298/29E-34N1-M Industrial Irrigation Domestic	Arsenic = 0.22 mg/l	Cause and areal extent being investigated.
30S/28E-10N1-M Test Well	$NO_3 = 43 \text{ mg/l}$	This well is near the Bakersfield Sewage Treatment Plant ponds. An investigation at the area is being conducted to determine the effect of the plant's discharge on the ground water.
32S/29E-35ML-M Irrigation	High NO ₃	An office report on this investigation is available

	NCH TON	0 0	127	180	26.7	50	136	6.0	0 0	10	210	250	319	1
MILLIGRAMS PER LITER	10.5 MUS	1	1	1) I	134	1	-	1	1	- 1	1	1	-
MS PER	5102	;	1	!	-	1	3 1	;	-	-		1	!	1
LLIGPA	æ	}	1 1	1	l I	c ·	3 2	ì		1 2	1	1	1	c ·
M	L	;	1	1	-	‡ †	1	;	}	1	1	1	1	
FR	NOS		1	!	-	23.9	-	}	1	1	1	;	1	3 1
TER ER LIT	VALUF	3.4	9 4 6	9.7	34	4 • 6 • 1 3 ° 6 ° 6	.31	9.6	27	. 4 2	39	5.72	262	31
PER LI	SDA	1	8 9	1	!	3.6	i i	1		1	1	1	1	-
MILLIGHAMS PER LITER MILLILOUIVALENT PER LITER	PERCENT REACTANCE VALUE	94	133 2.18	166	368	121	2.18	97	2 - 33	1.48	285	267	294	408
WILLI	PFRCE CD3	0.4	. 53	12.40	29.	5.0	8.57		.40	6.0	0.0	00	17.	0.00
Z 5 1	¥	1	1	!	!	3.5 0.09	1	!	1	1	-	1	ŀ	1
AINCEAL CONSTITUENTS	NA.	10.	;		1	9.2	1	8 1	1	1	1	j T	ŀ	5.57
L CTNS	J.	α • 7 Ω • 5	1	1	1	8 5°	1	1	B 3	-	1	1	1	1
MINFFA	(A	1.7 • 8.5	-	1	-	23	1	l l	1	†	1			;
	LAB-t-C	222	309	404	10 10 10 10 10 10 10 10 10 10 10 10 10 1	240	320	204	429	252	598	1929	2170	784
	LAM-PH LAB-FC	υ	5.5	c r	8.7	5 3	υ	й. ў	ລ ກ	ů	x	α •	υ 4	m • o
	TENF F	1	. C.	52 · CF	1	1	1	1	1	;	6 7 • C F	64	C • P1	(+ . 0 F
AEL1	CATE LAB TIME SAMPLER	015/10L-34NC1 M 06/25/65 5050 08/37	025/C7F-26PC1 M 12/24/04 5050 0900 5050	025/97E-26FC1 M 02/02/05 1120 5050	025706F+31HC1 M 027057F5 5050 1200 6050	025/11k=92kc1 M 06/25/fb 5050 1000 9050	02/03/65 +050 1620 5050	02X04X6 5050 0945 5050	0257116-31F01 M 02704765 5050 1250 5050	02/12L-20KC1 M 02/05/f5 5350 1200 5050	035/C7L-24M02 M 12/22/64 5050 11C0 505C	035/C7E-25N01 M 12/22/64 5050 09C0 6050	035/C7E-24601 M 02/04/ES 5050 15C 505C	035/C2E-C5P01 M 05/19/e5 5050 1345 505C

		TH NCH	40	5 8 3	-	108	-	-	90	72	1	978	1	1	
	ER			-											
	R LITE	SUM	273	376	-	!	1	1	3 4 5	194	-	 	!		!
	AMS PE	5102	ł	1	ł	1	1	!	1	1	;	}	1	1	1
	MILLIGRAMS	8	0 •			1	0	•	0	0	0	1	0	0	1
	M	L	0.0	1	!	-		-	}		-	-	1	1	1
	ER	NO3	22 35 8	6.2 •10	1	ŀ	1	1	.01	.23 11	ł	ļ	-	1	1
	ITER PER LI	E VALUE CL	19 • 54 13	94 2.65 57	.56	5.2	0 • 0 × 0 ×	.42	000	.31 IA	40.	1600	.59	3.38	1860
	PER L	SO4	7.7	0 0 8	1	1	1	}	00	2 · 8 · 9 · 9 · 9 · 9 · 9 · 9 · 9 · 9 · 9	}	1	1	1	1
	MILLIGRAMS PER LITER MILLIEOUIVALENT PER LITER	PERCENT REACTANCE	190 3.12 75	116	138	108	2.30	115	62 94 46	91 1.49	1.25	1.39	96	1.31	1
	MILL	PERC C03	000	000	000	0 0 0	000	000	0 0 0	3.0	000	000	000	000	;
	NI ST	×	3.0 0.0 9.0 9.0	4.6 .12	;	1	1	1	2.0	8 8 4	1	1	1	!	1
	CONSTITUENT	4	25 1.09 26	36	26	1	.96	20.87	2.4	17 •74 32	13	1	96 96	2.48	33.50
		MG	1 ° C 7 3	087	- }	1			2 • 6 • 2 1 3 1	6 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1	1	1	1	
	MINERAL	CA	90.00	2 . 2 0	1	1		;	6 • 2 • 3 1 4 6	.80 35	1	1	-		1
		LAB-EC FLD-EC	431	500	328	261	246	255	79	226	122	4340	241	558	5940
		LAB-PH FLD-PH	8	8 2	8.1	π π	8 0	0° ° °	0 • 3	χ •	m **	α • 23	ε. ε.	7.9	1
		TEMP	1		1	1	1	1	1	1	Ţ	73.0F	-	-;	7
	STATE WELL NUMBER	DATE LAB TIME SAMPLER	035/C5E-25DC2 M 05/19/CE 5050 1C45 5050	035/C5E-29L03 M 07/13/65 6050 1230 5050	035/10E-26F01 M 05/17/65 5CS0 1825 5OSC	035/11E-28E01 M 02/11/65 5C50 1350 505C	035/12E-C5C01 M 05/12/65 6C50 0530 6050	035/12E-13F01 M 05/18/65 505C 11CC 5C5C	035712E-2CNC1 M 07713765 505C 14CC 5050	035/12E-26JO1 M 07/13/65 505C 150C 5050	035712E-27FC1 M 05/18/65 505C 13CC 505C	035/12E+35C01 M 02/11/c5 505C 15C0 505C	035/12E-36MC1 M 05/16/65 535C 1315 505C	035/13E-25L01 M 05/12/65 6CSC 14C0 505C	035/13E-29NC1 M 05/18/65 5050
-	die e-de														-

	ľ	NON	1	1	51	80	4 7 8	380	322	455	479 288	383	320	466	523
	- 1	SUM	Į.	1	120 85	541	029	2354) 1	Î Î	1	-	ß	1	-
	MS PER	5102	1	1	1	t I	-		8 9	1	1 1	-	1	1 1	-
	MILLIGRAMS PER	Œ	°.	¢.	ç	2	2 0	2 • 0	1	1	1	1	1	1	-
	N.	L.		-	1	0 • 2	0 - 2	4	1	1	1	-	1	1	å 1
	- H	E ON	1	1	11.	000	# C + A E & E & E	0.0	233	34	440	444	38	32	8 4 ° C C C C C C C C C C C C C C C C C C
	MILLIGHAMS MER LITER MILLIGUIVALENT PER LITER	U3 HCO3 SO4 CL	3.1	2.4	6.2	129 3.64 38	53	975	3.98	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	174	222	183	205	225
	MILLIGUALVALENT PER	SD4	1	1	13.	1.00	35.	240	1	1	Ī	I I	1	1	-
	EQUIVA	HC03	56.	159	. 83 58	299	639	505	165	238	3.56	3.97	232	300	344
	MILLI	CU3	0.0	000	000	0.0	.00	0.0	000	0 0 0	8.0	5.0	.30	000	.50
	I S IN	¥	1	1	3.9	3.7	0.4	5.0	1	1	1	-	1	-	1
5	CONSTITUENTS	NA	15	20.	32	194	3.92	33.760 33.76	3.44	186	114	9.52	3.78	3.48	4.96
MARCINE OF GROOMD WATER		MG	1	1	5 • 7	7 · 0 9 · 5 0	7 4 5 4 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4.623	2.33	53	B 2 . 0	100.4	94	P. 3.3	100
	MINEFAL	CA	!		.55	.50	3.44	3,09	82	4.69	5.34	3.09	54	39	4 4 4 5 . 2 . 2 .
		LAB-EC FLD-EC	26	265	156	940	1110	3750	1030	1740	1380	1540	1370	1280	1355
		FLO-PH	π •	7.2	0.0	8.2	7.	n N	- n	8.2	20 4	υ 4	α ·		7 • D
		TENP F		1	1	1	1		1	1	200	67.08	0	1	67.08
	JER	CK.	W	×	×	×	M	M	×	×	E	E	×	Σ	×
	* ELL	DATE LAB	035/13t-31LC1 M 05/18/t5 5050 1630 5050	035/136-33801 M 05/18/65 5050 1130 5050	03S/14E-18RC1 M 06/09/65 SCSO 12C0 50SC	045/C5F-14D02 M	045/CEE-C7+C1 M	045/CcF-C7+02 M 03/00/c5 5C50	045/CEF-11MC1 M 06/10/c5 505C 1819 5750	045/C7E-1HAC1 M 06/1C/c5 5050 1040 5050	045/07E+22E01 M 06/22/05 5050 1010 5050	04522765 5050 1040 5050	04/22/05 5050 06/22/05 5050 1200 5050	045/C7E-24k01 M 06/10/c5 5050 1115 505C	C45/C7F+35DC1 M 06/22/65 505C 1230 505C

	_	 												_
α	I H	1	1	1	-	160	135	157	208	182	186	155	134	1
117	TOS	}	-	1	1	386	290	1		1	1	1	;	1
MS PER	20	1	1	-	1	1	1	1	1	;	1	1	1	1
MILLIGRAMS	9		~		6	0	ç.	1	1	1	1	1	1	1
N W	ш	†	1	į,	;	0.1	0 . 2	1	;	}	1	1	1	1
2	NG G	!	-	1	1	14 • 23	.34	. 53	45	106	11.8	1.18	1.09	2 4
MILLIGRAMS PER LITER MILLIEQUIVALENT PER LITE	PERCENT REACTANCE VALUE 03 HC03 S04 CL	142	3.05	91	92	100 2.82 46	36	55	1.35	19	104	.31	10.	1
PER LI	S04	}			1	5.1	11 •23 5	1	1	1		1	1	1
MILLIGRAMS PER LITER MILLIEGUIVALENT PER	NT REA	277	292	234	402	183 3.00	182 2.98 65	159	246	127	269	3.00	99	1
MILLI	PERCE	000	000	000	000	0.0	000	0.0	9.0	000	14.	9.33	0.0	
NI S I	Υ	!	†	1	1	4.4	.11.	1	1	ł	1	1	1	1
CCNSTITUENT	NA A	116	4 2 6	98 4 . 26	130	67 2.91 47	1.78	1	1	-	1	!	1	1
- 1	15	-	;	1	-	13	2000	6 . 1	1.46	1 • 34	20	1.05	1.03	1
AINEFAL		1	1	-		34	34	5 4 9	5.6.5	4 W.	41.05	4 1 2 . 0 5	. o	!
	LAH-EG FLD-EG	951	846	787	976	667	4 83	510	999	526	1080	542	361	593
	LAB-PH FLD-PH	υ Ε	E) *	m *	φ. •	8 0		ω • 1	χ • Ω	m * m	æ •	8 • 6	8	;
	TEMP	66.0F	£5.0F	66.0F	1	1	;	1	1	-	1	1	;	1
STATE WELL NUMBER	LAB	5050 5050 5050	5050 S	6001 M 5050 5350	045/CEE-C6K01 M 05/20/45 5C50 1455 5050	045/09E-05H01 M 05/15/65 505C 1230 505C	045/65E-05J01 M 05/15/65 5050 1300 5050	045/09E-15L01 M 08/24/65 5050 5050	045/C9E-15P01 M 08/24/EE 5050 E0EC	042769E-15G01 M 08/24/65 5050 5050	045/05E-21C01 M 08/24/65 5050 5050	045/C5E-21/01 M 08/24/65 5050 5/50	0457C5E-22A02 M 08724765 5C5O 5C5O	04S/CSF-22C01 M
STATE	DATE	045/CBE-(05/20/65 1320	0457CBF-(C5720765 1420	045/CEE-C 05/2C/65 1440	045/CBE-C 05/20/65 1455	045/09E-0 05/19/65 1230	045/C9E-0 05/19/65 1300	045/C9E-	045/C9E-	04S/C9E-	045/0	045/0	045/C9E-2 C8/24/65	048/6

TABLE E-2 ANALYSIS OF GROUND WATER

	+		4.0	m -	.0.0		01.10		01.70	m ^	0.0	01.0	N 0	0.0
	NCH	145	174	168	186	161	182	131	202	128	69	32	7.4	99
LITE	SUM	1	1	1	-	i i	316	}	1	273	1	78 51	102	234
MS PER	5102	1	;	1	1	}	1	1	!	1	1	1	į	1
MILLIGRAMS PER LITER	œ	1	1	1	1	}	c		1	c.	1	0.	0	c.
Ä	ls.		-	1		1	1	1	ŀ	1		1	1	;
ER	NO 3	111	.19	18	4 0	3.55	30 4 8 10	25 4 0	48	. 42 11	12	5.8 .09 10	4 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 •	48
MILLIGRAMS PER LITER MILLIEOUIVALENT PER LITER	CL	126 3.55	25	.79	. 56	1 • 38	. 39 . 8	6 4 5	. 3 9 3 9	61. 0 0 0	.16	1.9 .05	2 • 1 • 0 6 5	10
PER LI	504 504		1	1	1	1	18	1	1	.25	1	9 ° 0 9 ° 0	.03	1.2
MILLIGRAMS PER LITER MILLIGUIVALENT PER PERCENT DEACTANCE UN	D3 HCO3 SD4	230	284	268	250	169	216 3.54 74	193	3.69	178 2.92 75	91	. 75 82	69 1•13 88	1111
MILLI MILLI	C D 3	9.0	2.0	000	000	000	0 0 0	8.0	.20	4.0 .13	0 0 0	000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000
1 S 1 N	Ψ.	1	-	1	1	-	2.1	1	1	2.1	;	1.9 .05	2 · 1 · 05	1.9
CCNSTITUENT	NA NA	119	53	2.26	2.00	1.87	1.04	43	34	30 1.31 33	.83	6.4 .2.9 .2.9	8.2 .36 27	15.
	S M	9.7	1 • 28	1.30	1.42	1.27	1.32 2.8	.92	1 . 54	1.07	2 · 8		3.6	8 . 3 E # A
MINEFAL	CA	2 • 10	2.20	940	2 • 30	39	4 6 • 3 0 4 9	34	0000	30	19.	8 • 4 • 4 1 5 4 2 5 4 2 5 4 2 5 4 5 5 4 5 5 4 5 5 4 5 5 6 5 6 5 6 5 6	- 4 - 4 - 6 - 6	26
DA-RA.	FLO-EC	859	570	562	466	554	468	398	534	389	200	96	131	296
AH-DH	FLD-PH	8.8	4 .	8.5	ω 	8. 1.	ж Э	α • σ	4	ж С	8 2	8 · 1	8.0	7.5
-	TEMP F	69 °CF	66 • 0F	66.CF	67.0F	71.0F	66 CF	67.0F	6 • 0 F	66.0F	71.0F	2.0F	-	-
			Q	Ų	Φ		Ú	v	9	Ψ		7.2		
STATE WELL NUMBER		055/C8E-01F01 M 06/21/65 5050 1420 5050	055/C9E-C9A01 M 06/21/65 5050 1420 5050	055/05E-13G01 M 06/21/65 5050 15CC 5050	05SZ1CE-04FC1 M 06Z21ZE 5C50 1530 5050	055/10E-23E01 M 06/22/65 5050 0810 5050	055/1CE-25R01 M 06/22/65 5050 0830 5050	055/10E-28P01 M 06/21/65 5750 0900 5050	055/11F-07PQ1 M 06/22/65 5050 1010 5950	065211E-20601 M 06722/65 5050 1130 5050	055/12E-31C01 M 06/22/c5 5050 1230 5050	055/13F-15L01 M 06/22/65 5050 1420 5050	055/13F-16K01 M 07/14/e5 5050 106c 5050	055/13E-36F01 M

			MINERAL		CCNSTITUENTS	N S IN	MILL!	MILLIGRAMS PER LITER MILLIEGUIVALENT PER LITER	PER LI	TER LIT	ER	M	MILLIGRAMS		PER LITER	
LAB-PH LAU-EC	LAU-	л <u>п</u>	CA	9 №	NA	¥	COS	PERCENT REACTANCE VALUE 03 HC03 S04 CL	S04	CL	NO 3	L	£	5102	105 5UM	TH NCH
7.4 159	159		680	0 . 0 4 u 0 0 0	5.0	1.0	000	1 . 3 3 2 . 3	6.1.	5.2	4.0.	1	-:	;	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	63
8.5 1490	1490				156	4.0.	.23		485	7.1 2.00	22.0	1	9	;	1140	452
м.5 1300	1530		9.39	69.5	158	\$ 1	9.0	3.36	-	1.24	17	1	1	1	1	504
8 8 8 800	800		3.4.4	3.2	3.13	1	.63	3.59	1	34	1	ì	}	1	}	306
8.4 699	669		5.03	1 • 3 1 6	3.44	-	6.0	312	1	35	29.	1	1	1	1	198
8.3 514	514		26	.66	2.74	3.5	0.0	195 3.20 69	7.1	1.16	91.	1	c.	-	300	0
8.6 372	429		25 30	.59	53 2.31 55	.06	8.0 .27 6	159 2.61	33.	.48	0 • 1 1 3 3 E	}	c.	1	232	92
630	709		33	9 . 1	106	1	000	290	-	58	12	1	;	1	}	120
8.5	572		5.59	1.28	2.61	!	8.0	3.15		.73	1.06	1	1	1	1	194
8.3 336 290	336		26	.62	1.17	122	000	135	6.1	.51 16	.31	1	0	1	258	96
8.3 163	163		1.3	3.0	.65	2.4	000.	1.12	1.0	5.2	01.0	1	°.	;	140	4 5
3.5	385		8000	8.0 .66	5.1 8 5.1 8	2.7	0.00	2.87	. 2 4 2 0 1 0 0 1 0 0 1	.54	. 43	1	0	1	278	103
н. 2 220	215		*85	4 • W	. 8 3 8 3	1	000	90	1	4.1	.23	1	-	}	1	09

STATE WELL NUMBER				MINERAL		CONSTITUENTS	S E	MILL	MILLIGRAMS PER LITER MILLIFOUIVALENT PER LITER	PER L	ITER PFR I I	841	2	GETTI GEG SMAG DE	MS DE	1 1 7 5	
								PERC	PERCENT REACTANCE VALUE	ACTANC	E VALU					TDS	Ī
TIME SANPLER	TEMP	FLD-PH		CA	MG	A Z	¥	C03	нсоз	504	5	N03	L	Œ	5102	SUM	NOT
065/11E-36P01 M 06/23/65 5050	67.05	80	263	22		22	1	000	124	1	5.8	16		1	1	i i	86
1300 5050 065712E-06L01 M 0672446 5050	68.0F	8 2	4 8 5	43	9.9	37	1	000	149	1	19	9.58		-	1	ì	148
1 C B	84.0F	χ *	125	11	0 0 0 0 0 0	15	1	000	96.		3.6	1	!		1	1	00
E + 0 E	1	Ω • 4	423	36	9.5	30		3.0	89	-	33			-	1	1	125
065/12E-21h01 M 06/24/65 5050 1000 5050	68.0F	25	218	.80	ή) • • 4 Ε) 4	9.83	1	0.0	1.51	1	4.9	23.			1	1	0 0
065/12E-23H01 M 07/15/65 50SC 08C0 5050	66.0F	8.1	162	.89 .51	8 4 8 8 1 E	6 · 2 • 2 7 1 7	0.0	000	4 4 8 4 5 2 5 2 5 2	.35	2.5	.32	1	°.	1	128	64
065/13F-32N01 M 06/24/66 5050 1500 5050	68.CF	30 4	246	18 390	5.1 .42	.91 38	6.6	2.0 .07	89 1.46 62	6.9	111 • 31	.37	1	0.	· l	179	99
065/13E-22N02 M 06/24/65 5050 1500 5050	68.0F	m n	247	2001	3 · 3 · 9 · 1 · 3 · 9	21 •91 37	. 2 0 . 2 0	000	1.57	7.1	.31 13	.35 15	ţ	0	1	188	90
065/13E-22P01 M 06/24/65 5050 1500 5050	68.0F	χ	241	000	4 0 0	1.9 83	7.6 19	000	1.61	6.9 •14 6	8.8 .25	200.		c.	1	135	80
065/14E-20E01 M 07/15/45 5050 09CC 5050	1	m * *	256	.75	20 • • 4 4 / / / / / / / / / / / / / / / / / /	.91	1	0 0 0	1.44	1	. 5 s	1	}	!	j l	!	00
065/14E-32C01 M 07/15/65 5050 0945 5050		N . K	335	2000	. 6 . 2	31	1	000	1.33	1	32	1	1	Į.	;	1	8 T
075/CEE-C4H01 M 07/14/E5 5050 1115 5051	1	r.	852	8.99 4.1	3, 4 3, 5, 3, 3	2 0 9 2 2 2	2.6 .07	18.	205 3,36 35	3.79	38	69.	ł	Ci	1	555	378
075/CEE-12F01 M 07/14/c5 5050 1145 5050	67.0F	ж. З.	1070	38	3.98	3.13	:	0.0	136 3.05	-	2.71	24.5	1	:	:	1	294

MILLIGRAMS PER LITER MILLIGRAMS PER LITER MILLIGRAMS PER LITER	PERCENT REACTANCE VALUE TOS TH 03 HC03 S04 CL NU3 F B 5102 SUM NCH	0.0 72 6.2 29 75	9.0 182 13 40 165 30 2.98 .37 .64	7.0 124 5.4 97 .23 2.03 .15	18 196 8.6 7.5 120 263 170 14 73 4 5 4	4.0 136 9.9 21 109 4.3 2.23 9.9 20	12 196 10 14 163 40 3.21 .28 .23	5.0 126 2.0 9.4 5.90 203 92 .17 2.07 .04 .27 .09	13 224 3.6 6.0 3.60 254 144 43 3.67 .07 .17 .06 10 83 2 4 1	8.0 227 18 152 *27 3.7251	8.0 125 7.9 102 -27 2.05 22	2.0 238 13 39 230 0.07 3.90 37 .63	0.0 2.16 - 73 94	
MINEFAL CONSTITUENTS IN	L'AB-EC FLD-EC CA MG NA K	236 20 6.1 17	440 2.15 1.15 1.35	296 27 7.2 20 275 1.35 .59 .87	438 42 16 24 3.6 415 2.10 1.32 1.04 .099 46 29 23 2	310 1.40 .78 1.00	400 1.95 1.31 .96	282 21 9.6 18 2.8 450 1.05 .79 .78 .07 39 25 29 3	427 27 19 35 3.2 460 1.35 1.56 1.52 .08 30 35 35 28	503 21 24 48	300 23 10 17 280 1.15 .89 .74	721 35 34 58	550 1.20 .68 3.35	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	TENP FLD-PH	69.CF 8.1	68.0F 8.5	66.CF 8.5	68.0F 8.8	66.0F 8.6	66.0F 8.7	67.0F 8.6	67.CF 8.7	67.0F 8.6	70.0F 8.6	66.CF. 8.4	7.8	
STATE WELL NUMBER	DATE LAB TIME SAMPLER	075/12E-C2F01 M 07/15/65 5050 1245 5050	075/12F-C8E01 M 07/15/65 505C 1300 5650	075/12E-15A01 M 07/15/65 5050 1330 5050	075/12E-22H01 M 07/15/c5 5050 1400 5050	075/13E-C4FC1 M 07/15/65 5050 1430 505C	075/13E-22C01 M 07/15/65 5C50 1030 5050	075/14E-C5R01 M 07/15/65 5050 13C0 5050	075/14E-28A02 M 07/15/65 5050 1400 5050	075/14L-31MC1 M 07/15/05 5050 1430 E050	075/15F-18K01 M 07/15/65 5050 1530 5050	075/15F-3CE01 M 07/15/65 505C 1645 5050	075/16F-C5H01 M 07/16/65 5050 09CC 5050	

	TH NOW	308	364	384	307	973	331	88	186	53	228	200	77	127
	SUM	577	1520	708	626	1	1 800	334	286	179	334	!	1	228
AMS PER	2015	1	t		1	1	ļ i		1	1	1	1 2	1	!
MILLIGRAMS	9	*	2 • 6	9	© .	1	•	2.	0	0	c.	!	1	0.
Σ	L	1	1	-	1	1	8	!	1	1	1	1	;	-
rea	NO 3	118	5 0 0 4 0 4	328.	. 43 4 4 3	-	5.0	5.8 1	4 . 4	0.0	2.0	2.3	7+8	100
MILLIGRAMS PER LITER	DERCENT REACTANCE VALUE	91	334	128 3.61 29	114 3.21 28	1630	670	1.44	0.4 8 10	.22	19 • 54 8	5.9	6.5	16.45
PER L	SO4	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	542 11.27 48	3.37	2.16		349	. 50 8	- 4 0 0 0	8.7 81.5	.25	1	l l	7.4
MILLIGRAMS PER LITER	HC03	24.7 4.05 4.05	134	304	335	3.74	306	3.34	3.69	2.66	299	153	11.92	2.82
MILL	C 03	000	21.04.	000	000	6.0	000	6 · 0 .20	4.0 .13	0.0	23	1.70	0000	000.
N S T	×	1.9	5.0	2.3	1.7	1	5.2	3.0	20.7	.04	0.0	-	1	10.0
CONSTITUENTS	¥ Z	3.00 BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB	357 15.53 6.9	106	5.13	1350	441	98	1.04	53 2.31 68	1.91	2.09	2 - 8	1.09
	NG	6 0 0 m	3.29	57	4 Q. E.	141	6.82	- B - C - C - C - C - C - C - C - C - C	1.56	6 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 - 1 4	3.3	ก • กับ	. 99
MINEFAL	ð	5.89 2.99	3.99	0 0 0 0 0 4	2.20	156	4.79	9 - 0 - 0	2 4 3	.80	24.0	- 35	1.00	31
1	FLO-E	0001 R26	2330	1200	1100	7460	3180	610	455 500	313	575	301	247	352
	FLU-PH	n 1	8 . 5	8 . 2	80	η •	8.3	ກ ະ	£ .	d U	E. E.	3 • 6	0.5	В. З
	TEMP	67.05	8	67.CF	c.5.0F	6 P • OF	68.0F	3) • 0	67.CF	67.06	76.0F	7.E. CF	74 • 0 F	72.04
WELL	TIME SAMPLER	085/09E-05A01 M 08/10/65 5050 1100 5050	085705E-11H01 M 08710765 5050 0930 505C	085/C9E-30N01 M 08/10/65 5050 1230 5050	08/10/65 = 2001 M 08/10/65 = 5050 1315 = 5050	085/10E-20A01 M 07/15/05 5050 1230 5050	085/10E-21C02 M 07/15/65 5050 1200 5050	085/11E-03J01 M 07/15/65 5050 1615 5050	085/12E-61H01 M 08/10/65 5050 1345 5050	0857128-15001 M 08711765 5050 0930 5050	045/13E-16H01 M 04/11/65 5050 1020 5050	085/176-20f01 M 08/11/65 5050 100C 5050	085/15F-32P01 M 08/11/05 5050 1500 5050	0857151-35601 M 08711765 5050 1530 5050

α		NCH	106	87	107	83	267	360	80 C	305	113	154	0 9	741	53
LITE	TOS	SUM	1	1	1	1	1	1670) 1	1		1	207	;	1
MS PE		\$102	1	}	1	;	l l	\$ 1	1	1	1	1	}	1	+
MILLIGRAMS PER LITER		8	1	!		1	1	6.	1	1	1	1	c.	1	1
W	1	u	- 1	1	1			;	!	1	;	1	-	-	-
ER		NO.3	5.8	6.9	.08	.34	21	1.7	1	1 • 2 • 02	1	1	0.6	1	112
TER ER LIT	VALUE	ا ا	5.9	8 • 6 • 4 5	.54	5.03	125 3.53	495 13.96	124	473	143	.31	19 • 54 19	757	2.85
PER L1	CTANCE	504		1	1	-	1	416	1	1	1	-	9 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	1	1
MILLIGRAMS PER LITER MILLIEQUIVALENT PER LITER	PERCENT HEACTANCE VALUE	нсоз	129	124	189	1.48	3.99	236 3.87	3.12	1	178	3.25	133 2 • 18 7 8	.69	1.92
MICL	PERCE	C03	7 · 0 · 0	.13	8.0	000	10	8.0	6.0	1	8.0	7.0	000	000	0.00
NI ST	,	¥	1	1	1	1	1	5.8	1	;	;	1	1.6	1	1
CENSTITUENTS	:	AA	.70	1.09	2.09	37	100	19.40	334	308	141	1	37 1.61 56	1	2.18
		J W C	. 92	7 . 8	1.04	6 • • • • • • • • • • • • • • • • • • •	3.59 9.09	5.10	5.0	3.10	11.	2.18	3.6	1	1.43
MINERAL	- 1	٧)	24	1.10	1.10	1.20	35	2.10 8	1.35	2.99	1.35	.99	.90	1	31
	LAB-Ed	FLD-E	279	283	340	337	963	2910	1690	2170	896	394	272	2470	009
	LAM-PH	FL0-PH	D	8.5	9	8.1	\$ *	υ Φ	9	1	υ v	8 0	ω •	7.9	B. B.
		E W	71.0F	77.0F	81 • CF	74.CF	71.0F	74.CF	68°0	67.0F	67.0F	70.0F	T	1	69.0F
3FR		Y			Ţ			w				-			
WELL	CATE LAB	TIME SAMPLER	085/16E-19001 M 08/11/65 5050 1530 5050	085/16F-26N01 M 08/12/65 5050 0930 5050	08S/17E-17C01 M 08/12/65 5050 1230 5050	085/17E-20G01 M 08/12/65 5050 1345 5050	055/C9E-17801 M 09/16/65 5C50 1550 5050	055/10E-02H01 M 09/14/65 5050 15CC 5050	095/11E-C7N01 M 09/14/65 5050 131C 5050	095/11E-16G01 M 09/14/65 5050 1215 5050	095/11E-26N01 M 09/14/65 5050 1130 505C	095/12E-01C01 M 09/17/65 5050 5050	095/13E-33C01 M 08/25/65 5050	095/13E-13P01 M 10/28/64 5050 5000	095/14E-20802 M

								MILL	MILLIGRAMS PER LITER	PER L	ITER						Γ
STATE WELL NUMBER		LAB-PH	LAB-f. O		AL CCNS	MINERAL CONSTITUENTS	NI ST	MILL	MILLIEQUIVALENT PER LITER PERCENT REACTANCE VALUE	ALFNT	PFR LI	TER	Σ	MILLIGRAMS		PER LITER	ī
(r)	TENF	FLD-PH	FLD-EC	CA	9 M G	AN.	¥	CD3	нсо3	804	CL	NO.3	Ŀ	ы	5102	SUM	NCH
095715E-14JO1 M 07702765 5000 5000	65.0F	° °	212	1 6 9 0 4 4	5 • 1 2 4 2 2 5	16 .70 34	1.7	0.0	94 1 - 38	000	21 •59	5 . 7	0 . 2	c	1.2	100	90
095715E-24F01 M 0870576E 5050 1110 5050	73.0F		234	22	4 • W	17.	-	3.0	1 . 39	1	19.	7.3	1	1	1	!	4 0
095/15F-25J02 M 06/18/65 5050 1220 5000	67.2F	å.	388	31	83 • 4 • 9	1.61	1	7.0	131		36	1	1	1	1	ł	102
095715E-29C01 M 08712765 5C5C 162C 5G5O	74.0F	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	667	7.3	1.81	33	0 1	0.0	289	1.8	5.8 1.54 2.4	29 4	1	0	1	358	35
055/15F-29601 M 06/02/65 5050 1455 5000	68.EF	В.3	710	5.74	223	1.78	3.9	.00.	256	.23	78 2.20 31	.37	1	0	1	372	231
095716E-14W01 M 06/03/65 5050 1245 5000	71.58	α • Σ	255	1.00	8 . 8 . 0	.91 36	4.8 1.2 5	5.0	1.49	.0.5	.71 .29	3.3	1	c	1	198	74
095/16F-2CPC2 M 06/03/6E 5G50 1220 5CC0	1	B . 4	2.32	1.05	5 . 6	- 80 E E	1	3.0	1.46	1	.56	B I			1	1	7.3
095/16E-20P02 M 08/11/65 5C50 5C50	69.0F	8.	291	29	. 57	1.00	. 0	0.00	2.16	0.0	.62	8 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	-	0	3 T	210	101
095/16E-25P01 M 06/16/65 5C50 143C 5000	72.6F	8.4	201	24	3.9	21.	1	4.0	1001	1	30.85	;	1	1		1	76
095716F-20803 M 08711765 5050 5050	71.0F	8) •	206	91.00.	3.9	. 70	;	2.0	1.30	-	.51	3.2	1	1	1	1	-0
095716E-30P01 M 08712765 5050 1530 5C50	75.0F	8.2	259	1.10	4 . . 4 D.C	.91	1	0.00	1.61	-	30	.02		-	1	1	7.5
095/16E+31F01 M 06/03/65 5050 12n0 5000	71.2F	8.6	646	1.20	2.06	3.05 4.8	2 · 0 • 95 1	8.0	3.30	. 83 13	1.33	38 .61	1	0.	1	367	163
095/17E-01F01 M 08/13/65 5050 1120 5050	74.06	8 . 2	315	30	6.8 .56	1.04	.05	000	104	.27	1.004	3.0	1	0.	1	218	103

STATE WELL NUMBER				MINEHAL		CONSTITUENT	NI ST	MILLI	MILLIGRAMS PER LITER MILLIEGUIVALENT PER LITE	PER LI	TER LIT	ER	M	MILLIGRAMS	MS PER	117	α
CATE LAB		LAB-PH	L'AB-E	1	- 1	1		PERCE	PERCENT REACTANCE VALUE	CTANCE	VALUE					TDS	1
TIME SAMPLER	TEMP	FLD-PH	FL0-E0	5	MG	AN	¥	C03	HC03	S04	J	NO 3	4	2	\$102	SUM	NC
09S/17E-C7N01 M 06/10/65 5050 1529 5000	71.2F	χ. υ.	358	2.8 1.40 4.3	8 · · · · · · · · · · · · · · · · · · ·	24 1.04 32	0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 °	7.0	104 1•71 53	2.1	43 1+21 37	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-		1	230	106
095/17E-C7N01 M 08/13/45 5050 1000 5050	72.0F	ř. *	326	1 .4 C	8 4 8 8 8 8 8 8 8	24 1 • 0 4 3 2	4 + 8 + 1 2 4 + 4	000	120 1 • 9 7 62	10.0	1.18	0.0	1	0	ì	254	106
055/17E-10HC1 M 06/03/65 5050 1410 5000	71.4F	9	606 554	2 • 2 0	.90	51 2.65 45	2 · 1 · 0 5	6.0 .20	178	3,75	2.17	0.9	!	:	}	325	157
055717E-10F01 M 08713765 5050 1145 5C50	1	£.	583	2.30	.99	60 2.61 44	2.1	000	3,30	0 4	2.26	0.6	1	0.	1	364	166
055718E-16601 M 05728765 5050 1120 5000	7C.0F	8. 2	430	36 1.90	1.40	3.2 1.39	2.1	0.0	3.74	8. 0.1.	24 .68	8.0 8.0	0.1	°,	1	239	161
0957186-20AC1 M 05728765 5050 1135 5000	75.2F	8.7	623	42 2.13	1.73	55 2,39 33	.05	919	232 3.80	. 46	30 85 13	.66	1	c.	1	372	190
055718E-26AC1 M 08713765 5050 1210 5050	75.0F	8 0 • 6	310	4.2 2.10 33	1.73	2 ° 5 8 3 9	.05	14.	252 4.13 65	24.22	30 85 13	29.	;	0	-	399	192
095718E-22MC1 M 07708/65 5000 1430 5000	71.¢F	7 . 4	478	39 1.95 40	1.48	31 1,35 28	3.5	000	195 3.20 65	23. 4.00.	. 58 14	34	0.3	0	37	305	172
055718E-20E01 M 0577876 5050 1055 5000	74 • 0F	7. B	200	500.50	1 .32 28	32 1.39 26	2.7	000	3.43	13	1.07	37 • 60 111	0 . 1	c.	ļ	291	190
105/11E-06h01 M 09/16/65 5050 1920 5050	72.06	£. *3	1930	3,99	5 . 5 9 2 9	220 9.57 50	3.9	0.0	186 3.05	41 4 8 6 9 4 8 6 9	255 7.19 38	.03	1	1.7	1	1240	328
105/11E-20601 M 09/15/65 5050 1405 5050	72.0F	ρ •	580	1.60	2 û 9 8 8	3.00	1	000	3.43	1	53	.08	;	1	ì	1 1	164
105/13E-01A01 M 06/01/65 5050 1445 5000	66.0F	0 1	630	3.49	9.3	39	1	000	251	}	1.30	1	;	1	1	1	213
105/13E-10601 M 11/30/64 5891 6000		7.6	3500	489	85 7,99	125 5.44 15	10 .26	000	. 50 . 30	*21	1301	.02	0.1	٥.	-	2778	1570

STATE WELL NUMBER				₩ 1 N 1 N	AL CONS	AINEFAL CONSTITUENTS	NI S IZ	MILL	MILLIGRAMS PER LITER MILLIEOUIVALENT PER LITER	PER L	1TER PER L1	TER	N.	MILLICRAMS OFF LITED	O W	1116	
		LAB-PH	LAB-PH L'AB-EC					PERC	PERCENT REACTANCE VALUE	ACTANC	E VALUE					TOS	TH
TIME SAMPLER	TEMP		FLO-PH FLO-EC	V 3	MG	AN A	¥	C03	нсоз	S04	7	N03	u.	89	5102	SUM	NCH
105/14E-11J01 M 10/22/64 5050 5000	-	8° 3°	331	1	1	;	1	4 ·	151	1	. 3 to	1	1		1	1	112
10/22/64 5050 10/22/64 5000	1	£.	414		-	-	1	000	138	1	1.21	1	1	1	1	!	136
105/14E-13A01 M 06/17/05 5050 1400 5000	1	8 . 4	430	34	1.12	25	1	.13	2.15		1.35	1	1		1	1	141
105/14E-15R01 M 10/07/64 5050 5000	1	8 . 5	399	1	1		1	0.13	121	ŀ	1.30	ŀ	}	1	1	1	95
105/14E-15R01 M 06/01/65 5050 1515 5300	67.9F	8.4	413	35 1 • 7 5 4 6	2 · 8 · 2 · 3 · 6	39	3 . 5	3.0 1.0	123 2.02 54	7.1	1,33	7.9 .13	1	0	1	242	66
105/14E-20h01 M 10/07/64 5050 5000	1	8 3	404	ł ł	1	1	1	0.0	139	1	1.58	I I	1	1	}	ł	119
105/14E-26F01 M 10/13/64 5050 5000	}	8 • 2	550	-	1	1	1	0.00	114	1	94	1	1	1	1	1	173
105/14E-26H01 M 06/16/65 5050 1520 5000	68.6F	3. A	587	52.59	1.32	1.26	.11	000	2.07	.09	97 2.74 52	.35	İ	c •	1	382	196
10/07/64 5050 10/07/64 5050 5000	67.1F	7.9	316	21.05	5 • 4 · 8 · 8 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1	33 1,44 48	8.E 80.E	000	133	4.4 00.	.59	6.1 3	1	0	1	159	40
105/14E-31H01 M 11/01/64 5000 5000	68.8F	7.9	1900	137	2.00	200	.12	000	304	. 6 B. C. C.	402	.07	4 * 0	ci.	56	1021	195
105/146-31H01 M 06/01/65 5050 1545 5000	-	X • 0	1580	134	24	166	1	9.0	185	1	413	ł	t	}	1	1	434
105/14f-33J02 M 10/14/64 5050 5000	9 . 9 .	£	372	1	;	1	1	• 1 3	98	1	1.58	1	1	1	1	;	112
105/14E-33M01 M 10/05/64 5050	68.5F	£. 3	668	1	-		1	000	1.61	-	219		1	1	;	!	300

	i								i			ı	ı	ı			1
WELL				4 INFRAL		CONSTITUENTS	15 1N	MILLI	MILLIGHAMS PER LITER MILLIEGUIVALENT PER	PER L	MILLIGRAMS PER LITER MILLIEUUIVALENT PER LITER	ER	X	MILLIGRAMS	MS PER		1
DATE LAB TIME SAMPLER	TEMP	LAB-PH FL D-PH	LAB-EQ FLD-EQ	CA	O W	ΑV	×	CO3	HC03	SO4	DERCENT REACTANCE VALUE	NO 3	u	10	5102	SUM	I U
105/14E-24E01 M 08/26/65 5050		9.5	320	16	000	2 4 5	3 • 0	21	2.0	13	63	1.6	1	0.	1	226	0 4
5050 105714E-35K01 M 10706764 5050	ł	2) 4	589	D)	1	2	7	01.	105	0 1	3.19	- !	1	!	1	!	151
105/14F-26K01 M 06/11/cb 5050 1510 5000	70.0F	8.0	404	4 0 0 4 B	110.00	33 1 31	3.4	4 + 0 13	108	1. 8.0 8.0 8.0	88 2.48	3.3		C.		320	155
105/15E-CIMC1 M 06/03/65 5050 1100 5000	68.2F	ເກົ ໝີ	347	05.	80 + + 47 50 30	1.00	1	6.0	1.49	1	1.18	1	1	!	1	1	25
105/15F-CeJO1 M 06/11/65 5050 105E 5000	70.0F	8 ° S	218	E 0 6	4 . 0 0 . 0 0 0 0	.74	2.7	3.0	78 1.28 62	0.00	.62	3.0		0,	1	109	4 0
105/15t-CGM02 M 06/02/t5 5CS0 1525 5000	68.4F	20 *	523	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.99	33	.10	.33	1.59	6 • 1 3	93 2.62 55	4.6	1	7.	1	354	164
105/15k-21A01 M 06/10/65 5050 151C 5000	68.0F	n • 0	723	54	21	2.00	-	0 0 0	167	-	120 3.38	!	!	1		;	223
105/16E-C7AC1 M 06/10/65 5050 1615 -000	73.8F	30 • •	450	45	1.23	1.17	3.6	.70	3.28	5.8	45 9	.23 .5	1	C	1	274	175
105/166-14J01 M 07/07/165 5000 5000	72.0E	7.0	232	19.	6.4.9	18 7.8 3.5	0.04	0.0	82 1.34 59	0 · 0 · 0 · 0 · 0 · 0	.51	.35	0.1	0.	4 9	102	72
1037165-14801 M 12701764 5050 5000	!	8.6	356		-	-	1	7.0	118	1	26	1	1	1	1	1	118
105/166-20601 M 06/03/05 8050 1/15 8020	75.24	8.4	352	.35	8.0 .73	27	1	5.0	131	1	.62	1	1	1	ŀ	1	100
105/17F-01D01 M 06/03/fb 5050 1436 5000	1	π •	240	1.9	0 . 5 0 . 5 4 . 5	300	.11	0.00	99	3.0	.45 19	23	1	c	1	194	75
105/17t-54J01 M 06/03/cb 5050 15C0 5000	74.46	ы ы.	232	V C 4	5 · 4 · 1 · 1 · 1	19 .83	2 · 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 ·	000	98 1.44 63	3.8 8.0.4	13	. 39	!	0.	!	199	72

STATE WELL NUMBER				MINEFAL	AL CCN3	CONSTITUENTS	ZI SI	MILL	MILLIGRAMS PER LITER	PER L	ITER DER IT	8 9 1	2	OMA GOT LITT	MA DED	0311	
								PERC	PERCENT REACTANCE VALUE	ACTANC	E VALUE	r x	Ξ	111111111111111111111111111111111111111		T38	Ī
TIME SAMPLER	TENF	FL U-PH	FLU-E	CA	NG	A S	¥	C 03	нсоз	504	CL	NO 3	L	Œ	5102	SUM	NCH
105/176-C6A01 M 06/03/65 5050 1530 50C0	77.6F	π O	328	1.20	2.5.	1 . 0 4 3 5	4 • 6 • 1 2 4 4	6.0	86 1 • 4 1 4 9	 8 1 4	37	5.3 9.79 5.3	-	c.	;	230	9.8 9.0
105/17F-22E01 M 06/03/E 5050 1515 5000	79.0F	4.	220	0 0 P L	4 · 0 · 0 · 0 · 0 · 0	2 1 4 2	2 · 8 · 5 · 5 · 5 · 5 · 5 · 5 · 5 · 5 · 5	2.0	80 1,31 61	8 · W	. 31	24 3.39	-	c ·	1	193	00
105/17E-22k01 M 05/28/5E 5050 1530 5000	79.HF	N *	462	1.35	6.7 .55	2 5 5 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3.8 01.0	000	215 3.53 78	000	35	000	-	c.	1	310	9 8
105/17E-25N01 M 05/28/CE 5650 1248 50C0	75.4F	7.0	238	1	1	0 0 0	ł	000	53 87	1	16	1	!	0	1	1	-
105/17E-26H01 M 05/26/65 5801 1230 5000	76.5F	O D	051	.55 34	4 • • W VI	16 70 43	2 · 1 · 0 · 0 · 3	000	1.15	E . O	8.0 .23 15	0.0	0.2	0	1	1 20	10
105/18E-CeJO1 M 05/22/65 5201 1332 5000	1	7 • 3	680	3.19 4.3	2.22	1.96	5.0 .13	000	319	900	43 1.21 16	149.	0.0	0	1	014	211
105/18E-12M01 M 05/22/65 5801 1405 5000	71.0F	7.8	265	.80 29	.82	1.09	.03	0.00	1.64	.02	21 •59 22	28 45	0.1	0	1	151	90
105/18E-20M02 M 05/22/65 5891 1215 5000	79.0F	7.2	220	. 3.5 3.8	0.4.0	1.9 8.8 3.7	2 • 4 0 6 3	000	43 1.36 61	0 0 m	24° 242	.39 17	. 0	0	†	127	90
105/18F-22B01 M 06/10/65 5050 1217 5000	72.6F	д • 5	306	23	7.7	1.09	ł	5.0	1111	1	. 56	1	1	1	1	1	68
105/20E-28K01 M 05/28/E 5801 0800 5000	1	7.7	250	.85 32	10 .82 31	.91 35	.04	000	11001.72	0 4 0	.31	.34 14	0 • 1	0.	1	138	91
105/20E-29HC1 M 05/24/65 5801 0918 5000	72.5F	7.5	340	34 1 . 70	10 8.2 4.2	.87 .25	3.5 0.09	000	146 2.39 72	0 8 8	.42	28 45 13	0.1	°,	1	186	122
115/14E-C1R01 M 10/07/64 5050 5000	66.1F	m *	215	1			ŀ	000	168	1	56	1	;	1	1	1	161
115/14E-C1R01 M 06/07/e5 5050	ee.0F	8.2	595	51 2 .54	1 • 32	1.61	4.7	0.00	3.46	9 · 6 4 · 6 4 · 6	1.61	16 .26	1	0	1	338	194

	TH NCH	543	595	262	789	311	51	192	188	4 C	195	33	0 80	136
												2270	2380	
	SUM		1690	544	1	1830	205	506	-	209	750	1	6100	ŀ
AMS PER	2015	1	1	l	}	}	54	# #	!	1	1	}	1	!
MILLIGRAMS	63	1	c.	0	!	c.	٥,	-:	ł	c.	:	t	c.	1
I	L.	1	1	1	1	1	0	}	1	;	1	1	1	
TER	ND 3	1	4 2 3 4	2.9	;	53. 2	0.6	2.2	1	51.	3.9	1	9.7	-
MILLIGRAMS PER LITER MILLIEGUIVALENT PER LITER	PERCENT REACTANCE VALUE 03 HC03 S04 CL	496	509 14.35 75	4.88	817	879 24.79 81	36	2.96	142	. 73 . 29	233 6+57 53	2560	2730	1.30
PER L	SOA	1	1.00	2 2 5	ŀ	104	0.0	15 *31	1	3.1	88 1.83	1 1	208	1
MILLIGRAMS PER LITER	HC03	174	208 3.41	90	132	3.20	101	286 4.69 53	138	1.43	246	095	3.28	146
M L L	CO3	000	.20	.20	000	000	000	.93 10	000	3.0	.00	000	0.00	0.0.
NI S IN	¥	1	.15	21.2	1	3.2	9.8	2.2	1	.03	01.0	1	. 36	1
CONSTITUENTS	NA	8 8	166 7.22 38	35	ţ	482	39	114	1	38	188 9.18	1	836 • 11	3 3
	P/G	1	3.29	1.32	1	62 482 4.27 20.97 14 69	2 - 1	11000	}	 	. d.	1	14.47	1
MINEFAL	CA	ļ	172 8.58	79 3.94 57	-	103 5.14	1 5 3 1	594	-	.75 .29	3.24	1	3.03	-
	LAB-PH LAB-EG FLD-PH FLD-EG	1902	2030	778	2760	3360	284	831	779	258	1320	7090	6170 7090 3	428
	LAB-PH FLD-PH	8.2	r •	g.5	υ 	υ. Ε.	7 - 7	χ 2	B. 5	χ. 3	~ 	7.8	ъ •	υ°.
	TEMP	1	İ	77.8F	1	1	٠ ٩ ٩	1	1	7C.8F	65.0F	66.cF	66.4F	69.45
WELL	CATE LAU TIME SAMPLER	115/14E-03K01 M 10/06/64 5050	115/14E-03K01 M 06/0E/6E 5050 1630 5000	115/14F-05E01 M 06/05/65 5050 14C0 5000	115/14E-C6G01 M 10/09/24 5050 5000	115/14E-G6C01 M 06/07/65 5050 1555 5000	07/07/65 5000 500/07/65 5000 5000	115/14E-05F01 M 06/05/65 5050 1415 5000	115/14F-12P01 M 10/07/64 5050 5000	115/14t-17PG2 M 06/10/t5 5C50 14CC 5000	115714E-158E1 M 06/07765 5050 1400 5000	1157141-21NG2 M 10707764 5050 5000	115/19t-21ND2 M 06/CS/re 5050 1440 5000	115/146-24R01 M 10/07/64 5050

	- 1	NC H	146	153	102	288	470	301	125	00	0 0	146	156	00	128
		SUM	287	1320	1	1	248	559	1	235	1	1	336	258	238
	MS PFR	5102	1	1	1	1	1	1	-	I	1	1	1	1	1
	MILLIGRAMS	Œ	-:	ï.	1	1	0	-:	1	c ·	1	;	c.	0	0.
	Σ	L		;	1	ţ T	1	1	†	1	1	ì	!	1	-
0	¥	NO 3	4.0 4.0 5.0 6.0 7.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8	.43	1		6.1	7.6 .12	1	3.5	1	ļ	7.2	0 1 0 4	3 • 1
TER	VALUE	CL	53 34 34	435 12.27 63	. 62	256	.59 20	141	2.17	25 •71 23	. 62	84	78 2.20 36	24 68 19	22
PER L1	CTANCE	504	10,	18 1.		1	4 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	58 1•21	1	3.6	ł		1.3 6	5 · 3 · 3	5.4
MILLIGRAMS PER LITER	MILLIEGOIVALENI PER LIT PERCENT REACTANCE VALUE	нсоз	134 2 20	356 5.84 30	136	1.23	133 2 • 18 7 4	234 3.84 42	125	140	138	172	197 3.23 54	148 2.43 67	168
MILLI	PFRCF	03	. 2 %	13	8.0	000	000	000	0.4.0	000	000	8.0	0.1.0	7.0	3.0
2		¥	2.6	5.2	1	1	20° 20° 20°	1.2	1	3.1	1	1	5.7	3.1	3 . 2
A TARRET I TARRET	2	A N	28 1.22 29	9.57	1	1	3.3 4.4 4.8	2.87	;	26 1.13	25	1	65 2.83 46	32 1 • 39	22
- 1		MG	1000	23.1.89	1	1	5 · 2 · 4 3 · 1 4	1.81	1	5.4 8.4 1.5	6.7	1	1.73	1.07	9.2
Z G G G		CA	04000	143 7.39	-	1	21 1.05	84 1 • 1 9 4 7	1	30	.35	1	82 84 83	23 115	36
	AB-EC	FLD-EC	453	1990	347	0101	316	928	538	334	322	616	637	382	365
	LAB-PH LAB-EC	FLD-PH FLD-EC	8°.6	× *	£	8.2	6 * 2	7 ° 6	4 .	7.9	0 .	0 *	4.	α •	8.4
	1	TEMP	9. H	-	69.4F	69.4F	67.15	64.6₽	69.4F	65.4F	65.0F	!	n 2) F	67.7F	68.2F
WCLL NOWBER	LAB	SAMPLER		5L01 M 5050 5000								501 M 5050 5000	5050 5000		
STATE WELL D		TIME SAM	115/146-24H01 M 06/07/65 5050 1500 5000	115/14E-25L01 M 06/05/65 5050 1300 5000	115/14E-25H01 M 10/07/64 5050 5000	115/14E-28801 M 1C/07/64 5050	115/14E-3CH01 M 10/07/64 5050 5000	115/14F-32B01 M 1C/C7/64 5C50 5000	115/14E-36CC1 M 10/07/64 5050 5000	115/14E-36R01 M 10/07/64 5050 5000	115/14E-36FC1 M 06/07/65 5050 1445 5000	115/15E-06F01 M 1C/02/64 5050 5000	115X15E-06F01 M 06X07XES 5050 1520 5000	115/15E-22L01 M 06/09/65 5050 1215 5000	115/15E-26H01 M

	TH NCH		162	115	123	65	16	5 0	6.0	60	\$0	60	80 0	250	x 0
LITER	TDS SUM		368	!	1	190	224) 	145	124	163	9	175	215	152
MILLIGRAMS PER LITER	2015		1	1	1	1	-	1	1	1	1	1	6.8	1	1
LLIGRA	8		0	}	}	c.	0.	1,	0.	0	c.	I I	· ·	0	c
M	LL.		!		1	!	1	1	1		1	1 1	0	1 1	-
FR	NOG		.35			3.7	.31	1	5 · · · · · · · · · · · · · · · · · · ·	5 · 5 8 C · 8	23.7	1	8.8 .14	5.7	0 9 3
MILLIGRAMS PER LITER MILLIEGUIVALENT PER LITER	PERCENT REACTANCE VALUE		56 1.58	25	1.72	.56	.59	17	.51	.39	.51	. 56	.59 28	.54	450
MILLIGRAMS PER LITER	SOA		.37	1	1	0 · 0 · 0 · 0 · 0 · 0	0.00	-	2 · 5 2 · 5 2 · 5	0.6	. 0 . 0 . 0	-	0 · 0 · 0 · 0 · 0	.02	2 • 1
GRAMS	HC03		2.74	156	114	90 1.31 59	107	1.31	93	107	2.02	1111	1.30	105	1.16
MICLI	CO3		0.5.0	44.	21	0.9	5.0	0.0	000	3.0	5.0	5.0	000	. 6 . 2 . 3 . 3	0.0
T S I	¥		.13	!	1	.05	.07	!	8 6 6	5.0	5.7	1	2 · 3 · 7 6 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.9
CONSTITUENTS	A A		1.683 3.53	1	-	39	.91 33	91.9	.78 35	20 - 87	1.00	25	10 10 10 10	2.3 1.00 3.8	11.
	Σ		2 - 2 2 4 2	1	!	4 . 0 0 0	. 0 0	. 34	8	5.2 181	6.9	3.63	3.5 .31	.50	3 . 8
MINEFAL	CA		1.05		1	9.00	1.20	1.4	.90 41	910.	35	23	17 • HS	20.1	13 55 35
	LAB-EC FLD-EC		491	386	405	238	304	199	225	236	323	300	219	260	183
	LAU-PH LAB-EC			® •	8 0	8 • 0	δ •	80 E	7.7	ς 2	Φ * 10	ž,	1.2	\$ 0	. e
	TENP		0 1 4 7		1	70.2F	70.6F	68.16	70.0F	1	6.0	72.6F	1	(9.2F	69.7F
WELL	DATE LAB TIME SAMPLER	2	115/10E=05002 M 06/05/65 5050 1115 5000	115716E-17C01 M 10/27/64 5050 5000	115/16E-17MC2 M 10/27/64 5050 ECCO	115/166-2ECO2 M 06/09/05 5050 1045 5000	115/17t-C4F01 M 06/18/t5 5050 1140 5000	115/176-25801 M 06/07/65 5650 1445 5000	115/18F-C6PC1 M 06/08/65 5C50 1425 5CC	115718t - 17N01 M 06/16/45 5750 1245 5000	115718L-17N02 M 06/16/65 5050 1220 5000	115/14L-22UC1 M 06/10/t 5 505C 1217 5000	115718E-27C01 M 08/13/65 50C0 5000	115712F - 39F91 M 067217c = 5050 9900 = 5000	11571dt-24H01 M 06/CP/(5 SCSO 15-0 SCOO

	TH NCH	151	0 0	620	101	81	94	4 E	277	8 0	919	1120	163	374
MILLIGRAMS PFR LITER	TOS	232	187	129	138	157	150	}	732	1	;	3033	1	535
MS PFR	5102		1	1	i I	-	1	1	1	1	1	1	1	!
11-11 GR/	8	c ·		c ·	· ·	د .	:	1	7	ł	1	-	;	-:
M	ų.	!	1	e •	0.1	0.0	1	1	ļ	1	1	1	}	1
FER	NO 3	11.	2.8 .05	1.0	.24	36 58 23	31 .50	-	3.4	-	1	5.9		.03
MILLIGRAMS PER LITER MILLIGOUIVALENT PER LITER	PERCENT REACTANCE VALUE 03 HCD3 SO4 CL	20 14	17 48 26	.59 26	90.	.54	7 1 . 8 4 8 1 .	.34	256	43	1520	1670 47.09 88	3.27	152
MILLIGRAMS PER LITER MILLIEGUIVALENT PER	SO4	5 = 0 → F	- C O M	0 + 0 0 4 0	0 4 V	45° 62°	22.	-	4 3 0 m m		1	223	1	1.27
16RAMS	HCD3	159	1.12	87 1.43 04	75 1 • 23 5 1	1.16	89 1.46 54	5.0	159	3.03	173	90 1 • 48	125	238 3.90 39
MILL	C D 3	21.000	4.0	000	000	0.0	0.0	000	000	7.0	000	0.0	000	4 4 4 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
NI S IN	¥	4.2 11.	 01.0	5.0 •13	0 . 1 . 4	4 · · · · · · · · · · · · · · · · · · ·	7. ° 1. 2	†	.11	}	!	28.	ŀ	2.0 .05
CONSTITUENTS	Z.A.	1 .0 . 1 2 . 2 . 2 . 2 . 2 . 2 . 3	17 •74 40	1.00	.96	.91 34	18 78 28	15	1165.05	!	1	668 29.06 56	1	5.0
) M	1.07	* B = C = C = C = C = C = C = C = C = C =	2.0	4 ·	 	5.48 7.1	3 6 5 6 5 6 6	1.32	1	}	85	1	1.48
MINEHAL	₹ U	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- co.	1.05	1.10	1.05	2 E 1 • 4 C 5 O	11	84 4 • 1 9 3 9	ì	1	309	1	120 5.99 62
	LAB-E	409	206	240	240	257	304	172	1180	474	0609	5320	902	990
	LAB-PH FLU-PH	۲.۵	χ •	7.9	D .	D .	ν v	0 •	o e m	8.0	7.9	8.0	ε. ε.	6.7
	TENP	71.2F	72.CF	76.8F	76.8F		66.0F	74 . 0 F	9.50 9.4E		66.5F	66.2F	-	
WELL	DATE LAB TIME SAMPLER	115/19E-10C01 M 06/10/65 5/50 1335 5000	115/15E-15G01 M 06/08/65 5050 1625 5000	115/19F-32C01 M 05/27/c5 5801 1515 5000	115/19F~23J01 M 05/27/c5 5801 1500 5000	115/19E-34N01 M 05/27/65 5801 1450 5000	115/20F-11G01 M 06/10/c5 5050 093e 5000	115/20E-31F01 M 06/05/65 5050 1215 5000	125/14E-01N01 M 06/11/65 5050 1215 5000	125/14E-03J01 M 10/08/64 5050 5000	125/14E-C4JO2 M 10/07/64 5050 5000	125/14E-04JO2 M 06/10/65 5050 125C 5000	125/14E-C5BC1 M 10/07/64 5050 5000	125/14E-05801 M 06/07/65 5050 1365 5000

٢	Ţ	I U	776	180	326	7.5	200	6.0	0,0	180	0 C	1 0	F 0	001	217
	- 1					4 5	1	}	0 =			4 10	1	-	
	PER LITER	SUM	1	1145	1	725		i	541	810	i	175	i	i	362
		5102	;	54	1	1	1	-	1	}	1	-	;	ŧ	1
	MILLIGRAMS	В	1	:	1	:	;	1	-	. 2	1	-	1	1	0.
	Σ	ı.	ļ	0.0	E .	1	-	1	1	1	1	1	1	;	1
	۳ د د	NO.3	1	.02	1	1	1	1		0.8	1	.02	1	1	3.6
TER	MILLIEGUIVALENT PER LITER	03 HCO3 SO4 CL	827 23.32	452 12.75 66	406	262 7.39 65	125	1.24	4.99	288 8.12 62	16.	27° 24°	205	32	2.31
MILL IGHAMS PER LITER	LENT	SOA	1	1.75	1	1.02	1		3 2 3 3	2.23	1	.37	1 1	1	.27
GHAMS	E QUIV	HC03	159	296 4.85 25	3.67	183 3.70 26	150	1.87	3.95	161	1.38	2.05	131	149	3.31
MILLI	MILLI	CO3	0.00	000	00	00	8.0	2.0	000	000	000	0.0	14.	14.	.13
MIL	N1 5 1	¥	1	.04	-	!	1	1	1	20.1	1	0.8	1	1	3.7
,	CONSTITUENTS	٧	326	260	235	229	166	1	178 7.74 81	20.9	1	53 2 31	i I	1	39
		9 14	3.04	2 - 7 9 1	2 · 13 1	# C # W			0 - 4 0 - 4	8 • 0 • 6 6 6 6 6 6 6		3.5	}	-	1 . 32
	MINFFAL	CA	2.48	113 5.64 29	94 • 1 9	4 0 = 0	.60	1	2 H S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-	.50	1	;	0 0 0 4
		FLD-EC	3180	2000	1770	1	345	4 8 6	1	1340	202	336	1210	387	631
		FLD-PH	n.	7 • 7	20 • 1	7 . 8	5.7	20 •	7.7	д. Э.	8.3	0 •	80 • O	£ .	4 * * * * * * * * * * * * * * * * * * *
	ŀ	TEMPF	66 • 0 F	67.SF	67.5F	1	er. 3F	64 . EF	ì	1	1	ğ ğ	1	1	68.0F
	r														
	WFLE	TIME SAMPLER	125/14t-19601 M 06/07/65 5050 5900	125/14E-12N01 M 16/06/64 5000 5000	125/14E-12h01 M 06/11/t5 5050 1230 5000	125/14E-14R01 M 07/12/65 5802 5702	125/14L-16K01 M 06/10/65 5050 1220 5000	125/146-17802 M 10/07/64 5050 5000	125/14F-24G01 M 08/05/c5 5802 5702	125/14E-26601 M 10/23/64 5550 0920 5000	125/14F-27M01 M 10/23/64 5050	125214E-35M01 M 10/23/64 5050 1015 5000	125/14E-36CC1 M 10/23/64 5050 5000	125/15t-C4E01 M 10/28/64 5050 5000	125/15E-04F01 M 07/30/65 5050 1130 5050

STATE WELL NUMBER				MINEFAL	1	CONSTITUENTS	N S	MILL	MILLIGRAMS PER LITER	PER L	TER IT	03.	2	000	0 0	- L	
DATE LAB		LAB-PH	AB-E	٣	- 1			PERCE	PERCENT REACTANCE	CTANCE	VALUE	1	4			TDS	
TIME SAMPLER	TENP		3-07L	Q CA	MG	٧Z	×	C03	нсиз	504		NO 3	u.	60	2018	SUM	NCH
4	72.2F	й О	487	3.7	0		1 • 8	0 .	119	6.1	7.8	0 . 4	!	0	1	282	109
1250 5000			4 30	2 4 2	.33	ν. υ φ υ φ	.05	. 1 . 	1.95	. T.	2.20	000				243	S
125/15E-C8801 M 10/28/64 5050 5000		8 .2	661	;	1	1	1	0 0 0	104	1	3.95	-	1 1	1	1	1	184
125/15E-11JO1 M 11/08/64 5050 500C	-	8.7	776	1	1	1	1	.63	3.15	1	3.19	1		1	1	-	103
125/15E-17e01 M 06/11/65 5050 1330 5000	71.2F	o n	1580	28	1.81	266 11.57 78	01.0	14.	196 3.21 22	62 1 • 2 9	341 9.62 65	8.8	!	. 2	1	842	160
125/15E-20L01 M 10/28/64 5050 1520 5000	67.6F	7.7	304	1.25	. 3 . 8 111	30 1.31 45	.04	000	130	4 · 10 · 4	19 •54 19	0 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	1	0	1	204	78
125/156-21501 M 10/28/64 5050 1530 5000	70.4F	7.7	214	12 •60 28	2.4	1.24	2 · 8 · 7 · 3	000	95	1.8 2.04	. 48	1.07	1	0.	1	192	0 C
125/15E-23F01 M 10/26/64 5050 5C00	-	ά •	256	}	1	}	1	9.0	110		. 48	!	;		1	1	0,0
125/15E-24F01 M 10/26/64 5050 5000	-	χ •	311	1	1	;	1	19	116		18.	-	1	ļ	;	1	000
125/15E-24H01 M 10/26/64 5050 5000	t t	х °	327	ŀ	!		1	21	127	1	. 45	1	1	1	1	1	9.5
125/156-25601 M 10/26/64 5050 1200 5000	70.5F	0	219	.80 36	3.2	1.09	2 · 3 · 0 6 3	000	104	0 · 0 · 0 · 0 · 0 · 0 · 0	.39	3.7	1	e,	ì	190	53
125/15E-27G01 M 10/26/64 5050 5000	!	υ. • Δ	439	1	1	;	}	. 83	152	-	36.	1		;	1	1	119
125/15E-27G01 M 06/10/65 5050 1500 5000	69 • CF	8.6	382	26 - 50 36	6.3 1.4	39	3.6	6.0	137	61.	35	2.9	1	-	;	252	. c
125/15E-27L01 M 10/26/64 5750	-	9.0	646	:	-	-	-	1.03	273	-	38	1	1	:	1	1	85

	TH	0 0	0	51	4 C	100	130	39	124	2 O	5.0	0 0	0 0	212
TER	TOS		!	;	1	!	306	1	193	193	201	300	176	
DER L		<u> </u>												
SHY	5102	!			ŀ	1	96	 	-	1	1	1	1	
MILLIGRAMS PER LITER	Œ	1	1	ł	8	l I	C	1	. 0		0.		c •	!
Σ.	L	1	1	1	1	1	0.0	1	ŀ	1	0.1	1	9 9	!
LE R	E ON	1	1	1	-	î)	х . • 1 • 4 • •	-	1.4	1 . B	0.00	2 · B · 0 · 0 · 0 · 1	.04	-
MILLIGRAMS PER LITER MILLIEOUIVALENT PER LITER	PERCENT REACTANCE VALUE 03 HC03 S04 CL	1.04	41	2.17	26	.71	53 1.49	1 • 75	1.97	26 .73	32.	1.30	118	
PER LI	SOA	-		-	!	!	7.0	}	.0.5	7.9	.21	.58 10	5.8	1
MILLIGRAMS PER LITER	HC03	343	3.15	3.26	138	178	2.13	1.46	3 . 4 4 	110	2.53	228 3.74 66	8¢ 1.31 62	173
MILL	C 03	17.	8.00 B.00	25.	14.	14	0.0	0.0	0.1.	0.0	6.0	0.0	9.0 13	0.6
TS IN	¥	1	ł	1	1	1	.10	3 8	4.0	1.1	3.4	5.7 •15	2.6	1
CENSTITUENTS	NA	139	!	1 7	ļ	ł	1.17	1	25	22.	33 1 • 4 4 3 8	9 9 9 3 3 3 3 3 5	18 38	4 0 1 . 7 4
	5	.51		ļ	1	-	7 · 3 000 ·	1	8 · 4 · 5 · 5 · 5 · 5 · 5 · 5 · 5 · 5 · 5	5 . 2	9.0	1.54	2	1.14
MINERAL	CA	33	;	l	1	İ	40	-	35	2 5 5 6 4 7	31	37 38 32	. 35 41	2.79
	LAB-EC	022	533	460	367	414	4 0 d	367	410	258	340	582	227	550
	LAB-PH LAB-E	8 .9	0.	10 T.		n D	2.7	8.	T .	g • 2	8.5	ρ	4 .	÷ ;
	TEMP	-	1	1	!	-	73.CF	1	;	9 . 9 .	68.06	67.06	30.05	40°89
WELL	DATE LAB TIME SAMPLER	125/15E-27L01 M 06/11/65 5050 1300 5000	125/15E-32801 M 10/23/64 5050 1456 5000	125/15E-32C01 M 10/23/64 5050 1240 5000	125715E-32C02 M 1C/25/64 5C5C	125715E-36JC1 M 10726/64 5150 5000	125716E-61JJ1 M 04712765 5600 5660	125710F-55E01 M 11703764 5050 5000	125716E-CEE01 M 06/05/15 5C50 1125 £000	125716E-17031 M 06/04/c5 5050 1000 5000	125716E-17H32 M 01/20/65 5H01 1015 5000	125716F-17R02 M 00/04/05 5050 1455 5000	1510 2006 06/08/65 5050 06/08/66 21801 M	125/17t-C7L71 M 06/16/(5 5050 1335 500

HINEFAL FLD-PH FLD-EG CA W	MINERAL LAG-EC CA M	M INEFAL CA M	M INERAL CA	1 12 1	1 7	CCNSTITUENTS	z	MILL MILL PERCE CO3	MILLIGRAMS PER LITER MILLIEOUIVALENT PER LITER PERCENT HEACTANCE VALUF 03 HC03 S04 CL N	PER L	PER LI E VALUI	TER NO3	Σ	MILLIGRAMS	S102	TOS	NC H
125/17F-16L01 M 06/16/65 5050 1035 5000		ű T	220	855 38	. 4 c	3.9	0 U U	.13	96 1.57		13 • 37 17	9.00.	1	0.	1	115	\$ 0
125/18E-01N01 M 06/09/65 5050 1512 5000	69.4F	δ 4	376	1.45	9.1 .75	26	2.0	4.0 4.13	104	.25	26 •73 21	38.	1	c	1	269	110
125/18E-77L01 M 06/02/65 5050 1028 5000	66.8F	φ. φ.	190	. 00 ° .	4 • 3 8 3 8	14.61	1	0 0 0	1.39	1	.28	!	1	1	1	1	59
125/18E-14J01 M 06/1c/65 5050 0955 5000	71.8F	φ. v	295	1.00	 	1.00	!	. 1 3	1.15	1	25	1	-	1	1	1	13
125/14E-31JO1 M 06/08/65 5050 1265 5000	72.4F	φ • 1	239	00° 00° 00° 00° 00° 00° 00° 00° 00° 00°	. 5. 6 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	8.8.3 3.5	2 · 8 · 0 7	000	1.38 62	1 · 3	. 65 29	81.8	1	0.	1	199	72
125/19E-12401 M 06/09/65 5050 1337 5000	72.4F	7.6	206	.60 .35	0 • 4 0 4 4 0 0	13 33	4.8 .12	000	.84 50	4 . 0 . 0 . 0 . 0 . 0 . 0	.37	.37	1	0	1	208	52
125/19E-20L01 M 05/27/65 5050 1425 5000	75.2F	2.5	242	22 •1° • 4 3	6.0 .49 19	20 34	.10	0.0	91 1.33 53	. 0 8 3	.71 .28	. 39 16	0.1	ç		145	78
125/19E-25E01 M 06/09/C5 5050 1404 5000	65.6F	2) 4	194	.90°	4 • 1 • 3 ¢ 1 7	. 61 31	3.8	0 · 1 · v	1.38	0.03	7.7 .22 12	7.6	1	Ç	1	102	0 0
125/20E-09F01 M 06/09/05 5050 1237 5000	71.0F	C/ \$	150	.55 35	.39	.57	3.0	000	76 1.25 81	0.3	7.9 .22 14	€ . 0 . 0 . 4	;	٠	1	133	74
125/20E-16601 M 06/04/65 5050 1430 5060	1	υ • υ	241	17 .85 34	3.5	30 1.31 53	0.00	0.4	1000	.23	.22	14 23 9	!	0.	1	152	52
135/15E-01h01 M 08/10/65 5000 5000	68.0F	7.8	1870	134	30 2 . 47	158 6.87 37	3.2	0.00	384 6 30 34	1.75	375 10.58 57	4.4	0.0	c,	7.9	1106	582
135/15E-03#01 M 07/30/65 5000 5000	1	8.2	685	28	4 30 4	113	2.4 .06	000	194 3•18 48	.56 8	103	.02	0.0	2	69	4438	4 0
135/15E-09G01 M 06/10/65 5050 1/2/	67.8F	8.8	590	12	2 . 9	110	.07	12.40	192 3.15 56	.37	1.69	2.0	-	E) .	;	314	0 0

7 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -				2		F-1 20 NO	2 0	MILL	MILLIGRAMS PER LITER	PER L	ITER		1		0		
LAB		LAB-PH					ר	PERC	PERCENT REACTANCE	ACTANC	E VALUÉ	, L	E	וררופא	MILLIGHAMS PER LITER	TDS	-
TIME SAMPLER	TEMP	FL0-PH	FLD-E	CA	MG	¥2	×	C 0.3	нсоз	504		E ON	L	8	5102	20 M	N N
135/15E-06D01 M 06/18/65 5000	6e.0F	2) 4	0051	2.9	5 + 0 1 + 4 1	266	.11	3.0	149	2.33	308	m • 0	0	v.	69		6
135/15E-11F01 M 10/23/64 5050 1347 5000	69.3F	8 · 8	471	, w , w , w	 F 4 W	3.96	2.2	000	188 3.08	2.	1.18	2 · 0 · 0 · 1	1	'n	1	326	26
135/15E-11P01 M 10/23/64 5050 1333 5000	66.7F	ກ 4	965	9100.	2.00	110 4.79 80	2.3	. 20	276 4.53 74	4 2 2 2	38	10.4	1	ν,	;	404	5.7
135/15E-14P01 M 06/07/65 5050 1140 5000	68.0F	π •	397	2.2	0.0	3.57	.03	.20	115	4 0 B	1.27	.01	1	. 2	1	274	٠0
135/156-17401 M 10/23/64 5050 1115 5000		π •	610	1	1	1	1	0.0	151	1	1.95	1	1	ì	1	1	172
135715E-18L01 M 06711765 5050 1100 5000	(A)	π •	509	3.1	.0.2	103	1	5.0	113		1,49	1	1	ș i	1	-	60
135/15F-12H01 M 10/23/64 5050 1130 5000	4 0 T 33	r o	514	.90 1.8	.34	3.78	2.9	000	187 3.07 61	W 9 9 -	1.30	.01		0.	1	310	62
135/15E-2CD01 M 06/18/6 5CS0 1415 5000	4.	n •	215	3.5 16 8	.0	1.91	.02	2.0	86 1.41 68	3.4 7.0	18 • 51	000	1	-	1	153	٠ 0
135/156-24001 M 10/26/64 5050		0.6	411	1	-	}	1	23	3.20	1	. 34	9 9	1	1	1	1	0
135/15L-35005 M 08/27/CS 5350 5000		r N	1110	7 • 6 FE •		237	4.F	000	3.59	143	151	.03	l l	۲٠	1	775	23
135/16E-C2CO2 M 06/17/65 5C50 1600 5000	6 E . 2 F	r.	539	5.5.5 2.5.9 4.8.8	1.15	36	2.6	0.0	263 4 • 31	23.	24 68	11.	;	0.	1	335	0 0
135/16L-76#01 M 1C/26/64 5050 5700		α. ~	328	1	1	1	1	41.	136	1	17	1 7	1	1	1 1		80
135/16E-C7H01 M 10/26/64 5050	1	8.7	169	-	-	1	1	10	125	-	3.21	1	-	1	1	1	117

								MILL	MILLIGRAMS PER LITER	PER L	ITER						
STATE WELL NUMBER DATE LAN		LAB-PH	LAB-EC	MINA	AL CUN	MINEFAL CONSTITUENTS	NT S IN	MILL	ENT RE	ACTANC	MILLIEGUIVALENT PEP LITER PERCENT REACTANCE VALUE	TER	M	MILLIGPAMS		PER LITER	- 1
TIME SAMPLER	TEMP	1		CA	MG	ΝA	¥	C03	нси3	504	CL	NO G	u.	œ	5102	SUM	NOH
135/16F-08P-01 M 06/10/65 5050 1830 5000	65.eF	4.7	429 375	3c 1.50	0 • 6 4 7 • 1	411.78	2.5 .06	12 •40 10	135	10.	1.24	3.6	1		1	300	1120
135/16t-10Hfl M 08/10/65 5000 5000	7C.CF	χ. 1	669	5.79 4.5	.90	2 339 39	.06	000	248 4.07 65	N 4 W 20 20.	1.44	. 2 3 4	0	6	80	4111432	184
135/16E-18F01 M 10/26/64 5050 5000	-	5	639	;	1	1	1	1.60	2.77	1	1.78	;	1	;	1	1	7.9
135/16E-18F01 M 08/11/65 5300 5000	69.0F	φ *	695	1 8 0 0 4 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	. U . 4 0 4	106 4.61 81	3.09	2.0	238 3.41 69	.37 7.	1.80	.01	4	°-	06	380	00
135/16E-18H01 M 10/26/64 5050 5000	1	o. *	557	1 ;	Ī	1	1	29.	2.33	-	1.27	3 1	1	1	1	ļ	6 O
135/17E-05P01 M 06/02/05 5050 1205 5000	71.2F	8	329	23 1.15	5 • 7 1 • 4 7	1 0 4 5 0 5 4	2 · 8 2 · 8 2 · 2	5.0	118	9.5	.59 20	6.8 .11	;	0	1	214	. o
135/16E-G3CC1 M 06/004/E5 5050 1310 5000	70.5F	7 • 7	665	49 2.45 39	1.81	1.91	5.9 .15	000	184 3.02 49	N 4 W 80 80	78 2.20 35	.52. 8	1	0	}	344	212
135/21E-31R01 M 07/08/05 5050 0920 5050		7.8	429	300 300 34	1.73	25 1 • 0 9	4.8 .12	000	3.62	.23	9.1	.21	1	0	1	282	161
145/21E-C4N01 M 07/C6/65 5050 0900 5050		7.9	313	1.20 3.8	1.23	15 •65	2.2	0000	158 2.59 85	.16	7.7	.08 3	1	0	1	192	121
145/25E-02R01 M 03/02/65 5000 1410 5050	66.0F	8 . 2	358	34	1 • 1 5	18 •78 21	.05	0 0	155	.31	.28 8	. 43 12	1	0	55	255	142
155/12E-01R01 M 12/17/64 5000 1330 £050		89	1550	39.1	6 • 9	288 12.53 82	5.5	.33 2	150	534 11-11 71	1.80	.02	ł	1.7	1	1120	126
155/176-24JO2 M 06/00/65 5050 5702	1	8	0300	1080 3.89	120 9.86 10	813 35.37 35	5 n 1 + 2 8 1	0.0	110	6.4	3490 98.42 98	4.7	;	6	1	5619	3190
155/17E-24K01 M 06/24/65 5050 151c 5050	74.CF	8 . 4	384	9.6 .48	0.7	67 2.91 AA	.03	2.0	125 2.05 60	2 • 3	42 1.18	5.3	1	0.	1	259	27

ANALYSIS OF GROUND WATER

	H N	132	000	104	0 0 0 0 0	306	385	183	3.6	151	305	333	119	204
PER LITER	TD S SUM	1	-	;	t t	1480) 1		}	-	-	}	}	1
	\$102	-	-	-	1		ŀ	1	1	1	1	-	1	1
MILLIGRAMS	В			1 3	1	2 . 2	1		-		1	}	1	m
MEL	L	0.2	0.2	m *	F • 0	-	1	I 1	1 1	!	1	1	1	1
2 (1)	NO 3	;	1	1	1	.02	85	65.	1.40	37	69	113	56.	η 20 C 4
MILLIGRAMS PER LITER MILLIGUIVALENT PER LITER	VALUE	1	}	1	1	152	2.12	.34	.51	.56	38	2.54 1	1.80	43
ENT PE	SO4	1.23	1.04	1.21	3.24	706 14.68	1) I		-	-	- 1	1	-
MILLIGRAMS PER LITER MILLIEGUIVALENT PER	D3 HCU3 SO4 CL	314	3.56	3.89	3.79	3.28 14	366	164	3.97	172 2.42	288	242	123	147
MILLIE	CO3 P	0.00	0000	6 • 9	14	0.50	28		000	000	29.	9.0	000	0.13
NI S	×	1.7	3.6	3.5	4 . 2	3.1 .98		1	1	1	1	1	-	1
CONSTITUENTS	NA	98	93	9 5 e	166	354	!	1		1	1	1	1	-
	MG	-	1	1	1	55 4 • 52 16	-	1	!			1	2 4 5 5	0 4
MINEFAL	CA	1	}	ł	-	32	1	l I	1	!	-	1	3 3 5 5 5	2000
	FLDEG	199	574	034	958	2110	1020	487	661	429	240	945	200	684
30	FLD-PH	10 m	e. 3	3. O	υ * *	χ •	9 *	7 ° x	7 ° P	φ.	×. ~	υ. Ο.	ຕ ສ	1, 4
	TENF F	1	69.0F	68.0F	66.5F	84.05	-	6.5 6.5	65.01	1 8	}	6 E • OF	1	1
			•		£	- CC			3			¥		
WFLL	TIME SAMPLER	165/17E-04R02 M 07/22/65 5050 1150 5050	165/17L-10L01 M 07/22/65 5050 0920 5050	165/17t-1CP01 M 07/22/65 5050 0925 5050	165/176-16F01 M 07/22/cs 5050 1250 5050	175/156-20M01 M 12/15/64 5000 1210 5000	185/26E-04001 M 08/10/65 5050 1355 5050	185726F-19K01 M 087107f5 5950 1025 5050	185/26E-10M01 M 08/10/65 5CSO 0945 5050	185/26E-10MC2 M 08/15/65 5050 1005 5050	M 1035E-15C01 M 00X10X65 5050	185/261-17LC2 M 04/10/65 J050 3820 SCSO	185/261-35M02 M 04/26/15 5050 1240 5050	1857244-76C01 M 08726765 5050 0725 5750

	T L	246	301	275	340	338	186	254	272	220	336	166	205	4 4 4 7
LITER	TDS		!	-	3	-		1	1	1	1	1	1	1
MILLIGRAMS PER LITER	5102	1		1	1	-	1	-		;	1	1	-	-
L 1 GRA	0	1	!	1	1	1	-		1	1	1	!	1	•
M	L	1		- 1	-	!	-	-	-	}	}	-	!	1
ER	NO.3	73	1.08	1 - 16	1.14	73	4 5 8 8	1.08	134	8 6 9 8 8	1.37	.74	61.	.93
TER ER LIT	VALUE	36	30	27.	39	1.13	13	28	1.04	.73	.73	104	32	.59
PER LI	CTANCE S04		1	!	1	ţ	1	-	1	!	1	1	1	
MILLIGHAMS PER LITER MILLIFOUIVALENT PER LITER	PERCENT REACTANCE VALUE 03 HCU3 SO4 CL	133	251	197	236	3.46	153	153	104	148	3.18	399	164	3.41
MILLI	PERCE CO3	000	5 4 0	18	. 8 S	14.	.20	000	000	000	47	000	.13	.53
ZI SI	¥	1	1	ł	1	ļ	!	ł	1	ł	1	1	1	:
TITUFA	¥ Z		1	1	-}	ļ	ł	ł	8 8	i	1	i	1	: 1
MINERAL CONSTITUENTS	MG	2 4 5	1.83	1.81	2.21	33	2.17	3.03	30	2.05	5 4 8 8	3.87	23	1.74
MINERA	V.	50	8 8 4 6 4 6 1 9 4 6 1 9 6 1 9	3.59	9.00	808	31	43	5.89	4 4 3 5	85.24	120	44.	63
	LAB-EQ FLD-EG	751	823	713	856	825	549	694	802	594	778	1160	576	637
	LAB-PH FLD-PH	8	υ. 	8.2	20	× ×	30	ED . 20	80 .0	8 5	9	8.1	x.	. 8 . 8
	TENF	6 9 ° C F	1	-	ř I	1		1	1	1	1	6e . 0F	66.0F	1
MBER	LER		. W	W	×	× ° °	M oc	×co	M C C	×	Σ			× C
WELL	CATE LAB TIME SAMPLER	185/276-04GC2 M 08/27/65 5C5C	5 - 5	185/276-C5H01 M 08/27/65 505C 0910 5C50	185/27E-C9HC2 W 08/27/65 5050 0920 5050	185/276-CSJ01 M 08/27/65 5050 1000 5050	185/27E-10A01 M 08/27/65 5050 1050 5050	18S/27F-1CC02 M 08/27/65 5050 0755 5050	185/276-10E02 M 08/27/65 5050 0940 5050	185/27E-1CF01 M 08/27/65 5050 074C 5050	185/27E-10J02 M 08/27/65 5050 1040 5050	185/27E-26002 M 08/26/65 5050 1355 5050	18S/27E-30C03 M 08/26/65 5050 0710 5050	185/27E-31D01 M 08/26/65 5050 0725 5050

		N I	200	105	124	374	610	419	1	;	-	!	1	-
		SUN	993	2870	822	1	1 3 3 4	1188	1	!	1	1	1	1
	MS PER	\$102	1	I	1	3	1	1	1	1	1	1	1	
	MILLIGRAMS	60	. s.		1.6	1	4	1 • 2	1	1	1	1	1	1
	Ψ.	ш	1	1	1	1	i	1	!	1	1	1	1	1
	<u>ا</u>	NO 3	4 0 0 0 2	.01	.02	37.	7.0	5 • 7 • 0 •	1	1	1	1	1	1
ITER	MILLIEGUIVALENT PER LITER PERCENT REACTANCE VALUE	CL	116 3.27 2.2	192	1.69	56	147	3.24	106	690	246	576	351	1.89
PER L1	PLENT	504	9.58 9.53	1620 33.70	53.0	1	705 14.66	595 12.38 64	1	1	I F		}	1
MILLIGRAMS PER LITER	NI BE	нсаз	128 2 10	1.84	3.54	361	156 12 12	3.44 1	i i	1	-	!	1	1
MICL	PERCE	C03	2.0	2.0	.69	0.0	.20	8.0	1	-	;	1	-	1
,	NI S	¥	2.8	5.3	1.5	1	* 1 1 - 1	4.2	1	1	1	1	1	1
	CONSTITUENT	٧	240 10.44 72	424 13.44	230	;	212	182 7.92 39	1	1	1	1	1	1
		9₩	2 4 5 1 E	133	4 . 3 3	31.	108 8.88	106 8.71 43	-	1	}	-	i	1
2	MINEFAL	CA	50 2.50	202	2.10	9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	3.34	3.39	1	-	1	1	1	1
	LAB-EC	FLD-EC	1470	3410	1210	947	1980	1890	081	2460	0201	2060	1500	0 0 8
	LAG-PH		ς, *	m) * 10	F . 8	6.7	8 • 8	0 10	1	1	;	1	1	1
	F	TENP	64 . OF	84 . OF	78.0F	;	77.0F	74.0F	;	1	T	1	1	1
CTATE MEET ANDMED	DATE LAB	,	195/16E-10501 M 12/15/64 5000 1135 6950	1957166-32N01 M 12715/64 5000 1330 5050	195719E-16N01 M 12722/64 5000 1155 6050	195/26E-C2K03 M 08/26/65 5050 1405 5050	205715E-22501 M 12715/64 5000 1115 5056	2057 EE - 26503 M 12715/64 5000 1420 5050	205/26E-(2E01 M 08/03/05 5050 5050	205/56E-C3F01 M 08/03/65 5050	205/26E-C3H01 M 08/03/65 5C50 5C50	205/26E-03K01 M 08/03/65 5C50 5050	205/256-(31.01 M 08/03/65 5050 5050	205/26E-C3W01 M 08/03/6E 5050 5050

TABLE E-2
ANALYSIS OF GROUND WATER

	_	I	90 00	5.5	9 9	4 -	!	-	1	0 m	0.0	N 0	10 0	00	► m
		NCH	356	126	276	504		1	1	333	319	302	755	250	387
	TOS	SUM	1070	606	1150	1230	1	Ì	-	2286	1760	1674	2342	2968	959
AMS PFR		2102	1	ŀ	9 9	1	1	i	1	1	1	1	1	1	1
MILLIGRAMS		æ	υ, ·	4	1.4	1 • 7	1	1	1	17.0	1 • 1	1.6	EC.	N .	9.
Σ	,	L	1	1	1	1	!	ł	1	0 *	0 · B	0.8	0 . 2	0.1	4 . 0
TER	- 1	NO 3	7.2	0.4	328	. 23 1	.34	18	.24	000	000	000	000	000	000
MILLIGRAMS PER LITER MILLIEOUIVALENT PER LITER	PERCENT REACTANCE VALUE	7	8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	32 •90 10	1.16	3.10	1.21	1.24	1.16	606 17.09	550 15.51 52	500	896 25.27 56	936 26.40 54	152
MILLIGRAMS PER LITER	ACTANC	504	565 111.75	33H 7.03	635	590 12.27 66	1	1	-	749 15.58 39	9.88	460 9.57	563 11.71	13.87 28	444
1GRAMS 1EQUIV	ENT RE	HC03	124 2.03 14	1 . 2 B	114	158	ł	1	1	4727.74	288	321 5.26 18	1 . 31	513	90
1	PERC	C03	4.0 •13	0 0 0	4.0	8.0 .27	1	-	1	0.0	000	0.0	000	000	0.0
ZI S IZ	,	¥ [3.1	.03	1.6	3.7	1	-	1	3.0	2.0	3.0	1.0	5.0	2.0
CONSTITUENTS		4 Z	174 7.57 51	149 6.48 72	246 10.70 66	177	1	-	1	585 25.45 64	425 18.49 62	400	52 0 22 • 5 2 6 0	1010	172
		5 ₹	3.80	5.7	3.12	7 .81 4 4	1	1	1	266	1.97	1.40	5.18	1.23	1 - 4 7
MINEFAL		ð.	3.29 2.29	4 1 2 • 0 5 2 3	2 • 4 0 1 5	2.30	1	1	-	265 3.42 34	142 9.08 31	198 9.68 34	198 9.88 26	3.76 3.79	127
		FLD-EQ	1420	948	1610	1650	614	969	548	3500	2900	2750	3600	4400	1400
	LAB-PH	FL0-PH	8 S	8 2	9. 4	8 0 0	m **	80 E.	8 ° 0	7.2	7.4	7.1	7.4	α • !/	7.1
		T E W L	83.4 • OF	77.0F	72.0F	73.0F	1	1	1	72.0A	67.CH	67.08	67.0F	67.06	69.0F
MELL	CATE LAB		215/16E-35A01 M 12/17/64 5000 1055	215/18E-23C03 M 12/15/c4 5000 0945 5050	235718E-30A01 M 12716/64 5000 1545 5050	255718E-03C01 M 12716/64 5000 0945 5050	215/27E-27C02 M 04/21/65 5050 1020 5050	215/27F-27Df1 M 04/21/65 5050 1015 5950	215/27E-27F01 M 04/21/65 5050 1645 5050	275/22E-06#01 M 04/17/65 5831 1100 5640	275/22E-C9D01 M 04/17/65 5E01 0930 5640	275/22E-17P01 M 04/17/E5 5801 1000 5640	275/22E-21PO2 M 04/17/6 5801 1030 5640	275/22F-23E01 M 04/22/65 5301 1410 5640	275/22E-28G02 M

	_	NCH	796	699	835	6 4	336	690	83	527	530	32	368	I I	362
	RLITER	SUM	1032	1240	1082	552	1530	2610	184	2030	1908	462	1090	-	1820
	AMS PER	2015	1		1	1	1	1	1	1	1	1	-	1	1
	MILLIGRAMS	60	0	0	0	67	6.	2.9	2	0		m.	۲.	1	1.3
	M	L	0	!	0.1	1	!	1	4	}	9.	1	-	1	!
	rea	NO 3	1	86.	1	.02	1.2	0.0	000	8.0	000	.02	.01	Į 1	0.0 10.
	MILLIGRAMS PER LITER MILLIEDUIVALENT PER LITER	PERCENT REACTANCE VALUE	445 12.56	44 B 12 · 6 3	451	316	425 11.99	995	27.0	412	13.31	192 5•41 83	3.33	132	4.85
	PER L	SOA	2.87	131 2 - 72	134 2.80	9.1.	10.13	9.1.0	8 4 3 7 5	802 5.68 5.68	768 15.97 52	.37	8.34	-	811 16.87 62
	MILLIGRAMS PER LITER MILLIEDUIVALENT PER	ENT RE	2.74	171 2.80	2.79	.20	1.08	1.41	95 1.56 48	95	101	43 •71	306	1	332
A LER		C 03	000	000	000	5.0	000	0.00	0.0	0.00	0.0	0.0	0 0 0	1	2.0
GROUND WATER	NI S IN	¥	5.9	6.0	5.9	.02	1.8	3.6	.03	3.6	.05	.05	.04	ŀ	. 11
5	CONSTITUENTS	₹Z	52 2 • 2 8	2.44	33	188	37.7	565 24.58 64	3.4 4.6 4.6	446	465	116 5.05 78	9.40	9.57	338
ANALTSIS		ÐW	- 4 m 2 x	3.70	3.41	.10	3.78 16	40.00	. 4 . 1 3 . 0	2.14	2.06	4 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	6. 6. 6. 6. 6. 6. 6.	1	3.29
ā	MINEFAL	5	288 4.41 79	3.02	3.27	1.20	55	253	1.30	169 8.43	1/1 8.53 28	1.00	136	3 5	120 0.48 34
		FLO-EC	1905	2000	2000	1060	2560	3990	310	2900	2775	732	1620	1700	2450
		LAB-PH FLO-PH	1	7.8	7.3	9.1	8.1	8.2	7 . 1	7 . 9	7 • 2	8.0	7 . 3	1	3 4
		TEMP		1	1	77.0F	67.06	67.06	76.06	75.04	76.06	1	67.08	6 5 a O B	
	ER	α	_												
	WELL NUMBER	LAB	7H01 M 5803 5703	7R01 M 5050 5050	7R01 M 5803 5703	1H01 M 5050 5050	4401 M 5050 5640	4G01 M 5050 5050	5801 M 5801 5640	7001 M 5050 5640	7001 M 5401 540	9801 M 5050 5050	CR01 M 5831 5640	0801 M 5050 5040	1001 M 5050 5050
	STATE WEL	OATE	275/26E-27H01 M 05/04/65 5803	275/26E=27R01 M 09/16/65 5050 1205 5050	275/26F-27R01 M 09/21/65 5803 5703	285/22E-C1H01 M 08/12/65 5050 1000 5050	285/22E-C4A01 M 08/28/65 5050 1020 5640	285/22F-04601 M 08/12/65 5050 0800 5050	285/226-C5R01 M 04/22/65 5801 09CC 5640	285/22L-07001 M 10/23/64 5050 1045 5640	285/22E-C7001 M 04/22/65 5H01 1100 5640	285/22E-CGR01 M 08/12/45 5C50 0830 5050	245/22t-10R01 M 10/12/64 5831 0845 5640	285/22E-10R01 M 04/15/65 5050 1035 5640	285/22F-11N01 M 08/12/65 5050 09/0 5050

L									MILL	MILLIGRAMS PER LITER	PER L	TER	-					
	STATE WELL NUMBER		LAB-PH	LAB-EC	MINERAL		CONSTITUENT	TS IN	MILL	MILLIEOUIVALENT PE PERCENT REACTANCE	CTANCE	MILLIEODIVALENT PER LITE	ER	×	MILLIGRAMS	MS PER		- 1
	"	темр		FLD-EC	Š	MG	NA	¥	C03	нсоз	504	7	E ON	i.	8	5102	SUM	I U U
	0.	73.0F	7.7	230	15	0	2	0.1	0.0	7.8	12	21	0 • 0	0 • 1	. 2	1	1	4 6
	04/22/65 5801 10C0 5640				27	15	1.26	E0.	0	1.28	12	28	000				118	0
	275/23E-27J01 M 08/11/65 5050 1140 5050	79.0F	Σ. Ε.	282	4 · 6	2.2	5.26 8.56	0.4	000	1.00	.21	1 + 35 53	.01	;	-:	1	185	20
	275/26E-22F01 M 10/02/64 5050 1050 5050	72.CF	8 + 2	966	87 834 49	1.07	3.35	3.3 1	000	134 2 2 2 0	. 64	218 6 • 15 68	.06.	Į	. 1	1	598	163
	275/26E-22F01 M 05/04/65 5803 5703	1	7.4	1111	5.07	1.04	3 3 3 3 3 3	2.7	0000	11.2	5 4 5	270	1	0.1		1	555	306
	275/26E-22+01 M 09/22/65 5803 5703	1	7.9	606	50°5 0 4	6 • 3 5 5 2 8	3.22	5.8 .15	000	1.43	3.06	171 4.82 75	1	0.1	0.	1	406	156
	275/26E-22C01 M 10/02/64 5050 1030 5050	74 °CF	8.2	291	.75 .29	1 • 1 • 0 • 3	1.74	.03	0000	1.30	. 4 2 1 6	9.00° 9.00°	1.8		0	1	181	4 0
	275/266-22601 M 05/04/65 5803 5703	1	8 0	4 35	34	9 4 4 0 0 1	1.74	4.7 1.2	0000	1.43 37	.22	2.22 572	1	0.0	°,	1	217	35
	275/26E-22G02 M 09/15/65 5050 5050	1	α• 1	1950	161 3.03 44	2 - 1 4 1 2	176	8	0000	188	0 th 0 th 0 th 0 th 0 th 0 th 0 th 0 th	495 13.96 78	.01	1	9.	1	1300	353
	275/26E-27A01 M 10/02/64 5050 1100 5050	7e.cF	5.	365	7.8 .39 11	1 • 1 2 0 •	68 2.96 86	0.6	3.0	136 2.23 65	.23	31 87 25	.0.2	1	4	1	217	40
	275/26E-27401 M 10/06/64 5803 5703	1	8. 5	909	.68 15	4 • 0.00 m	3.49	3.5	.52 .52	137 2.25 50	9.1	1.56 35	1	8	4	!	251	50 0
	275/266-27A01 M 05/12/65 5803 5703	1	8 . 2	57.1	43 2.18 36	e.1 .67	2.85	.36	3.6	95 1.56 27	E 24.	125 3.54 62	1	0.5	-	1	358	143
	275/26E-27R01 M 10/02/64 5050 1110 5050	74.0F	8. . 3	1850	248 2.38 69	3.12	51	5.5 .14	000	154 2 • 53 14	128 2.66 15	409	8 6 6	1	0.	1	1013	651
	275/26E-27R01 M 10/06/64 5803 5703	1	7.5	2500	234	3,85	2.71	4.7 .12	0000	3.58	3.07	11.60	1	0.0	0.	1	1017	6009

α	H ON	212	51	264	101	170	1 9	5 2 8 2 8	40	F 4 8	52	1430	120	00
R LITER	SUM	397	358	761	389	3102	338	451 388	1	-	1	3280	195	1
PE	5102	1	-	ļ	;	-	1	-	1		;	1	1	1
MILLIGRAMS	20	'n	٠,	ů.	w) •	4.		-	1	;	1	۲.	0.	;
Σ	ıL	8 0	1	1		1 0 0	ł	1	-	-		1	1	}
rea	NO3	000	.02	.01	0.0	000	0.03	.02	1	1	1	.63	9.6	1
MILLIGRAMS PER LITER MILLIEOUIVALENT PER LITER	DERCENT REACTANCE VALUE	2.37	3.16	1.72	1.78	847 23.89	2.71	118 3.33 53	1.18	158	.71	794 22.39 47	1.89	1 - 1 3
PER L	SD4	1.52	4 00 	286 5.95 51	121 2.52 39	910	106	2.45	;	-	-	1070	9.9 8	-
MILLIGRAMS PER LITER MILLIEQUIVALENT PER	HC03	203	48 79 16	243 3.99	2.02	413	31.	2.4 8.8 8.8	74.	25	82 1.34	163	.31	1.46
MILL	CO3	000	0.0	000	4 . C E S	000	0.00	000	000.	3.0	3.0	000	.37	000
TS IN	¥	2 • 0	1.8 .05	.36	0.8	5.0	.03	10.7	;	1	}	2.7	0.0	!
STITUENT	NA	3.09	3.74	141 6.13	100 4.35 68	1070	101	116 5.05 82	50	128	53	433 18.84 40	2.61	2.61
CON	MC	2 4 4 7 W W W W W W W W W W W W W W W W W	9.8.9	1 . 4 . 9	1.5	51.00	0 · 0 · 0	 	000	0.7	. c . c . c	13071	000	000
MINEFAL	CA	36	41.07.0	3.79	38 1.90	2 4 8	.80 15	.80	.28 .28	1.40	00.1	551 7.49 5.8	4.5 4.9 8	2.4
	L'AB-EC FLO-EC	700	539	1080	642	4600	636	730	305	845	349	4290	348	291
	LAB-PH FLO-PH	7.7	7.6	8. E.	30 5 5	8.2	7.1	7.7	m •	B. 7	8 • 4	8.0	9.	d.1
	TEMP	75.0F	1	66.0F	70.0F	70.CF	71.CF	68.CF	1	T	;	-	73.0F	1
WELL	DATE LAB TIME SAMPLER	285/22E-16h01 M 04/21/EE 5050 1530 5640	285/22E-22001 M 08/11/65 5050 1530 5050	285/22E-25K01 M 08/11/65 5/50 1510 5050	285/22E-26JO2 M 08/11/65 5050 1430 5050	285/22E=2201 M 04/22/65 5050 1530 5640	285/22E-35P01 M 10/09/64 5050 1015 5640	285/22F-15P01 M 04/15/c5 5050 1025 5640	285723E-C1AC1 M 08/12/65 5050 1030 5050	285/23E-C9M01 M 08/12/65 5050 1100 5050	285/23F-11E02 M 08/12/65 5050 1120 5050	285/236-12J02 M 08/12/c5 5050 1140 5050	285/236-34001 M 08/11/65 5050 1330 5050	285/27L-C7C01 M 09/16/65 5050 1145 5050

	NCH	148	210	198	1	52	543	1	354	548	180	262	101	171
1 -1	SOM	812	924	802	1	274	2310	1	731	1130	736	980	1	1
MILLIGRAMS PER	2018	1	-	1	1	-	1	1	1	1	1		Ī	1
LLIGRA	89	. 2	¢.	ů,	1	0	2 • 6	2 • 3	S.	9	4	9	1	1
M	۷	1	-		-	1	1	1	1	1	1	;	1	1
ER	NO 3	.00	2 • 2	.01	1	0 . 7	0.9		1 • 1	103	1 • 1	.02	1	1
MILLIGRAMS PER LITER MILLIEGUIVALENT PER LITER DEDCENT BEACTANCE VALUE	CL	364 10.26 87	203 5.72 39	3.10	105	.54	854 24.08 67	729	1.35	137	137	203 5.72 38	4.91	36
PER LI	S04	m r.	297	297		1.66	485 10.09	1	288 5.99 52	491	261 5.43	328 6.82 46	-	1
MILLIGNAMS PER LITER MILLIEGUIVALENT PER DEDCENT BEACTANCE VA	HCU3	245	169 2 • 7 7 1 9	3.38	-	114	1114	1	251 4 • 12 36	160	2.13	144 2.36 16	130	2.10
MILLI	CO3	000	0 0 0	000	1	0 + 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	000	-	000	000	00	00	.20	000
N S I	¥	60.	0.04	.03	1	0.5	4 • 6 0 0	1	2.5	0.0	1.0	1 . 4	1	1 0
CCNSTITUENTS	NA	202 8.79 7.5	242	195 8.48 68	192	3.09	52 2 22 • 7 1 6 4	540	94 4 • 0 9 3 6	125 5.44 33	178	22 8 9 • 92 6 5	206	3.57
	MG	1 + 4	8 + B	8 + 8	-	0 + 0 + 0 + 1	2.2		1.50	1.89	2.6	0 0 m	3 0 0 0 0 0	111
MINEFAL	CA	2 .84 2 .84	78 3.89	3 - 2 4	!	1 .00	219	1	1115.54	182 9.08 55	68 3.39	95 4 . 7 4 31	8 0 0 4	2.45
- AH-F	FLD-EC	1300	1520	1270	1200	424	3740	3520	1080	1620	1200	1560	1400	721
1	FLU-PH FLU-E	8.0	8 6	υ 0 •	1	φ *	6 . 8	1	7.2	8, 3	7.9	8 2	8,5	20 • 30
	TEMP	77.0F	68.0F	77.0F	59.05	1	68.0F	68.CF	67.0F	66.0F	73.0F	62.06		66.0F
STATE WELL NUMBER	0)	295/23£-02H01 M 08/12/55 5050 1300 5050	295/22E-C3LC1 M 08/11/65 5050 1330 5050	295/23E-C4A01 M 10/09/64 5050 11C0 5640	295/23E-C4401 M 04/15/65 5050 1005 5640	295/23E-C5D01 M 08/11/05 5050 1415 5050	295/23F-C7G01 M 10/12/64 505C 1415 5640	295/23E-C7001 M 04/20/65 5050 1500 E640	295/23E-C4R01 M 10/12/64 5050 1400 5640	295/23E-CERC3 M 08/28/65 5050 0915 5640	295723E-14H01 M 10712764 5050 1445 5640	295/23E-14H01 M 04/15/65 5050 1545 5640	295/23E-14H01 M 08/11/65 5050 1500 5050	295/23E-17601 M 08/28/65 5050 0845 5640

	Ţ.	I O	159	262	103	276	168	92	122	4 0	!	2 9	0 0	1	-
	- 1							2	1.2	4 -	,	362	182		
		SUB	481	62.2	307	718	502	1	1	369	!	727) I	-	1
	MS PER	2018	1	1	1	1		1	ì	}	1	1	1	1	1
	MILLIGRAMS	8	4	4	٥.	4	E.	6	* 2	4	1	ς.	1	1	1
	ĭ	L	1	4	1	;		0 . 2	0 • 2	1	;	-	1	1	-
	E R	NO 3	n o o •	000	.01	0.0	000	.02	10.5	m 00 · ·	1	0000	i i	!	}
ITER	MILLIEGUIVALENT PER LITER PERCENI REACTANCE VALUE	CL	90 2.54 36	167	1.18	2.26	1.89	3.36	.76	165	164	39	1.18	403	.65
PER L	ACTANCE	504	156 3.24 46	4 - 2 8 5 - 4 5 - 5 8	62 1.29	303	4.51	-		32.	1	3^2 6.28 55	ŧ		267
MILLIGRAMS PER LITER	EQUIV	нсоз	82 1.34 19	1.26	11.95	1000	.90	216	334	31.	-	252	266	1	127
MILL	PERCE	C 0 3	0.0	000	6.0	000	000.	6.3	0.0	000	;	.0	0.0	1	000
	N N	¥	e e e	.05	.03	1.7	.03	3.3	4.4	0.01	1	2.9	-	1	1
	CCNSTITUENTS	NA	3.87	5.13	2.61 5.61	4.79	3.65	150	3.92	5.13 86	123	4.13	4.18	355	3.09
		9 M	9.5 1.1	1.81	3.6	1.63	6.9	1	1	0 0	-	000	2.16	1	1
	MINEFAL	CA	2.46 3.40	3.39	35	78 3.89	2.79 4.0		1	. H 0	!	5.54	1175.34	}	100
	LAB-EC	FLD-EC	777	970	458 451	990	787	040	909	699	694	1080	1120	2500	762
	АВ-РН	FL 0-PH	7.0	7.0	80 5	χ. 	7.3		ε. 5.	7.3	1	7.5	£ .	7.3	7.6
	-	TEMP	72.0F	73.CF	68.06	68.0F	72.0F	F7.0F	e1.0F	72.0F	6 6 0 .	6 P . CF	6 P • C F	70.0F	70.0F
	DATE WELL NUMBER	0,	295/23F-2CH01 M 10/22/64 5050 1500 5640	295/23E-20H01 M 04/21/65 5801 1415 5640	295/216-22K01 M 08/11/65 5050 1515 5050	295723E-26J02 M 08712765 5050 0900 5050	295/22E-34401 M 10/22/64 5050 1445 5640	255729t-32L02 M 0571E/K5 5050 1000 5050	2957294-32M02 M 05712/65 5050 1010 5550	305/23L-C1C03 M 10/05/64 505/ 15/2 564C	305/23F-C1C03 M 04/15/65 505C 1505 564C	305/24F-05A01 M 10/05/64 5050 15E5 5640	305/24F-C5A01 M 06/30/65 5050 1300 5640	305/24F-C8G01 M 10/05/64 5050 1450 5640	305/24E-14F01 M 10/05/E4 4F05 1410 5640

	NCH NCH	-	217	328 195	100	145	206	119	06	06	117	280	96	176
PFR LITER	10S 5UM		626 584	719	210	314	383	233	190	148	256	738	259	388
	\$102	1	1		1	1	1	1	1	1	1	1	1	1
MILLIGRAMS	T	1	(r) +		, N	1			Cu		2	•	4	. 2
Σ	UL.	1	l I	-	1	1	1		1	1	;	1	-	
ER	NO 3	;	1.22	99	9.6	3.3	32 8 8	2.5	0.7	.03	0.03	000	000	01. 8
TER FR LIT	VALUE		3.64	127 3.58 36	10 8 8	1.16	1,21	• 39 11	4.5 1.5	9.5	. 71 . 18	125 3,53	.56	2.12
PER LI	SD4		104	2.04	. 44 . 12	38	59 1.23 18	1.08	.60 .60	20 • 42 15	9 6 9 6 4 5 4 5 4 5 4 5 4 5 4 5 6 5 6 6 6 6 6	218	46. 22.	1.39
MILLIGRAMS PER LITER MILLIEGUIVALENT PER LITER	PERCENT REACTANCE VALUE 03 HC03 S04 CL		158 2.76 28	162 2 • 66 2 7	164 2.69 75	196 3.21 62	3.71	2.13	123	126 2.07	143 2.35 58	3.35	175 2.87 66	3.12
MILL	PFRCt C03	1	0000	0.0	000	000	000	000	000	000	000	0.00	000	000
NI S IN	¥	1	7.1 .18	6.4	3.0	4.7	4.6	2.8	2.5	.06	.06	6.3	.12	4.4
CCNSTITUENTS	¥2		118 5.13 53	3.26	1 • 4 B	2.31	2.61	29 1.26 34	1.17	.91 33	1.61	125	2.44 5.44 5.44	3.35
	MG		30	22 1.81 18	.54	10 •82 15	1.32	7.0 .58	5 • 6 • 4 5 1 6	. 39 14	7.2 .59 15	3.78	.52	1,32
MINEFAL	5	1	37 1.85 19	95 4.74 4.8	28 1.40 40	43 2.15 40	2 .84	36 1.80 49	1,35	1.40	35	36	1.40	4 5. 2 5. 2 5.
	LAU-EC FLD-EC	831	1024	1025	366	527	670	401	326	269	419	1137	0 4 4	101
	LAU-PH FLD-PH	1	8.0	7.9	7.6	й. я 7. в	8.3 7.8	7.5	8 8 0 .	7.4	9.1	8.1	8.3	7.5
	a Me	70.0F	1	-	1	1	1	-	1	1	1	-	1	-
WELL	DATE LAB TIME SAMPLER	305/24E-14H01 M 04.16/65 5550 134E 5640	305/2EE-G3G01 M 12/17/64 5050 0900 5050	3CS/28E-C4F01 M 12/17/64 5050 1315 5050	305/28E-C8H01 M 12/17/64 5050 0955 5050	3C5/28E-11J01 M 12/17/64 5050 152E 5050	305/28E-16N01 M 12/17/64 5050 1020 5050	305/28E-17H01 M 12/17/64 5050 1000 5050	305/28E-17L01 M 12/17/64 5050 1019 5C50	3C5/28E-17L03 M 12/17/64 5050 1005 5050	305/28E-20401 M 12/17/64 5050 1030 5050	305/28E-21M02 M 12/17/64 5050 1040 5050	305/28E-23J01 M 12/17/64 5050 1540 5050	305/26E-28A03 M 12/17/64 5050 1166 5050

	NCH	252	1 4 3	156	117	86	164	108	24 1 1 B	120	237	218	327	193
LITER	TDS SUM	581	365	269	258	152	312	!	1	1	-	-	;	1
PFR	5102	1	-	-	-	-	1	1		-	1	8 2	1	1
MILLIGRAMS	8 S	ν,	4	5	-	-:	-:	٠,	-:	-:	-:	-:	2	-
MIL	L	1	1	1	!	-	-	0.2	8 . 0	E.0	m • c	ŧ,	-)
æ	NO 3	0.8	10.	7.0	.02	.01	.34 7	2.1	30	.02	9.8	0.4	38	111
MILLIGRAMS PER LITER MILLIEGUIVALENT PER LITER	VALUE	3.10	1.13	94.5	20 •56	311	23 • 65 13	23.65	2.20	. 56	1.61	1.69	1.92	3.8
MILLIGRAMS PER LITER	PERCENT REACTANCE VALUE	3,33	1.77 1	341	.85	240	.83 17	1	1	1	1	-	-	-
RAMS F	HC03	3.15	242 3.97 1	230 3.77 75	158 2.59 64	2.00	186 3.05 63	301	254	234 3.84	258 4 • 23	3.12	3.38	3.54
MILL 10 MILL 16	CO3 P	000	000	000	0000		0.0	٥٠٠٠	4.0	0.00	4	10	.33	6.0
2 0	ν	5.6	.11	4.00	3.1	1.8 .05	3.1	1	5.6	4 . 1	1	1	-	1
CONSTITUENTS	NA	99	3.87	4.1 1.78 36	39	. J. 1. 34	38 1.05	3.52	9.9	59 2 .57	59	1.91	2.26	1.87
	MG	2,31	. 81	100.	. 8 . . 6 6 . 1	. 3 7 1 4	1 4 1 5 2 3	1			1	-	1	-
MINERAL	CA	2,50	22	2 . 2 0	34	.35	43	-	!	*	!	!	1	!
	FLD-EG	983	682	491	407	264	684	940	927	503	745	635	255	593
	LAB-PH F	7.6	8.1	7.7	7.6	7.5	8 · 7 · 4 · 7	m a	Ø .	m * 10	0.7	r. 20	9.0	v0 *
	TEMP FI		1	1	1	1	-	e 0 • 0 F	ec.0+	77.06	74.05	73.06	72.0F	75.0F
	-				· · · · · ·			- W			-	-	4	
WELL NUMBER	LAB	305/28E-28D01 m 12/17/64 5050 1045 5050	305/28E-28D02 M 12/17/64 5050 1120 5050	305/26L-28D03 M 12/17/64 5050 1115 5050	305/28E-29402 M 12/17/64 505C 11C0 5350	305/28E-29C01 M 12/17/64 5050 11C5 5050	305/28E-29H01 M 12/17/64 5050 1050 5050	305/29E-C3K02 M 35/18/65 5050 0845 5050	305/29E-04FC1 M 05/1H/65 5050 0830 5050	30S/29C-04C01 M 35/18/65 5050 09CC 5050	30S/29E-C9H01 M 0S/18/65 5050 09C5 #050	305/25E-19K01 M 05/17/65 505C 1230 605C	305/25E-20A01 M 05/17/65 5050 1315 5050	305/29E=20LC1 M 05/17/65 5050
	DATE	305/28E-2 12/17/64 1045	305/28E- 12/17/64 1120	305/26L- 12/17/64 1115	305/28E- 12/17/64 1100	305/28E- 12/17/64 1105	305/28E~ 12/17/64 1050	305/29E- 05/18/65 0845	305/29E-05/14/65	305/29E- 05/18/65 09CC	305/29E- 05/18/65 09C5	305725E- 05/17/65 1230	305729E- 05717765 1315	305/29E-2

MELL				MINEFA	L CCN	MINEFAL CCNSTITUENTS	I S IN	MILL	MILLIGRAMS PER LITER	PER L	ITER PER LI	TER	M	MILLIGRAMS		PER LITER	
TIME SAMPLER	TEMP	FLD-PH FLD-PH	LAB-EG	CA	MG	A N	¥	C U 3	03 HC03 S04 CL	S04	CL	NO 3	ш	В	5102	SUM	NCH
305/29E-21C01 M 05/17/65 5050 13:0 5050	72.CF	m * *	1140	1	 	61	1	000	215		98	139	1	-:	1	1	433
305/29E-22A01 M 05/17/cs 5050 1345 5050	79.0F	20	£06	1	-	3.26	1	000	246	1	2.14	1.4		۲.	1	1	284
305/29E-22JO1 M 05/17/65 5050 1400 5050	76.0F	2.	976	ŧ i	1	2.87	1	000	353	1	1.97	38	ŀ	00	!	ŀ	352
305/29F-22L01 M 05/17/65 5050 1410 5050	74 • 0E	8 • 5	935	1	1	54 2 • 3 5	1	8.0	183	-	62	131	-	-:	1	1	334
305/29E-24N01 M 05/17/65 5050 1500 5050	72.0F	8 1	738	-	T	54	1	000	197	-	1.61	. 0 2	-	4	-	1	239 7H
305/29F-24P01 M 05/17/65 5050 1445 5050	75.0F	° .	748	1	-	16.5	1	0 0 0	3.71		2.00	.03		m,	-	1	2 4 3 5 8
365/30E-19D01 M 05/17/65 5050 1515 50E0	71.CF	α •	805	1	1	2.39	1	000	247		35	1 • 5	i T	:	-	-	294
315/28E-14PO1 M 05/17/65 505C 0720 5050	1	7.8	3240	-	<u> </u>	30 B	1	0.00	297	-	538	!	1	6.1	1	-	1010
315/28E-14P02 M 05/17/65 5050 0745 5050	70°0F	7.9	2640	-	1	220	1	000	258	1	388		1	4 .	1	ł	948
315/28E-22C01 M 05/17/65 5050 0710 5050	67.06	α	2560	1	1	298	1	0.00	258	1	460	-	!	1.8	-	-	630
315/28E-22001 M 05/17/65 5050 07CC 5050		0. 1	4620	ł	1	415	;	000	246	1	30.17	1	3 8	1 • 2		!	1430
315/28E-28A01 M 05/17/65 5050 0810 5050	71.0F	. 1	4 4 4	1	1	2 • 3 9	1	000	113		1.27	1	ŀ	-	1	;	80
315/29E-16C01 M 05/17/65 5050	70.0F	8.2	748	1	7	2,39	1	000	3.66	1	1.18	68.	T	6	1	1	268

	I U	267	389	154	361	252	271	11.9	369	915	501	50 4 40 50 50 50 50 50 50 50 50 50 50 50 50 50	582	205
PER LITER	SUM	1	1	1	1	1	-	3	4 4 0 4 9 0 9	1493	1356	1440	1520	684
	51112	1	1	}	l l	ŀ	;	ł I) I	1	1	1	P	27
MILLIGRAMS	8	1.0	۲.	۲.	c .	2 • 1	2.0	1 • 6	Ç	N .	4	5) • #	a,	2 . 2
M	L.	1	1	!	1	1	1	1 8	1	-	1	1 1	1	1
E P	NO 3	4 0 8 8	.71	.21	9.4	45	9 9 9	2 . 7	.01	36.	5.9	14 .23	27.	4 . 1
MILLIGRAMS PER LITER MILLIEGUIVALENT PER LITER	DE RCENT REACTANCE VALUE	3 - 30	226	76	280	50	1.47	36	- 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	. E E E	1.49	521.47	1.58 R	4.7
MILLIGRAMS PER LITER MILLIEGUIVALENT PER	SD4		1	-	1	1	!	1	3,43	1150 24.13 83	940 17.47 85	770 10.02 H3	445 17.58 84	294
GRAMS	HC03	20¢	3.23	2 • 3 H	133	3.07	1.39	133	4.15	11.72	2 C E	1.54	1.64 H	314
MILL	CO3	0.0	000	. 40	3.0	5.0	0 1 0		000	(• 0	0.00	c c	0.0	c.
1 S 1 N	¥	1	1	1	1 1	1	1	1	8.2 .21	. 25	- C.	2 - 3	.26	5 8
CCNSTITUENTS	NA	129	125	3.52	148	62	3.3.9	56	.52	307	202	0000	30.0	136
L CCNS	N.C	1	1	!	;	1	I I	1	31 2.55	8.00 E	3.45	3 4 4 5 7	3.44	C Z
MINERAL	CA	;	1	1	1	F 3	-	1	36.79	243	104	157	3.13	7,
	LAU-LO FLD-EC	1120	1350	199	1470	146	वरत	500	749	2340	0161	1850	1310	1040
	FLO-PH FLO-EC	8 . 2	χ • π	σ 20	2	ις Σ	2	£ .	7 - 7	ρ • υ	CU # E	0.3	ايا •	2•9
	TEMP	-	72.0F	73.0F	1	75.CF	76 . 0F	70 . C+	1	£ 2 . CF	1	36 . CF	N E	72.0F
EH	ı,													
MELL	TIME SAMPLER	315/296-27C01 M 05/17/65 5050 0910 5950	315/29E-27N01 M 05/17/65 5050 0930 5050	315/29E-29CC1 M 05/17/65 5050 0820 5650	315729E+34K01 M 057177E 5050 091E 6050	315/20F-c4L01 M 05/17/6 5050 1100 5050	315/30f-recol M 05/17/65 505c 1020 5050	3157704-C74001 M 05717765 5050 1045 5050	325/3226-34602 M 06/30/65 5050 1400 5050	12N/2cm-31601 S 08/13/65 5050 0H30 5050	10NZ56A-C1H61 S 11Z25Z6A 5C50 1CC0 5050	10NZ20A-01H01 S 01Z05Z6 SCOO 1035 SJSC	10N/20N+71HC1 S 07X30X6E 5050 0835 5050	10N/19N-CEA01 5

TABLE E-3
ANALYSIS OF TRACE ELEMENTS IN GROUND WATER

										Cons	cituents	in Micr	ograms p	Constituents in Micrograms per Liter $(\upsilon_S/1)$	(ng/1)					
State Well Number	Usa	Oate	Alumi- num (Al)	Arsenic (As)	Beryl- lium (Be)	Bismuth (Bi)	Cadmium (Cd)	Cobalt (Co)	Chro- mium (Cr)	Copper (Cu)	Iron (Fe)	Gallium (Ga)	Germa- nium (Ge)	Manga- nese (Mn)	Malyb- denum (Ma)	Nickel (Ni)	(Pb)	Titonium (Ti.)	Vanodium (V)	Zinc (Zn)
138/16E-25C2-M	Irrigation	3/14/65	0.4	¥	4 0.57	4 0.29		4.1.4	7.1	1.4	2.6	5.7	<0.29	177.	45.	0,40	Λ 	0.57	1.3	91.
36R3-M	Irrigation 3/14/65	3/14/65	0.4		< 0.57	v 0.29	4.1.	Α 1,1	41.4	6.3	2.9	< 5.7 < 0.29	40.29	83.	49.	94.0	٦ . ا	0.57	3.4	ηе.
13S/17E-22B1-M	Irrigation 3/14/65	3/14/65	ri.	-	< 0.57 ►	62.0	A 1.4	, i.		1.4	3.4	5.7	€2.0	٦. ١.	2.2	0.71	1,4	₹ 0.57	39.	5.7
14S/16E- 9A1-M	Irrigation	3/14/65	4.3	,	< 0.57 ►	0.29	4.1.4	1.4	ν. 1. γ.	1.4	27.	5.7	1,2	31.	4.6	1.1	۲. ۱.	< 0.57	0.29	5.7
27S/26E-27Rl-M	Domestic	6/59/62	9*9		< 0.57 ≥	۸ 0.29	4:4	1.4	V	7. T	2.5	7.7	4 0 29	1,4	1.9	94.0	۸ ۲ ۲	< 0.57	5.1	5.7
28S/27E- 7C1-M	Dom. & Irr. 7/ 1/65	7/ 1/65	18.		₹ 0.57	₹ 0.29	٠ .: ۷	۲. ا ۱. ا	A 1. L	3.4	2.0	5.7	3.7	1.4	2.8	0,46	v	4 0.57	< 0.29	50.
29S/29E-34N1-M	Ind.Irr.Dom, 9/16/65	9/16/65	3,3	250	A 1.3	V 0,67	3,3	3.3	3.3 ∆	3,3	1300.	4 13.	v.67	180.	0.67	19.0	۸ ښ	< 1.3	Λ	0.67 < 13.

> Mare than the amount indicated. < Less than the amount indicated.

TABLE E-4 ANALYSES OF MISCELLANEOUS CONSTITUENTS

	T	1	MUCarama Day CA	2. (2.2.(1)
CTATE WELL NUMBER	DATE	ALKVI-	Milligrams Per Lit	er (mg/1)
STATE WELL NUMBER	DATE	Alkyl- Benzene- Sulfonate (ABS)		ticides Phosphates (PO4)
4s/ 9E-22Cl-M	6/24/65	0.3		Ortho 0.77
22Cl-M	8/19/65	0.7		Total 0.35
9S/11E-16G1-M	9/14/65		137	
12S/19E-12R1-M	5/19/65		No	one Detected
13A1-M	5/19/65		No	one Detected
13Al-M	7/ 1/65			DDT - 3
13A2-M	8/ 6/65		No	one Detected
12S/20E-18B1-M	5/27/65		No	one Detected
21S/27E-27C2-M	4/21/65	0.9		Total 5.6
27D1-M	4/21/65	0.5		Total 6.5
27D1-M	8/ 3/65	90% ABS 10% LAS		
27F1-M	4/21/65	1.5		Total 1.7
27F1-M	8/ 3/65	100% ABS		
27S/26E-22Q2-M	9/15/65		112	
27Rl-M	9/16/65		15	
28S/22E- 4G1-M	8/12/65		1240	
llN1-M	8/12/65		73	
28s/23E-12J2-M	8/12/65		86	
34Q1-M	8/11/65		74	
28s/27E- 7Cl-M	9/16/65		23	

Reported in micrograms per liter (ug/1)

Reported in nanograms per liter (ng/1). The constituents reported are the only ones detected in the sample.

Linear alkylate sulfonate (LAS).

TABLE E-4

ANALYSES OF MISCELLANEOUS CONSTITUENTS

			Milligrams Per	Liter (mg/I)	
STATE WELL NUMBER	DATE	Alkyl- Benzene- Sulfonate (ABS)	Iodine [a/	Lithium	Phosphates (PO4)
29S/23E- 3Ll-M	8/11/65		76		
295/295-32I2-M	5/18/65				Total 0.10
32M2-M	5/18/65				Total 1.1
34N1-M	9/16/65		143	0.0	
30S/28E- 3G1-M	12/17/64	0.0			
4P1-M	12/17/64	0.0			
8Rl-M	12/17/64	0.0			
llJ1-M	12/17/64	0.0			
16N1-M	12/17/64	0.0			
17H1-M	12/17/64	0.0			
17L1-M	12/17/64	0.0			
17L3-M	12/17/64	0.0			
20Bl-M	12/17/64	0.0			
21M2-M	12/17/64	0.0			
23J1 - M	12/17/64	0.0			
28A3-M	12/17/64	0.0			
28Dl-M	12/17/64	0.0			
28D2-M	12/17/64	0.0			
28D3-M	12/17/64	0.0			
29B2-M	12/17/64	0.0			
29Cl-M	12/17/64	0.0			
29Hl-M	12/17/64	0.0			

TABLE E-4

ANALYSES OF MISCELLANEOUS CONSTITUENTS

	DATE	Milligrams Per Liter (mg/l)		
STATE WELL NUMBER		Alkyl- Benzene- Sulfonate (ABS)	Iodine (I)	Phosphates (PO4)
305/29E- 4F1-M	5/18/65			Total 0.98
4Q1-M	5/18/65			Total 0.41
31s/29E-34Kl-M	5/17/65	0.0		
12N/22W-31R1-~	8/13/65		76	

LEGEND

O D PRECIPITATION ONLY

PRECIPITATION AND TEMPERATURE

PRECIPITATION, TEMPERATURE AND EVAPORATION

TYPE OF GAGE

NON RECORDING

RECORDING

BOTH TYPES

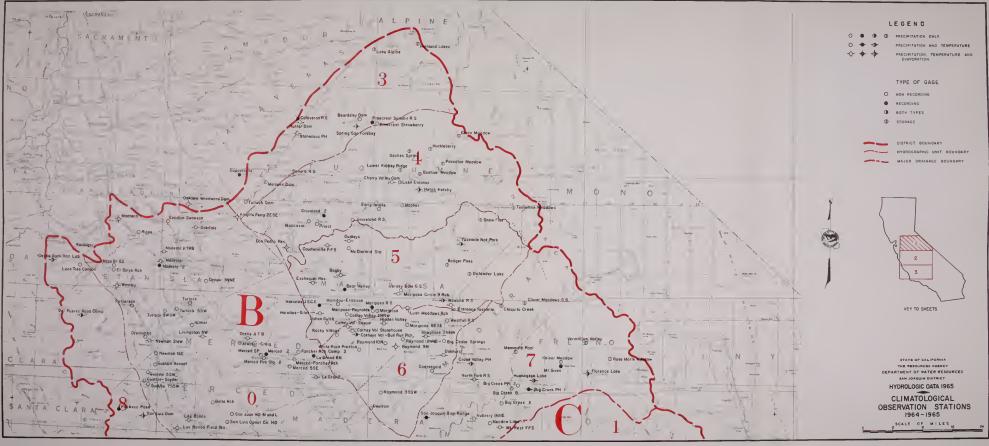
D STORAGE

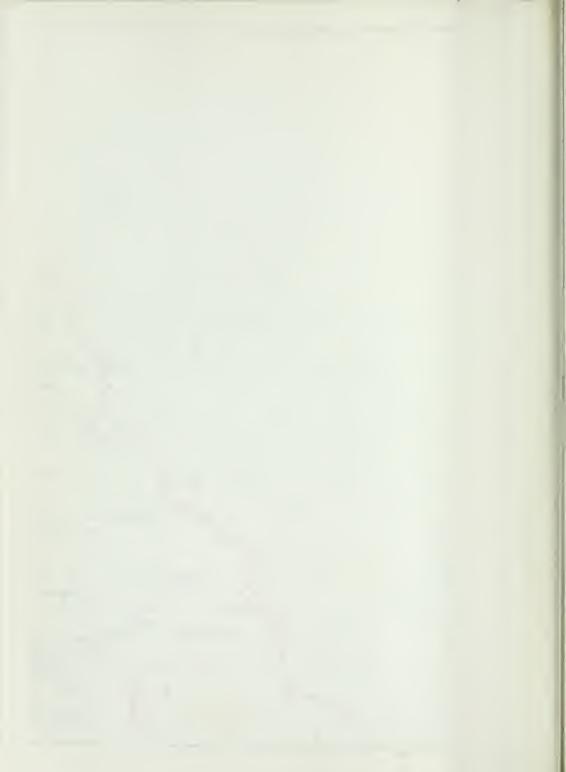
OISTRICT BOUNDARY

HYDROGRAPHIC UNIT BOUNDARY

MAJOR DRAINAGE BOUNDARY

KEY TO SHEETS

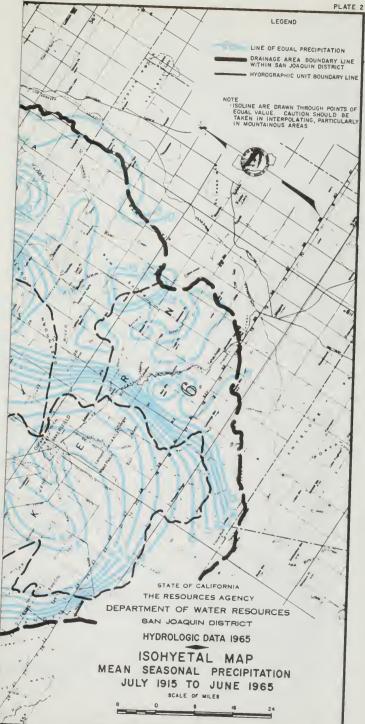

STATE OF CALIFORNIA
THE RESOURCES AGENCY
DEPARTMENT OF WATER RESOURCES
SAN JOAQUIN DISTRICT


HYDROLOGIC DATA 1965

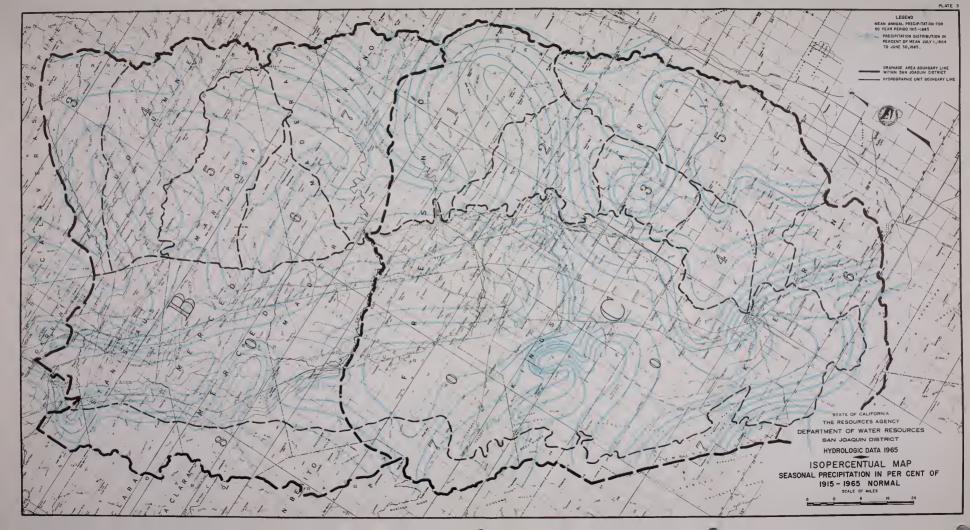
CLIMATOLOGICAL
OBSERVATION STATIONS
1964-1965

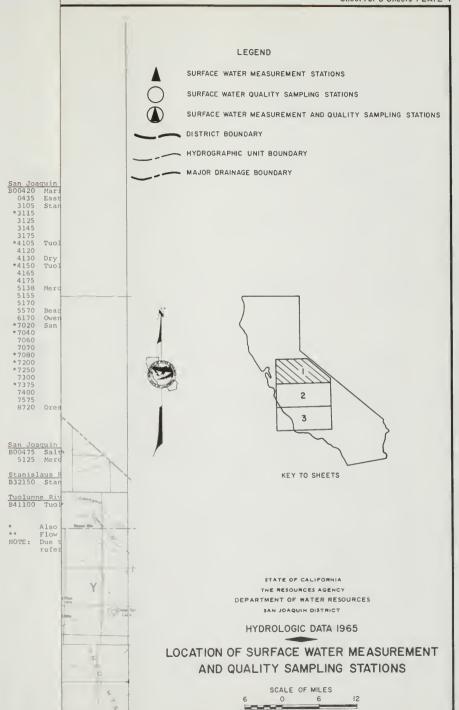
SCALE OF MILES

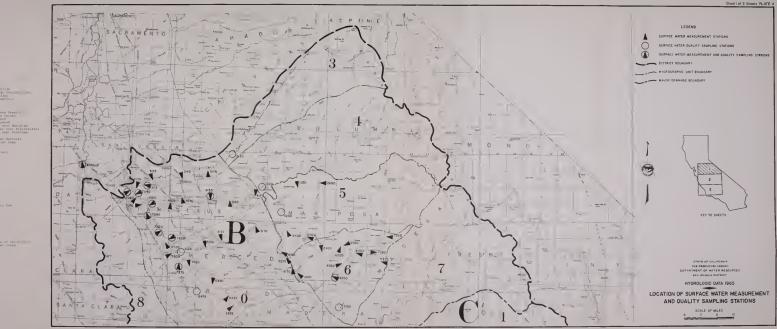
LEGEND PRECIPITATION ONLY PRECIPITATION AND TEMPERATURE PRECIPITATION, TEMPERATURE AND EVAPORATION TYPE OF GAGE NON RECORDING RECORDING BOTH TYPES ന STORAGE DISTRICT BOUNDARY HYDROGRAPHIC UNIT BOUNDARY MAJOR DRAINAGE BOUNDARY KEY TO SHEETS STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF WATER RESOURCES SAN JOAQUIN DISTRICT HYDROLOGIC DATA 1965 CLIMATOLOGICAL OBSERVATION STATIONS 1964-1965 SCALE OF MILES



LEGEND PRECIPITATION ONLY PRECIPITATION AND TEMPERATURE PRECIPITATION, TEMPERATURE AND EVAPORATION TYPE OF GAGE NON RECORDING RECORDING 0 BOTH TYPES Φ STORAGE DISTRICT BOUNDARY HYDROGRAPHIC UNIT BOUNDARY MAJOR DRAINAGE BOUNDARY SW KEY TO SHEETS STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF WATER RESOURCES SAN JOAQUIN DISTRICT HYDROLOGIC DATA 1965 CLIMATOLOGICAL OBSERVATION STATIONS 1964-1965 SCALE OF MILES







Surface Water Heasurement Stations

Marced Parer | Dollar Below Eachages Can |

NA 1 : Tublume Siver below bon Feder Dam

LEGEND

SURFACE WATER MEASUREMENT STATIONS

SURFACE WATER QUALITY SAMPLING STATIONS

SURFACE WATER MEASUREMENT AND QUALITY SAMPLING STATIONS

DISTRICT BOUNDARY

- HYDROGRAPHIC UNIT BOUNDARY

MAJOR DRAINAGE BOUNDARY

2		San Joa
4	Maripo	B00420
0	Eastsi	0435
0.	Delta-	*0770
Parcels IIIa	Panoch	0975
	Merced	5138
an an	boro	5155
	Bear d	5570
	O	6170

6170 Owens 77250 San Jo 7300 7300 73700 7370 7400 7575 7610 77110 77885

8720	Orest
Merced	River
B56100	Burns

Fresno	- Chowo
B62100	Maripo
2400	
*4200	Chowch
4260	Stripe
4300	West F
4360	Middle
4400	East F
7300	Miami
7325	Lewis

San Joaquin Va B00475 Salt S 5125 Merced

Tulare	Lake Va
C01140	Kings
2185	Kaweah
3195	Tule B

* Also qu

** Flow re
Califor

NOTE: Due to
referen

STATE OF CALIFORNIA
THE RESOURCES AGENCY
DEPARTMENT OF WATER RESOURCES
SAN JOAQUIN DISTRICT

HYDROLOGIC DATA 1965

LOCATION OF SURFACE WATER MEASUREMENT AND QUALITY SAMPLING STATIONS

SCALE OF MILES
6 0 6 12

getter Meter Measurement Stational
Sen Josephin Ri
BRILLO 2011

Bear see search of Communication Communicati

Not a Size free telow Rife. Preservoji

24-1-0 Mar. a Cr + 222 Maripusa Poservos 24-1-0 Mar. a Cr + 222 Maripusa Poservos 24-1 Mar. a Cr + 222 Maripusa Poservos

Chow hi 's a cr near Paymons

St upod Prot Treek near Faymons

Weat F is turned lile Giver near Mariposa

Mills State of the State of t

Surfa

Sen J ocyth Velin; Floor # W76 Selt Slough at San Dita Ranct "12" Merced River noar Stevinson

Freeno - Chowchills Rive BC7150 Frm o River n er Daulton Turste Lake Veile, Floor - 19140 Fings Firer below Propies Metr 1155 Rawsh Firer below Propies we bas

Surface Nate: Justicy Sempling Stations Only**

Ranct C1140 Kings River below Pinc Flat Day
neon 1120 Big Creek above Fine Flat Day

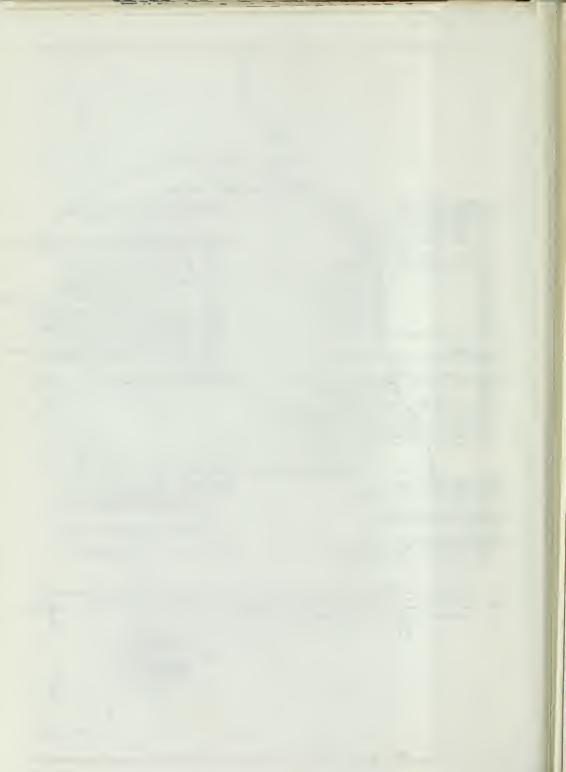
San Josephin River B71100 Dully Content Mi | Lak-

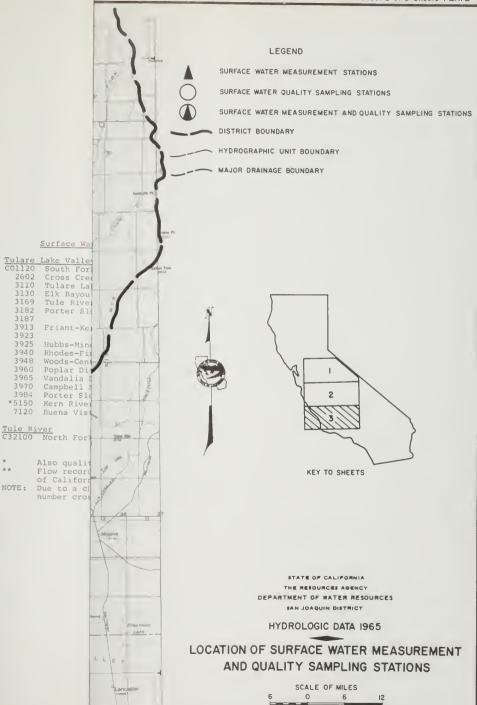
1410 Range Fiver below North Fork

Kewesh River
C21250 Kawesh River nest Three Rivers

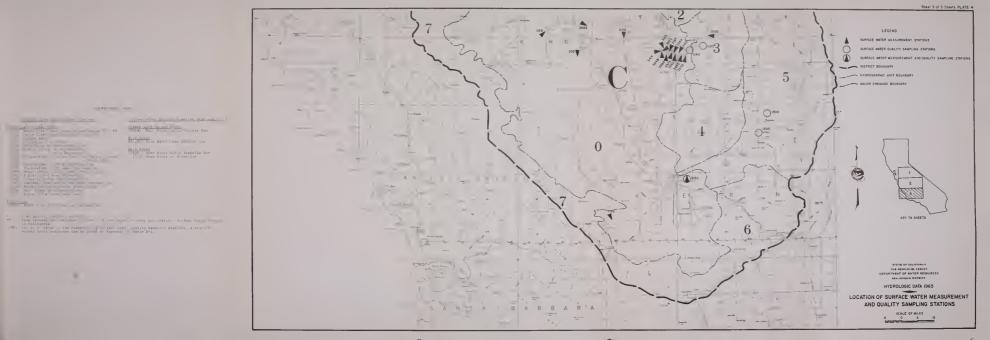
Tule River C 150 Tule River near Springville

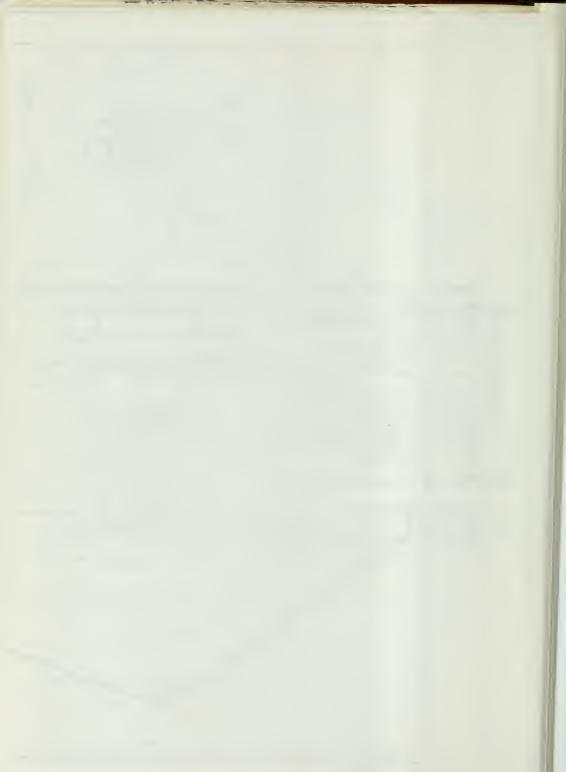
Also quelity sempling station,

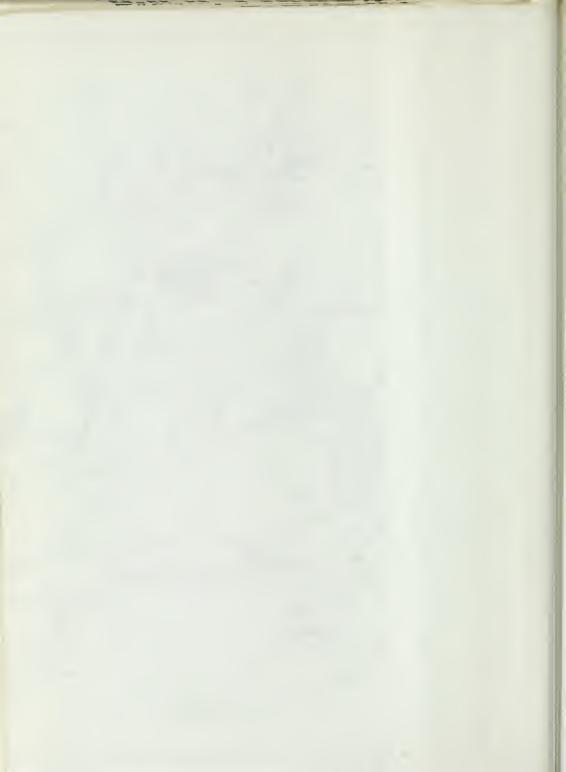

Flow incode are published in the U. S. Geological Survey publication "Surace Mater Records of


Flow incode are published in the U. S. Geological Survey publication "Mater Reserve Report".

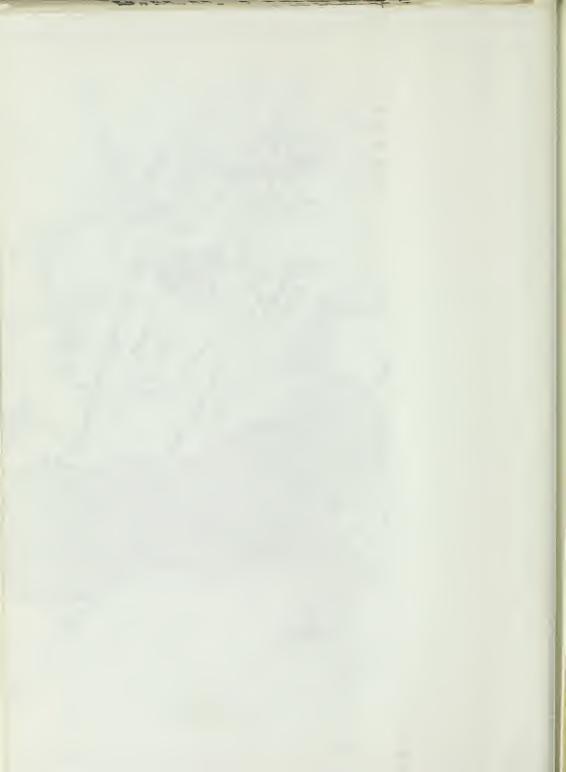
Colifornia" and the Pingua Piece Mater Association publication "Mater Reserve Report".

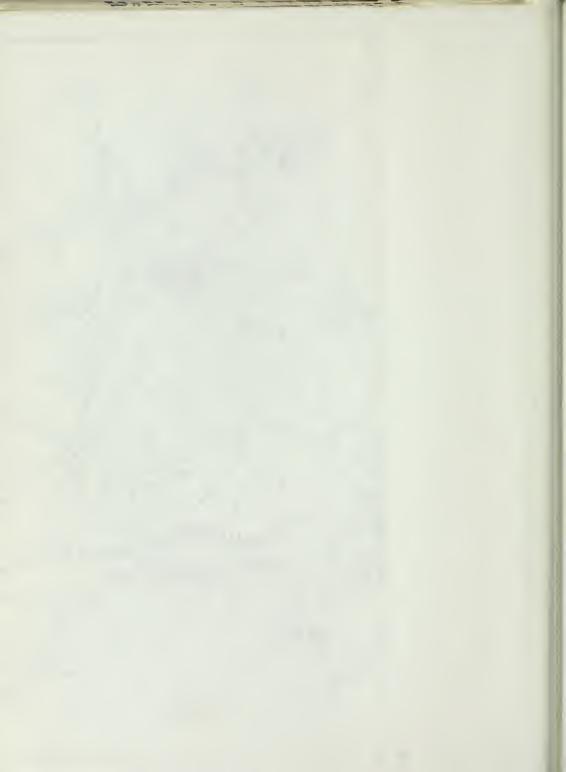

Due to a change in the unobserve of surface water quelity amplified sections, a station number of

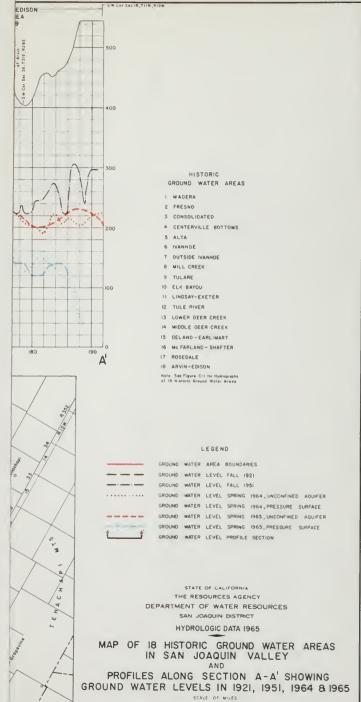

Sheet 2 of 3 Sheets PLATE 4 -LEGEND SURFACE WATER MEASUREMENT STATIONS LARA SURFACE WATER QUALITY SAMPLING STATIONS SURFACE WATER MEASUREMENT AND QUALITY SAMPLING STATIONS OISTRICT BOUNDARY MAJOR GRAINAGE BOUNDARY KEY TO SHEETS STATE OF CALIFORNIA THE RESOURCES RGENCY DER ARTHENT OF MATER MESOURCES SAN JOAQUIN DISTRICT HYDROLOGIC DATA 1965 LOCATION OF SURFACE WATER MEASUREMENT AND QUALITY SAMPLING STATIONS SCALE OF MILES

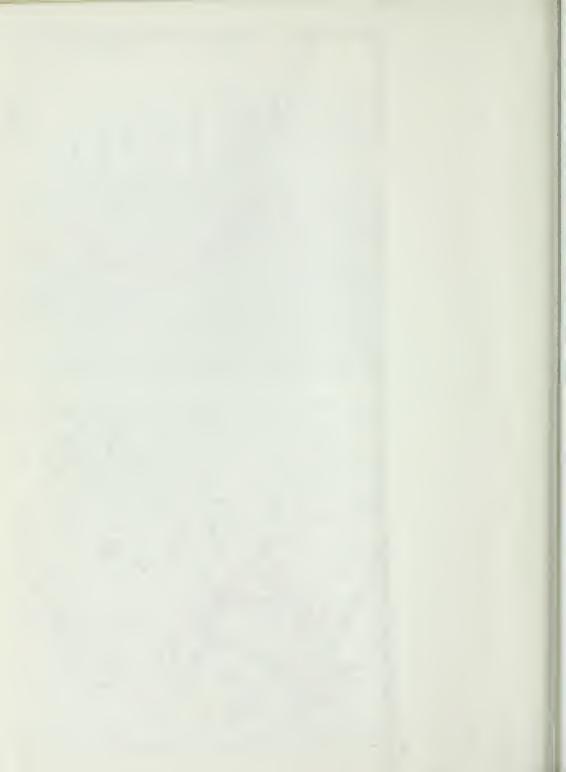


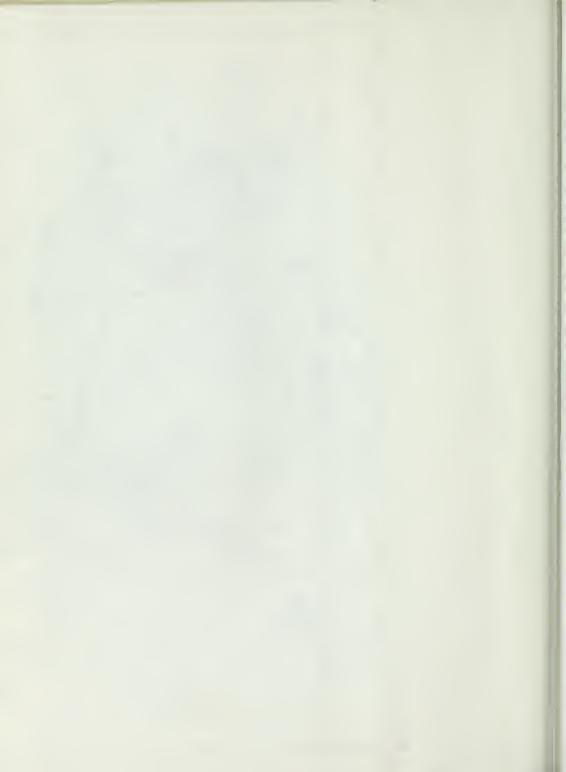
LEGEND RICT OR AREA BOUNDARIES DISTRICTS OR AREAS WITH A GROUND WATER LEVEL CHANGE OF + 5.0 FEET OR MORE IN BERS INDICATE CODE CLASSIFICATION THE UNCONFINED AND SEMICONFINED AQUIFERS FROM SPRING 1964 TO SPRING 1965. HILL LINE DISTRICTS OR AREAS WITH A GROUND WATER OCK LINE LEVEL CHANGE OF - 5.0 FEET OR MORE IN THE UNCONFINED AND SEMICONFINED AQUIFERS FORNIA AQUEDUCT AND TURNOUTS FROM- SPRING 1964 TO SPRING 1965 STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF WATER RESOURCES SAN JOAQUIN DISTRICT HYDROLOGIC DATA 1965 GROUND WATER LEVEL CHANGES IN DISTRICTS OR AREAS UNCONFINED AND SEMICONFINED AQUIFERS SPRING 1964-SPRING 1965 SCALE OF MILES



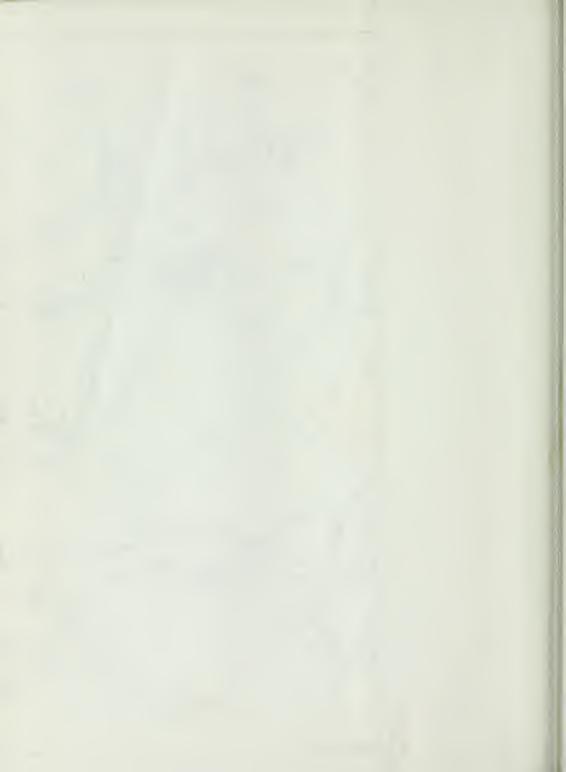


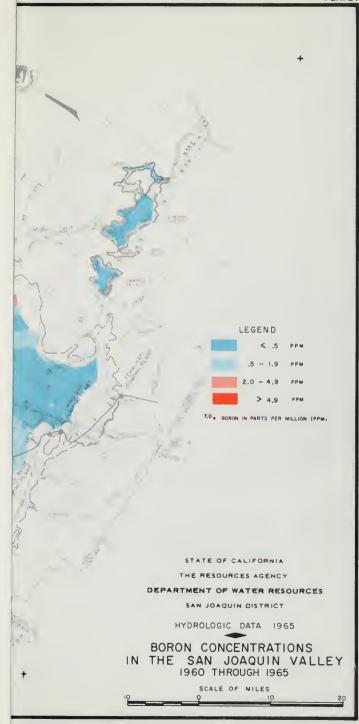




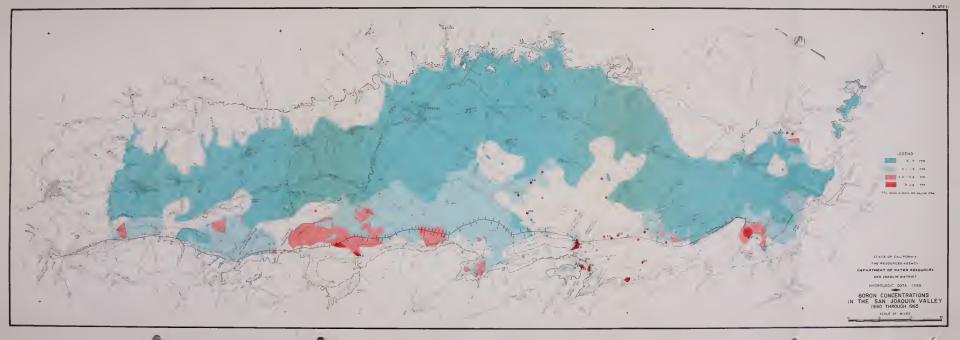


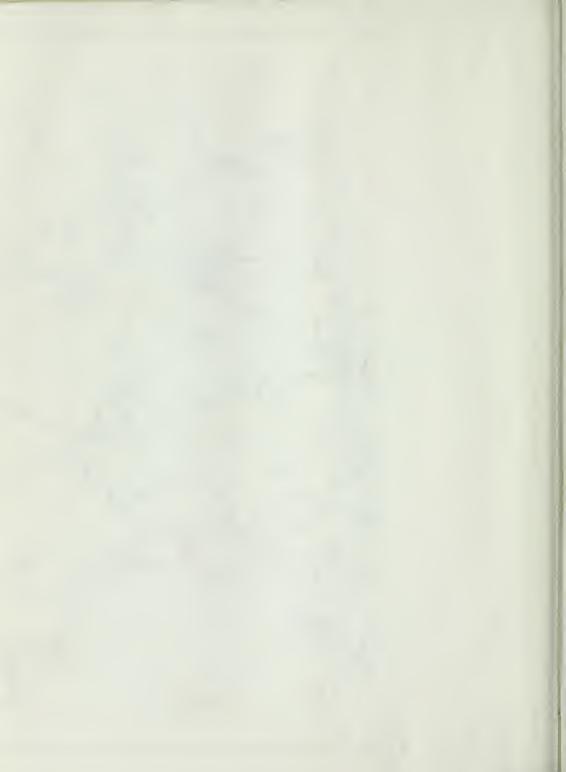
Water lover measurements south of township 13 and essit of the trough of the violey were made in December 1964. STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF WATER RESOURCES SAN JOAQUIN DISTRICT HYDROLOGIC DATA 1965 LINES OF EQUAL ELEVATION OF WATER IN WELLS SAN JOAQUIN VALLEY SPRING 1965 ALE OF M E




LEGEND O PARTIAL MINERAL ANALYSIS COMPLETE MINERAL ANALYSIS HEAVY METAL ANALYSIS A MISCELLANEOUS ANALYSIS STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF WATER RESOURCES SAN JOAQUIN DISTRICT HYDROLOGIC DATA 1965 LOCATION OF SELECTED OBSERVATION WELLS GROUND WATER QUALITY

SCALE OF MILES





LEGEND AREAS WITHOUT DATA _10~ AREAS INSIDE DEPRESSION CONTOURS
CONTAIN CONCENTRATION LESS THAN THE
VALUE INDICATED IN PARTS PER MILLION, NO.51 STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF WATER RESOURCES SAN JOAQUIN DISTRICT HYDROLOGIC DATA 1965 NITRATE CONCENTRATIONS IN THE SAN JOAQUIN VALLEY 1961 THROUGH 1965 SCALE OF M LES

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

RENEWED BOOKS ARE SUBJECT TO IMMEDIATE RECALL

APR 4 1978

JAN 24 REC'D

APR 4 1970 REGIDO

NOV 17 1970 NOV 11 REC'D

RECEIVED

MAR 2 0 1979

PHYS SCI LIBRARY

PSES 1980

OCT 1 5 1380

PHYS SHIPPARE!

LIBRARY, UNIVERSITY OF CALIFORNIA, DAVIS

Book Slip-55m-10,'68(J4048s8)458-A-31, 5

3 1175 00489 8782

Nº 601063

life : . There con for the control of the control o

PHYSICAL SCIENCES LIBRARY LIBRARY
UNIVERSITY OF CALIFORNIA
DAVIS

Call Number:

601063

California. Dept. of Water Resources. Bulletin. TC824

C2 A2

no.130:65

